Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery

Abstract

Whereas memory T cells are required to maintain immunity, regulatory T cells have to keep the immune system in check to prevent excessive inflammation and/or autoimmunity. Both cell types must be present during the lifetime of the organism. However, it is not clear whether both subsets are regulated in tandem or independently of each other, especially because thymic involution severely restricts the production of T-cell populations during ageing. In this Opinion article, we discuss recent evidence in both mice and humans that supports the hypothesis that some CD4+CD25+FOXP3+regulatory T cells can differentiate from rapidly proliferating memory T cells in the periphery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible mechanisms for the origin and maintenance of human CD4+CD25+ regulatory T cells in vivo.
Figure 2: A model of regulatory T-cell homeostasis derived from deuterium-labelled glucose measurements of in vivo proliferation.
Figure 3: A model that links the duration and intensity of immune stimulation to regulatory T-cell generation.

Similar content being viewed by others

References

  1. Sakaguchi, S. et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  2. Tada, T. & Takemori, T. Selective roles of thymus derived lymphocytes in the antibody response. I. Differential suppressive effect of carrier primed T cells on hapten specific IgM and IgG antibody responses. J. Exp. Med. 140, 239–252 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Shevach, E. M. CD4+CD25+ suppressor T cells: more questions than answers. Nature Rev. Immunol. 2, 389–400 (2002).

    Article  CAS  Google Scholar 

  5. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  7. Wildin, R. S., Smyk-Pearson, S. & Filipovich, A. H. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet. 39, 537–545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bluestone, J. A. Regulatory T-cell therapy: is it ready for the clinic? Nature Rev. Immunol. 5, 343–349 (2005).

    Article  CAS  Google Scholar 

  9. O'Neill, E. J. et al. Natural and induced regulatory T cells. Ann. NY Acad. Sci. 1029, 180–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Sheridan, C. TeGenero fiasco prompts regulatory rethink. Nature Biotech. 24, 475–476 (2006).

    Article  CAS  Google Scholar 

  11. Allan, S. E. et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J. Clin. Invest. 115, 3276–3284 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gavin, M. A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA 103, 6659–6664 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walker, M. et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25 T cells. J. Clin. Invest. 112, 1437–1443 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Yagi, H. et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int. Immunol. 16, 1643–1656 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Roncador, G. et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur. J. Immunol. 35, 1681–1691 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seddiki, N. et al. Persistence of naive CD45RA+ regulatory T cells in adult life. Blood 107, 2830–2838 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Fritzsching, B. et al. Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood 108, 3371–3378 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Valmori, D. et al. A peripheral circulating compartment of natural naive CD4 Tregs. J. Clin. Invest. 115, 1953–1962 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Picca, C. C. & Caton, A. J. The role of self-peptides in the development of CD4+ CD25+ regulatory T cells. Curr. Opin. Immunol. 17, 131–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Mackall, C. L. & Gress, R. E. Thymic aging and T-cell regeneration. Immunol. Rev. 160, 91–102 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Gregg, R. et al. The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin. Exp. Immunol. 140, 540–546 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vukmanovic-Stejic, M. et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest. 116, 2423–2433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Akbar, A. N., Taams, L. S., Salmon, M. & Vukmanovic-Stejic, M. The peripheral generation of CD4+ CD25+ regulatory T cells. Immunology 109, 319–325 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taams, L. S. et al. Human anergic/suppressive CD4+CD25+T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol. 31, 1122–1131 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Fritzsching, B. et al. Cutting edge: in contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J. Immunol. 175, 32–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Walker, L. S. et al. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J. Exp. Med. 198, 249–258 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cozzo, C., Larkin, J., III & Caton, A. J. Cutting edge: self-peptides drive the peripheral expansion of CD4+CD25+ regulatory T cells. J. Immunol. 171, 5678–5682 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl Acad. Sci. USA 100, 8886–8891 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Earle, K. E. et al. In vitro expanded human CD4+CD25+ regulatory T cells suppress effector T cell proliferation. Clin. Immunol. 115, 3–9 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Hoffmann, P. et al. Large-scale in vitro expansion of polyclonal human CD4+CD25high regulatory T cells. Blood 104, 895–903 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Godfrey, W. R. et al. In vitro-expanded human CD4+CD25+ T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 104, 453–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Yamazaki, S. et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  36. Baecher-Allan, C., Brown, J. A., Freeman, G. J. & Hafler, D. A. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 167, 1245–1253 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Jonuleit, H. et al. Identification and functional characterization of human CD4+CD25+T cells with regulatory properties isolated from peripheral blood. J. Exp. Med. 193, 1285–1294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dieckmann, D. et al. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med. 193, 1303–1310 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Apostolou, I. & von Boehmer, H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199, 1401–1408 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knoechel, B. et al. Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J. Exp. Med. 202, 1375–1386 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nature Immunol. 6, 1219–1227 (2005).

    Article  CAS  Google Scholar 

  42. Akbar, A. N., Beverley, P. C. & Salmon, M. Will telomere erosion lead to a loss of T-cell memory? Nature Rev. Immunol. 4, 737–743 (2004).

    Article  CAS  Google Scholar 

  43. Hodes, R. J., Hathcock, K. S. & Weng, N. P. Telomeres in T and B cells. Nature Rev. Immunol. 2, 699–706 (2002).

    Article  CAS  Google Scholar 

  44. Fisson, S. et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med. 198, 737–746 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, X. et al. Increased population of CD4+CD25high, regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur. J. Haematol. 75, 468–476 (2005).

    Article  PubMed  Google Scholar 

  46. Taams, L. S. et al. Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells. Eur. J. Immunol. 32, 1621–1630 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Curotto de Lafaille, M. A., Lino, A. C., Kutchukhidze, N. & Lafaille, J. J. CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J. Immunol. 173, 7259–7268 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kasow, K. A. et al. Human CD4+CD25+ regulatory T cells share equally complex and comparable repertoires with CD4+. J. Immunol. 172, 6123–6128 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Hayashi, Y. et al. Antigen-specific T cell repertoire modification of CD4+CD25+ regulatory T cells. J. Immunol. 172, 5240–5248 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Fantini, M. C. et al. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25 T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172, 5149–5153 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Zheng, S. G. et al. Generation ex vivo of TGF-β-producing regulatory T cells from CD4+CD25 precursors. J. Immunol. 169, 4183–4189 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Z. et al. Role of IFN-γ in induction of Foxp3 and conversion of CD4+ CD25 T cells to CD4+ Tregs. J. Clin. Invest. 116, 2434–2441 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Miller, A. et al. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor β after antigen-specific triggering. Proc. Natl Acad. Sci. USA 89, 421–425 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, Y. et al. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Chai, J. G. et al. Anergic T cells act as suppressor cells in vitro and in vivo. Eur. J. Immunol. 29, 686–692 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Taams, L. S. et al. Anergic T cells actively suppress T cell responses via the antigen-presenting cell. Eur. J. Immunol. 28, 2902–2912 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Lombardi, G., Sidhu, S., Batchelor, R. & Lechler, R. Anergic T cells as suppressor cells in vitro. Science 264, 1587–1589 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Grimbert, P. et al. Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4+CD25 T cells in response to inflammation. J. Immunol. 177, 3534–3541 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Grogan, J. L. & Locksley, R. M. T helper cell differentiation: on again, off again. Curr. Opin. Immunol. 14, 366–372 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    CAS  PubMed  Google Scholar 

  63. Dannull, J. et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 115, 3623–3633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ghiringhelli, F. et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med. 202, 919–929 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108, 1571–1579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ahmadzadeh, M. & Rosenberg, S. A. IL-2 administration increases CD4+CD25hi Foxp3+ regulatory T cells in cancer patients. Blood 107, 2409–2414 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, H. et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nature Med. 11, 1238–1243 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Valencia, X. et al. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108, 253–261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van Amelsfort, J. M. et al. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 50, 2775–2785 (2004).

    Article  PubMed  Google Scholar 

  72. Lindley, S. et al. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 54, 92–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Verhagen, J. et al. Absence of T-regulatory cell expression and function in atopic dermatitis skin. J. Allergy Clin. Immunol. 117, 176–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Fletcher, J. M. et al. Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. J. Immunol. 175, 8218–8225 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Khan, N. et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol. 169, 1984–1992 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med. 8, 379–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Akbar, A. N. & Fletcher, J. M. Memory T cell homeostasis and senescence during aging. Curr. Opin. Immunol. 17, 480–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Mitchison, N. A. Induction of immunological paralysis in two zones of dosage. Proc. R. Soc. Lond. B Biol. Sci. 161, 275–292 (1964).

    Article  CAS  PubMed  Google Scholar 

  79. Thorstenson, K. M. & Khoruts, A. Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J. Immunol. 167, 188–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Belghith, M. et al. TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nature Med. 9, 1202–1208 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Chatenoud, L. CD3-specific antibody-induced active tolerance: from bench to bedside. Nature Rev. Immunol. 3, 123–132 (2003).

    Article  CAS  Google Scholar 

  82. Akdis, C. A. et al. Role of interleukin 10 in specific immunotherapy. J. Clin. Invest. 102, 98–106 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Francis, J. N., Till, S. J. & Durham, S. R. Induction of IL-10+CD4+CD25+ T cells by grass pollen immunotherapy. J. Allergy Clin. Immunol. 111, 1255–1261 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Smith, T. R. et al. Cat allergen peptide immunotherapy reduces CD4+ T cell responses to cat allergen but does not alter suppression by CD4+ CD25+ T cells: a double-blind placebo-controlled study. Allergy 59, 1097–1101 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Gardner, L. M. et al. Induction of T 'regulatory' cells by standardized house dust mite immunotherapy: an increase in CD4+ CD25+ interleukin-10+ T cells expressing peripheral tissue trafficking markers. Clin. Exp. Allergy 34, 1209–1219 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, X., Izikson, L., Liu, L. & Weiner, H. L. Activation of CD25+CD4+ regulatory T cells by oral antigen administration. J. Immunol. 167, 4245–4253 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Shimizu, J. et al. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol. 3, 135–142 (2002).

    Article  CAS  Google Scholar 

  89. Stephens, L. A., Mottet, C., Mason, D. & Powrie, F. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur. J. Immunol. 31, 1247–1254 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Walker, M. R. et al. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25 cells. Proc. Natl Acad. Sci. USA 102, 4103–4108 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Skapenko, A., Kalden, J. R., Lipsky, P. E. & Schulze-Koops, H. The IL-4 receptor a-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing CD25+CD4+ regulatory T cells from CD25CD4+ precursors. J. Immunol. 175, 6107–6116 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Levings, M. K. et al. IFN-α and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol. 166, 5530–5539 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Barrat, F. J. et al. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (TH1)- and TH2-inducing cytokines. J. Exp. Med. 195, 603–616 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chang, C. C. et al. Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nature Immunol. 3, 237–243 (2002).

    Article  CAS  Google Scholar 

  95. Michie, C. A., McLean, A., Alcock, C. & Beverley, P. C. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360, 264–265 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Tough, D. F. & Sprent, J. Turnover of naive- and memory-phenotype T cells. J. Exp. Med. 179, 1127–1135 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. McCune, J. M. et al. Factors influencing T-cell turnover in HIV-1-seropositive patients. J. Clin. Invest. 105, R1–R8 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Macallan, D. C. et al. Measurement and modeling of human T cell kinetics. Eur. J. Immunol. 33, 2316–2326 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Hellerstein, M. K. et al. Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J. Clin. Invest. 112, 956–966 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Macallan, D. C. et al. Rapid turnover of effector-memory CD4+ T cells in healthy humans. J. Exp. Med. 200, 255–260 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liang, S. et al. Conversion of CD4+CD25 cells into CD4+CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J. Exp. Med. 201, 127–137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morgan, M. E. et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum. Immunol. 66, 13–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Zheng, S. G. et al. Natural and induced CD4+CD25+ cells educate CD4+CD25 cells to develop suppressive activity: the role of IL-2, TGF-β, and IL-10. J. Immunol. 172, 5213–5221 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Soares for help preparing the original figures. This work was financed by the Biotechnology and Biological Sciences Research Council, the British Skin Foundation, Dermatrust and the Sir Jules Thorne Charitable Trust and Research into Ageing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne N. Akbar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbar, A., Vukmanovic-Stejic, M., Taams, L. et al. The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol 7, 231–237 (2007). https://doi.org/10.1038/nri2037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2037

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing