Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory lymphocytes

Regulatory T cells under scrutiny

An Erratum to this article was published on 01 June 2003

Key Points

  • Selective T-cell depletion induces organ-specific autoimmune diseases.

  • The onset of such autoimmune diseases can be prevented by the administration of T-cell subsets defined by various overlapping, but not discriminating, membrane markers, such as CD25 (the α-chain of the interleukin-2 (IL-2) receptor), CD62L (L-selectin) and CD45RB. CD25 is probably the best marker, but it is not an absolute one.

  • Suppression can be mediated in vitro by CD25+ T cells in the absence of cytokines (necessity of cell–cell contact). Conversely, in vivo suppression seems to involve cytokines, the nature of which varies with the experimental model. Transforming growth factor-β and IL-10 seem to have central roles.

  • Regulatory T cells are diverse. In addition to CD25+ and T helper 2 (TH2) cells, other cell types can mediate regulation in certain settings, such as TR1 cells, CD8+ T cells, natural killer (NK) cells, NKT cells and γδ T cells.

  • Indirect arguments indicate that regulatory T cells are antigen specific, notably CD25+, TH2 and TR1 cells. The role of competition for homeostatic signals (such as self-peptide–MHC and IL-7) might also be important.

  • Regulatory T cells provide an explanation for several states of peripheral tolerance induced in transplantation and autoimmunity, as shown by the transfer of tolerance by CD4+ T cells.

  • Regulatory T-cell diversity poses the problems of the identity of the regulatory T cells that are involved in each model and, more generally, of their functional specialization.

Abstract

Having been long debated, the notion of suppressor T cells — renamed regulatory T cells — is back on the map, but many questions remain regarding the nature of these regulatory cells. Are they specialized cells? What are their phenotype, antigen specificity, mode of action and, above all, biological (and immunopathological) relevance? The predominant role of naturally occurring CD4+CD25+ T cells has been emphasized recently. Other cell types, however, contribute to immunoregulation also, whether they arise spontaneously during ontogeny or during the course of an adaptive immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental evidence for active tolerance involving regulatory T cells.
Figure 2: Contrasting models of the antigen specificity and function of regulatory T cells.
Figure 3: The diversity of regulatory T cells.

Similar content being viewed by others

References

  1. Gershon, R. K. & Kondo, K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18, 723–737 (1970). The first article to show that T cells can suppress immune responses in an antigen-specific manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Moller, G. Do suppressor T cells exist? Scand. J. Immunol. 27, 247–250 (1988).

    CAS  PubMed  Google Scholar 

  3. Shanmugam, A. et al. Healthy monozygous twins do not recognize identical T-cell epitopes on the myelin basic protein autoantigen. Eur. J. Immunol. 24, 2299–2303 (1994).

    CAS  PubMed  Google Scholar 

  4. Bach, J. M. et al. High-affinity presentation of an autoantigenic peptide in type I diabetes by an HLA class II protein encoded in a haplotype protecting from disease. J. Autoimmun. 10, 375–386 (1997).

    CAS  PubMed  Google Scholar 

  5. Ohashi, P. S. et al. Ablation of 'tolerance' and induction of diabetes by virus infection in viral-antigen-transgenic mice. Cell 65, 305–317 (1991).

    CAS  PubMed  Google Scholar 

  6. Miller, J. F. Effect of thymectomy in adult mice on immunological responsiveness. Nature 208, 1337–1338 (1965).

    CAS  PubMed  Google Scholar 

  7. Nishizuka, Y. & Sakakura, T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166, 753–755 (1969). Day-3 thymectomy of non-autoimmune-prone BALB/c mice induces autoimmune disease (ovaritis).

    CAS  PubMed  Google Scholar 

  8. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T-cell subpopulation. J. Exp. Med. 184, 387–396 (1996). The polyautoimmune syndrome that is induced by day-3 thymectomy can be prevented by the administration of purified CD4+CD25+ T cells.

    Article  CAS  PubMed  Google Scholar 

  9. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  10. Dardenne, M., Lepault, F., Bendelac, A. & Bach, J. F. Acceleration of the onset of diabetes in NOD mice by thymectomy at weaning. Eur. J. Immunol. 19, 889–895 (1989).

    CAS  PubMed  Google Scholar 

  11. Wick, G., Kite, J. H. Jr & Witebsky, E. Spontaneous thyroiditis in the obese strain of chickens. IV. The effect of thymectomy and thymo-bursectomy on the development of the disease. J. Immunol. 104, 54–62 (1970).

    CAS  PubMed  Google Scholar 

  12. Penhale, W. J., Farmer, A., McKenna, R. P. & Irvine, W. J. Spontaneous thyroiditis in thymectomized and irradiated Wistar rats. Clin. Exp. Immunol. 15, 225–236 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fowell, D. & Mason, D. Evidence that the T-cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T-cell subset that inhibits this autoimmune potential. J. Exp. Med. 177, 627–636 (1993). Sub-lethal irradiation of adult thymectomized rats induces diabetes and thyroiditis. The onset of these two diseases can be prevented by infusion of CD4+RT6+ T cells.

    CAS  PubMed  Google Scholar 

  14. Powrie, F. & Mason, D. OX-22highCD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J. Exp. Med. 172, 1701–1708 (1990).

    CAS  PubMed  Google Scholar 

  15. Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. & Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C.B-17 scid mice. Int. Immunol. 5, 1461–1471 (1993). Reconstitution of BALB/c severe combined immunodeficient (SCID) mice with CD45RBhi T cells (in the absence of CD45RBlow T cells) induces immune-mediated colitis.

    CAS  PubMed  Google Scholar 

  16. Lafaille, J. J., Nagashima, K., Katsuki, M. & Tonegawa, S. High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T-cell receptor-transgenic mice. Cell 78, 399–408 (1994).

    CAS  PubMed  Google Scholar 

  17. Kurrer, M. O., Pakala, S. V., Hanson, H. L. & Katz, J. D. β-cell apoptosis in T-cell-mediated autoimmune diabetes. Proc. Natl Acad. Sci. USA 94, 213–218 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez, A., Andre-Schmutz, I., Carnaud, C., Mathis, D. & Benoist, C. Damage control, rather than unresponsiveness, effected by protective DX5+ T cells in autoimmune diabetes. Nature Immunol. 2, 1117–1125 (2001).

    CAS  Google Scholar 

  19. Surh, C. D. & Sprent, J. Regulation of naive and memory T-cell homeostasis. Microbes Infect. 4, 51–56 (2002).

    CAS  PubMed  Google Scholar 

  20. Jameson, S. C. Maintaining the norm: T-cell homeostasis. Nature Rev. Immunol. 2, 547–556 (2002).

    CAS  Google Scholar 

  21. Theofilopoulos, A. N., Dummer, W. & Kono, D. H. T-cell homeostasis and systemic autoimmunity. J. Clin. Invest. 108, 335–340 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Barthlott, T., Kassiotis, G. & Stockinger, B. T-cell regulation as a side effect of homeostasis and competition. J. Exp. Med. 197, 1–11 (2003).

    Google Scholar 

  23. Almeida, A. R., Legrand, N., Papiernik, M. & Freitas, A. A. Homeostasis of peripheral CD4+ T cells: IL-2Rα and IL-2 shape a population of regulatory cells that controls CD4+ T-cell numbers. J. Immunol. 169, 4850–4860 (2002).

    PubMed  Google Scholar 

  24. Annacker, O. et al. CD25+CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J. Immunol. 166, 3008–3018 (2001).

    CAS  PubMed  Google Scholar 

  25. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    PubMed  Google Scholar 

  26. Hall, B. M., Jelbart, M. E., Gurley, K. E. & Dorsch, S. E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. Mediation of specific suppression by T helper/inducer cells. J. Exp. Med. 162, 1683–1694 (1985). This study provides the first evidence that transplantation tolerance can be transferred to naive recipients by CD4+CD25+ T cells.

    CAS  PubMed  Google Scholar 

  27. Hall, B. M., Pearce, N. W., Gurley, K. E. & Dorsch, S. E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J. Exp. Med. 171, 141–157 (1990).

    CAS  PubMed  Google Scholar 

  28. Cobbold, S. P., Qin, S., Leong, L. Y., Martin, G. & Waldmann, H. Reprogramming the immune system for peripheral tolerance with CD4 and CD8 monoclonal antibodies. Immunol. Rev. 129, 165–201 (1992).

    CAS  PubMed  Google Scholar 

  29. Bushell, A., Morris, P. J. & Wood, K. J. Transplantation tolerance induced by antigen pretreatment and depleting anti-CD4 antibody depends on CD4+ T-cell regulation during the induction phase of the response. Eur. J. Immunol. 25, 2643–2649 (1995).

    CAS  PubMed  Google Scholar 

  30. Onodera, K. et al. Induction of 'infectious' tolerance to MHC-incompatible cardiac allografts in CD4 monoclonal antibody-treated sensitized rat recipients. J. Immunol. 157, 1944–1950 (1996).

    CAS  PubMed  Google Scholar 

  31. Waldmann, H. & Cobbold, S. Regulating the immune response to transplants: a role for CD4+ regulatory cells? Immunity 14, 399–406 (2001).

    CAS  PubMed  Google Scholar 

  32. Graca, L., Cobbold, S. P. & Waldmann, H. Identification of regulatory T cells in tolerated allografts. J. Exp. Med. 195, 1641–1646 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Qin, S. et al. 'Infectious' transplantation tolerance. Science 259, 974–977 (1993). The first demonstration of infectious tolerance in a transplantation model.

    CAS  PubMed  Google Scholar 

  34. Modigliani, Y. et al. Establishment of tissue-specific tolerance is driven by regulatory T cells selected by thymic epithelium. Eur. J. Immunol. 26, 1807–1815 (1996).

    CAS  PubMed  Google Scholar 

  35. Boitard, C., Yasunami, R., Dardenne, M. & Bach, J. F. T-cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice. J. Exp. Med. 169, 1669–1680 (1989). The first demonstration that CD4+ T cells can prevent the onset of a spontaneous autoimmune disease, namely insulin-dependent diabetes mellitus in non-obese diabetic (NOD) mice.

    CAS  PubMed  Google Scholar 

  36. Herbelin, A., Gombert, J. M., Lepault, F., Bach, J. F. & Chatenoud, L. Mature mainstream TCRαβ+CD4+ thymocytes expressing L-selectin mediate 'active tolerance' in the nonobese diabetic mouse. J. Immunol. 161, 2620–2628 (1998).

    CAS  PubMed  Google Scholar 

  37. Lepault, F. & Gagnerault, M. C. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J. Immunol. 164, 240–247 (2000).

    CAS  PubMed  Google Scholar 

  38. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    CAS  PubMed  Google Scholar 

  39. Lando, Z., Teitelbaum, D. & Arnon, R. Effect of cyclophosphamide on suppressor-cell activity in mice unresponsive to EAE. J. Immunol. 123, 2156–2160 (1979).

    CAS  PubMed  Google Scholar 

  40. Killen, J. A. & Swanborg, R. H. Regulation of experimental allergic encephalomyelitis. Part 4. Further characterization of postrecovery suppressor cells. J. Neuroimmunol. 3, 159–166 (1982).

    CAS  PubMed  Google Scholar 

  41. Swierkosz, J. E. & Swanborg, R. H. Suppressor-cell control of unresponsiveness to experimental allergic encephalomyelitis. J. Immunol. 115, 631–633 (1975).

    CAS  PubMed  Google Scholar 

  42. Yasunami, R. & Bach, J. F. Anti-suppressor effect of cyclophosphamide on the development of spontaneous diabetes in NOD mice. Eur. J. Immunol. 18, 481–484 (1988).

    CAS  PubMed  Google Scholar 

  43. Sempe, P., Richard, M. F., Bach, J. F. & Boitard, C. Evidence of CD4+ regulatory T cells in the non-obese diabetic male mouse. Diabetologia 37, 337–343 (1994).

    CAS  PubMed  Google Scholar 

  44. Billingham, R. E., Brent, L. & Medawar, P. B. Actively acquired tolerance to foreign cells. Nature 172, 603–606 (1953).

    CAS  PubMed  Google Scholar 

  45. Miller, A., Lider, O. & Weiner, H. L. Antigen-driven bystander suppression after oral administration of antigens. J. Exp. Med. 174, 791–798 (1991). This study shows that tolerance induced by oral administration of myelin basic protein extends to other myelin antigens, providing the first demonstration of bystander suppression.

    CAS  PubMed  Google Scholar 

  46. Weiner, H. L. et al. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu. Rev. Immunol. 12, 809–837 (1994).

    CAS  PubMed  Google Scholar 

  47. Al-Sabbagh, A., Miller, A., Santos, L. M. & Weiner, H. L. Antigen-driven tissue-specific suppression following oral tolerance: orally administered myelin basic protein suppresses proteolipid protein-induced experimental autoimmune encephalomyelitis in the SJL mouse. Eur. J. Immunol. 24, 2104–2109 (1994).

    CAS  PubMed  Google Scholar 

  48. Davies, J. D., Leong, L. Y., Mellor, A., Cobbold, S. P. & Waldmann, H. T-cell suppression in transplantation tolerance through linked recognition. J. Immunol. 156, 3602–3607 (1996).

    CAS  PubMed  Google Scholar 

  49. Donckier, V. et al. Critical role of interleukin-4 in the induction of neonatal transplantation tolerance. Transplantation 59, 1571–1576 (1995).

    CAS  PubMed  Google Scholar 

  50. Larsen, C. P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    CAS  PubMed  Google Scholar 

  51. Kirk, A. D. et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nature Med. 5, 686–693 (1999).

    CAS  PubMed  Google Scholar 

  52. Askenase, P. W., Hayden, B. J. & Gershon, R. K. Augmentation of delayed-type hypersensitivity by doses of cyclophosphamide which do not affect antibody responses. J. Exp. Med. 141, 697–702 (1975).

    CAS  PubMed  Google Scholar 

  53. Seydel, K. et al. Anti-CD8 abrogates effect of anti-CD4-mediated islet allograft survival in rat model. Diabetes 40, 1430–1434 (1991).

    CAS  PubMed  Google Scholar 

  54. Harrison, L. C., Dempsey-Collier, M., Kramer, D. R. & Takahashi, K. Aerosol insulin induces regulatory CD8 γδ T cells that prevent murine insulin-dependent diabetes. J. Exp. Med. 184, 2167–2174 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin-10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Prudhomme, G. J. & Piccirillo, C. A. The inhibitory effects of transforming growth factor-β1 (TGF-β1) in autoimmune diseases. J. Autoimmun. 14, 23–42 (2000).

    CAS  Google Scholar 

  57. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    CAS  PubMed  Google Scholar 

  58. Rapoport, M. J. et al. Interleukin-4 reverses T-cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J. Exp. Med. 178, 87–99 (1993).

    CAS  PubMed  Google Scholar 

  59. Yamamoto, A. M. et al. The activity of immunoregulatory T cells mediating active tolerance is potentiated in non-obese diabetic mice by an IL-4-based retroviral gene therapy. J. Immunol. 166, 4973–4980 (2001).

    CAS  PubMed  Google Scholar 

  60. Inobe, J. I., Chen, Y. & Weiner, H. L. In vivo administration of IL-4 induces TGF-β-producing cells and protects animals from experimental autoimmune encephalomyelitis. Ann. NY Acad. Sci. 778, 390–392 (1996).

    CAS  PubMed  Google Scholar 

  61. Horsfall, A. C. et al. Suppression of collagen-induced arthritis by continuous administration of IL-4. J. Immunol. 159, 5687–5696 (1997).

    CAS  PubMed  Google Scholar 

  62. Huang, T. J., MacAry, P. A., Wilke, T., Kemeny, D. M. & Chung, K. F. Inhibitory effects of endogenous and exogenous interferon-γ on bronchial hyperresponsiveness, allergic inflammation and T-helper 2 cytokines in Brown-Norway rats. Immunology 98, 280–288 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bettelli, E. et al. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol. 161, 3299–3306 (1998).

    CAS  PubMed  Google Scholar 

  64. Bach, J. F. & Chatenoud, L. Tolerance to islet autoantigens and type I diabetes. Annu. Rev. Immunol. 19, 131–161 (2001).

    CAS  PubMed  Google Scholar 

  65. Brocke, S. et al. Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature 379, 343–346 (1996).

    CAS  PubMed  Google Scholar 

  66. Young, D. A. et al. IL-4, IL-10, IL-13 and TGF-β from an altered peptide ligand-specific TH2-cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis. J. Immunol. 164, 3563–3572 (2000).

    CAS  PubMed  Google Scholar 

  67. Tisch, R., Wang, B. & Serreze, D. V. Induction of glutamic acid decarboxylase-65-specific TH2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J. Immunol. 163, 1178–1187 (1999).

    CAS  PubMed  Google Scholar 

  68. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T-cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    CAS  PubMed  Google Scholar 

  69. Powrie, F., Carlino, J., Leach, M. W., Mauze, S. & Coffman, R. L. A critical role for transforming growth factor-β but not interleukin-4 in the suppression of T helper type 1-mediated colitis by CD45RBlowCD4+ T cells. J. Exp. Med. 183, 2669–2674 (1996).

    CAS  PubMed  Google Scholar 

  70. Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L. & Powrie, F. An essential role for interleukin-10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190, 995–1004 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Phillips, J. M., Parish, N. M., Drage, M. & Cooke, A. Cutting edge: interactions through the IL-10 receptor regulate autoimmune diabetes. J. Immunol. 167, 6087–6091 (2001).

    CAS  PubMed  Google Scholar 

  72. Seddon, B. & Mason, D. Regulatory T cells in the control of autoimmunity: the essential role of transforming growth factor-β and interleukin-4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4+CD45RC cells and CD4+CD8 thymocytes. J. Exp. Med. 189, 279–288 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bridoux, F. et al. Transforming growth factor-β (TGF-β)-dependent inhibition of T helper cell 2 (TH2)-induced autoimmunity by self-major histocompatibility complex (MHC) class II-specific, regulatory CD4+ T-cell lines. J. Exp. Med. 185, 1769–1775 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Miller, A., Lider, O., Roberts, A. B., Sporn, M. B. & Weiner, H. L. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor-β after antigen-specific triggering. Proc. Natl Acad. Sci. USA 89, 421–425 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Josien, R. et al. A critical role for transforming growth factor-β in donor transfusion-induced allograft tolerance. J. Clin. Invest. 102, 1920–1926 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kingsley, C. I., Karim, M., Bushell, A. R. & Wood, K. J. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J. Immunol. 168, 1080–1086 (2002).

    CAS  PubMed  Google Scholar 

  77. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    CAS  PubMed  Google Scholar 

  78. Stephens, L. A. & Mason, D. CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25 subpopulations. J. Immunol. 165, 3105–3110 (2000).

    CAS  PubMed  Google Scholar 

  79. Seddon, B., Saoudi, A., Nicholson, M. & Mason, D. CD4+CD8 thymocytes that express L-selectin protect rats from diabetes upon adoptive transfer. Eur. J. Immunol. 26, 2702–2708 (1996).

    CAS  PubMed  Google Scholar 

  80. Nakamura, K., Kitani, A. & Strober, W. Cell-contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell-surface-bound transforming growth factor-β. J. Exp. Med. 194, 629–644 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Piccirillo, C. A. et al. CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor-β1 production and responsiveness. J. Exp. Med. 196, 237–246 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. McHugh, R. S. et al. CD4+CD25+ immunoregulatory T cells: gene-expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311–323 (2002).

    CAS  PubMed  Google Scholar 

  85. Zelenika, D. et al. Regulatory T cells overexpress a subset of TH2 gene transcripts. J. Immunol. 168, 1069–1079 (2002).

    CAS  PubMed  Google Scholar 

  86. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol. 3, 135–142 (2002).

    CAS  Google Scholar 

  87. Innes, J. B., Kuntz, M. M., Kim, Y. T. & Weksler, M. E. Induction of suppressor activity in the autologous mixed lymphocyte reaction and in cultures with concanavalin A. J. Clin. Invest. 64, 1608–1613 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T-cell activation in vitro by inhibiting interleukin-2 production. J. Exp. Med. 188, 287–296 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Shevach, E. M. CD4+CD25+ suppressor T cells: more questions than answers. Nature Rev. Immunol. 2, 389–400 (2002).

    CAS  Google Scholar 

  90. Apostolou, I., Sarukhan, A., Klein, L. & Von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nature Immunol. 3, 756–763 (2002).

    CAS  Google Scholar 

  91. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997). This paper shows that antigen-specific IL-10-dependent T R 1 cells grown in vitro can suppress colitis in vivo.

    CAS  PubMed  Google Scholar 

  92. Taguchi, O. & Nishizuka, Y. Autoimmune oophoritis in thymectomized mice: T-cell requirement in adoptive cell transfer. Clin. Exp. Immunol. 42, 324–331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Taguchi, O. & Nishizuka, Y. Experimental autoimmune orchitis after neonatal thymectomy in the mouse. Clin. Exp. Immunol. 46, 425–434 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. McCullagh, P. The significance of immune suppression in normal self tolerance. Immunol. Rev. 149, 127–153 (1996).

    CAS  PubMed  Google Scholar 

  95. Seddon, B. & Mason, D. Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J. Exp. Med. 189, 877–882 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hara, M. et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol. 166, 3789–3796 (2001).

    CAS  PubMed  Google Scholar 

  97. Graca, L. et al. Both CD4+CD25+ and CD4+CD25 regulatory cells mediate dominant transplantation tolerance. J. Immunol. 168, 5558–5565 (2002).

    CAS  PubMed  Google Scholar 

  98. Papiernik, M., de Moraes, M. L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2R α-chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 10, 371–378 (1998).

    CAS  PubMed  Google Scholar 

  99. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 2, 301–306 (2001).

    CAS  Google Scholar 

  100. Bensinger, S. J., Bandeira, A., Jordan, M. S., Caton, A. J. & Laufer, T. M. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+25+ immunoregulatory T cells. J. Exp. Med. 194, 427–438 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T-cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  102. Bacchetta, R. et al. High levels of interleukin-10 production in vivo are associated with tolerance in SCID patients transplanted with HLA-mismatched hematopoietic stem cells. J. Exp. Med. 179, 493–502 (1994).

    CAS  PubMed  Google Scholar 

  103. Gombert, J. M. et al. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur. J. Immunol. 26, 2989–2998 (1996).

    CAS  PubMed  Google Scholar 

  104. Yoshimoto, T., Bendelac, A., Hu-Li, J. & Paul, W. E. Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+ T cells that promptly produce interleukin-4. Proc. Natl Acad. Sci. USA 92, 11931–11934 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, B., Geng, Y. B. & Wang, C. R. CD1-restricted NKT cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med. 194, 313–320 (2001).

    PubMed  PubMed Central  Google Scholar 

  106. Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14–Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sharif, S. et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nature Med. 7, 1057–1062 (2001).

    CAS  PubMed  Google Scholar 

  108. Hong, S. et al. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Med. 7, 1052–1056 (2001).

    CAS  PubMed  Google Scholar 

  109. Lan, F. et al. Predominance of NK1.1+TCRαβ+ or DX5+TCRαβ+ T cells in mice conditioned with fractionated lymphoid irradiation protects against graft-versus-host disease: 'natural suppressor' cells. J. Immunol. 167, 2087–2096 (2001).

    CAS  PubMed  Google Scholar 

  110. Peng, S. L. & Craft, J. T cells in murine lupus: propagation and regulation of disease. Mol. Biol. Rep. 23, 247–251 (1996).

    CAS  PubMed  Google Scholar 

  111. Girardi, M. et al. Resident skin-specific γδ T cells provide local, nonredundant regulation of cutaneous inflammation. J. Exp. Med. 195, 855–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Koh, D. R. et al. Less mortality but more relapses in experimental allergic encephalomyelitis in CD8−/− mice. Science 256, 1210–1213 (1992).

    CAS  PubMed  Google Scholar 

  113. Kumar, V. et al. Recombinant T-cell receptor molecules can prevent and reverse experimental autoimmune encephalomyelitis: dose effects and involvement of both CD4 and CD8 T cells. J. Immunol. 159, 5150–5156 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I wish to acknowledge constructive discussion with R. Zinkernagel, who was very helpful in my phrasing and balancing of this reflection on regulatory T cells. I also wish to thank H. Feillet for her outstanding help in documentation, and S. Clonan for excellent editorial assistance.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

CD2

CD4

CD8

CD25

CD40L

CD45

CD62L

CTLA4

GAD

IFN-γ

IL-2

IL-4

IL-7

IL-10

MBP

PLP

Rag1/2

RT6

TGF-β

OMIM

multiple sclerosis

type 1 diabetes

Glossary

IMMUNOREGULATION

The regulation of immune responses mediated by either antibody or T cells, independently from the underlying effector mechanism.

NON-OBESE DIABETIC MICE

(NOD mice). An inbred strain of mice that spontaneously develop T-cell-mediated autoimmune diabetes.

CYCLOSPORINE A

An immunosuppressive drug that inhibits calcineurin, a Ca2+-dependent serine/threonine phosphatase that is necessary for nuclear translocation of the transcription factor NFAT.

INFECTIOUS TOLERANCE

The extension of tolerance to naive T cells that have not been exposed to the tolerizing antigen.

EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS

(EAE). An animal model of multiple sclerosis — a chronic demyelinating disease in humans. In animals, EAE is induced by the injection of several myelin-sheath antigens, including myelin basic protein, proteolipid protein and myelin oligodendrocyte glycoprotein, together with adjuvant.

CYCLOPHOSPHAMIDE

A DNA-alkylating agent that is used widely as an anti-tumour agent or an immunosuppressive agent. Cyclophosphamide has been shown to destroy certain subsets of lymphocytes preferentially, including B cells and regulatory cells.

ALTERED PEPTIDE LIGAND

(APL). A synthetic peptide homologous to a natural peptide that has a differential capacity to induce effector versus regulatory T cells. APLs can stimulate regulatory cells without inducing effector cells.

BYSTANDER SUPPRESSION

The extension of tolerogen-induced suppression of an immune response to immune responses that are directed against antigens not structurally related to the tolerogen but expressed by the same target cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

François Bach, J. Regulatory T cells under scrutiny. Nat Rev Immunol 3, 189–198 (2003). https://doi.org/10.1038/nri1026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing