Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene silencing by microRNAs: contributions of translational repression and mRNA decay

Key Points

  • MicroRNAs (miRNAs) repress the expression of mRNA targets by promoting translational repression and mRNA degradation.

  • In animals, target degradation is initiated by accelerated deadenylation, which is normally followed by decapping and subsequent degradation of the mRNA body. However, some deadenylated targets may not be further degraded.

  • In plants, target degradation is initiated by endonucleolytic cleavage catalysed by the Argonaute proteins.

  • Although translational repression and mRNA degradation have both been reported in animals and plants, recent evidence indicates that target degradation provides a major contribution to silencing in both kingdoms.

  • An important difference between the mechanisms of miRNA-mediated silencing in animals and plants is the requirement, in animals, for proteins of the GW182 family.

  • GW182 proteins are essential for silencing in animal cells. They interact with Argonaute proteins through an amino-terminal domain and with the cytoplasmic poly(A)-binding protein (PABPC) through a carboxy-terminal silencing domain.

  • Current models suggest that GW182 proteins interfere with PABPC function in translation and/or mRNA stabilization and promote mRNA deadenylation.

  • A remaining open question is whether silencing of miRNA targets can be entirely attributed to deadenylation or whether additional mechanisms are involved in repressing protein production.

  • Moreover, the contribution of translational repression to silencing in plants remains unknown.

Abstract

Despite their widespread roles as regulators of gene expression, important questions remain about target regulation by microRNAs. Animal microRNAs were originally thought to repress target translation, with little or no influence on mRNA abundance, whereas the reverse was thought to be true in plants. Now, however, it is clear that microRNAs can induce mRNA degradation in animals and, conversely, translational repression in plants. Recent studies have made important advances in elucidating the relative contributions of these two different modes of target regulation by microRNAs. They have also shed light on the specific mechanisms of target silencing, which, although it differs fundamentally between plants and animals, shares some common features between the two kingdoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA-target recognition in plants and animals.
Figure 2: Mechanisms of microRNA-mediated gene silencing in animals.
Figure 3: Proteins involved in the effector step of microRNA-mediated gene silencing.
Figure 4: Mechanisms of microRNA-mediated gene silencing in plants.

Similar content being viewed by others

References

  1. Bartel, P. D. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Voinnet, O. Origin, biogenesis, and activity of plant microRNA. Cell 136, 669–687 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nature Rev. Genet. 11, 597–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, L. & Belasco, J. G. Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol. Cell 29, 1–7 (2008).

    Article  PubMed  CAS  Google Scholar 

  6. Eulalio, A., Huntzinger, E. & Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell 132, 9–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hendrickson, D. G. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7, e1000238 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010). References 8–11 report the first studies aimed at determining the contribution of translational repression and mRNA degradation to the overall effect of animal miRNAs on a genome-wide level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Derry, M. C., Yanagiya, A., Martineau, Y. & Sonenberg, N. Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb. Symp. Quant. Biol. 71, 537–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Seggerson, K., Tang, L. & Moss, E. G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol. 243, 215–225 (2002). References 13 and 14 are classic papers that represent the first investigations of the mechanisms of miRNA-mediated gene silencing in C. elegans.

    Article  CAS  PubMed  Google Scholar 

  15. Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nature Struct. Mol. Biol. 13, 1102–1107 (2006).

    Article  CAS  Google Scholar 

  16. Nottrott, S., Simard, M. J. & Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature Struct. Mol. Biol. 13, 1108–1114 (2006).

    Article  CAS  Google Scholar 

  17. Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Pillai, R. S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–1576 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Humphreys, D. T., Westman, B. J., Martin, D. I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl Acad. Sci. USA 102, 16961–16966 (2005). References 18 and 19 were the first to report that miRNAs inhibit translation initiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, B., Love, T. M., Call, M. E., Doench, J. G. & Novina, C. D. Recapitulation of short RNA-directed translational gene silencing in vitro. Mol. Cell 22, 553–560 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Thermann, R. & Hentze, M. W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447, 875–878 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Iwasaki, S., Kawamata, T. & Tomari, Y. Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. Mol. Cell 34, 58–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 17, 1764–1767 (2007).

    Article  CAS  Google Scholar 

  24. Wakiyama, M., Takimoto, K., Ohara, O. & Yokoyama, S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 21, 1857–1862 (2007). References 20–24 describe the first cell-free extracts that recapitulate miRNA-mediated gene silencing in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zdanowicz, A. et al. Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. Mol. Cell 35, 881–888 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Ding, X. C. & Grosshans, H. Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J. 28, 213–222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Krützfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, L. & Belasco, J. G. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol. Cell. Biol. 25, 9198–9208 (2005). References 27–30 represent the first studies showing that animal miRNAs trigger target degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11, 1640–1647 (2005). The first study to show that decapping factors are involved in miRNA-mediated regulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol. Cell. Biol. 26, 2965–2975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmitter, D. et al. Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res. 34, 4801–4815 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006). First study showing that the CCR4–CAF1–NOT complex is involved in miRNA-mediated silencing in animal cells. Together with references 35 and 36, this study showed for the first time that miRNAs trigger deadenylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, L., Fan, J. & Belasco, J. G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl Acad. Sci. USA 103, 4034–4039 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 21, 2558–2570 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eulalio, A. et al. Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mishima, Y. et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr. Biol. 16, 2135–2142 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Piao, X., Zhang, X., Wu, L. & Belasco, J. G. CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells. Mol. Cell. Biol. 30, 1486–1494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chu, C. Y. & Rana, T. M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Fabian, M. R. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868–880 (2009). This study, together with reference 64, showed that GW182 proteins interact with PABPC, implicating PABPC in miRNA-mediated silencing for the first time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beilharz, T. H. et al. microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS ONE 4, e6783 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Eulalio, A., Huntzinger, E. & Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nature Struct. Mol. Biol. 15, 346–353 (2008).

    Article  CAS  Google Scholar 

  48. Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nature Cell Biol. 7, 1261–1266 (2005).

    Article  PubMed  CAS  Google Scholar 

  50. Jakymiw, A. et al. Disruption of GW bodies impairs mammalian RNA interference. Nature Cell Biol. 7, 1267–1274 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. Ding, L., Spencer, A., Morita, K. & Han, M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol. Cell 19, 437–447 (2005). References 48–51, together with reference 31, were the first to show a role for GW182 proteins in silencing.

    Article  CAS  PubMed  Google Scholar 

  52. Ding, L. & Han, M. GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol. 17, 411–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, L. et al. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol. Cell 28, 598–613 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eulalio, A., Tritschler, F. & Izaurralde, E. The GW182 protein family in animal cells: new insights into domains required for miRNA mediated gene silencing. RNA 15, 1433–1442 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tritschler, F., Huntzinger, E. & Izaurralde, E. Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu. Nature Rev. Mol. Cell Biol. 11, 379–384 (2010).

    Article  CAS  Google Scholar 

  56. Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nature Struct. Mol. Biol. 14, 897–903 (2007).

    Article  CAS  Google Scholar 

  57. Takimoto, K., Wakiyama, M. & Yokoyama, S. Mammalian GW182 contains multiple Argonaute binding sites and functions in microRNA-mediated translational repression. RNA 15, 1078–1089 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lian, S. L. et al. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA 15, 804–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lazzaretti, D., Tournier, I. & Izaurralde, E. The C-terminal domains of human TNRC6A, B and C silence bound transcripts independently of the Argonaute proteins. RNA 15, 1059–1066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eulalio, A., Helms, S., Fritzsch, C., Fauser, M. & Izaurralde, E. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15, 1067–1077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zipprich, J. T., Bhattacharyya, S., Mathys, H. & Filipowicz, W. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 15, 781–793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chekulaeva, M., Filipowicz, W. & Parker, R. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA 15, 794–803 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, S. et al. Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing. J. Cell Sci. 121, 4134–4144 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Zekri, L, Huntzinger, E., Heimstädt, S. & Izaurralde, E. The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of miRNA targets and is required for target release. Mol. Cell. Biol. 29, 6220–6231 (2009). This study, together with reference 45, showed that GW182 proteins interact with PABPC, implicating PABPC in miRNA-mediated gene silencing for the first time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Walters, R. W., Bradrick, S. S. & Gromeier, M. Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression. RNA 16, 239–250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huntzinger, E., Braun, E. J., Heimstädt, S., Zekri, L. & Izaurralde, E. Two PABPC-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO J. 29, 4146–4160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kozlov, G., Safaee, N., Rosenauer, A. & Gehring, K. Structural basis of binding of P-body associated protein GW182 and Ataxin-2 by the MLLE domain of poly(A)-binding protein. J. Biol. Chem. 285, 13599–13606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jinek, M., Fabian, M. R., Coyle, S. M., Sonenberg, N. & Doudna, J. A. Structural insights into the human GW182–PABC interaction in microRNA-mediated deadenylation. Nature Struct. Mol. Biol. 17, 238–240 (2010).

    Article  CAS  Google Scholar 

  69. Wu, E. et al. Pervasive and cooperative deadenylation of 3′UTRs by embryonic microRNA families. Mol. Cell 40, 558–570 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002). References 70 and 71 demonstrated that plant miRNAs trigger target cleavage.

    Article  CAS  PubMed  Google Scholar 

  72. Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Souret, F. F., Kastenmayer, J. P. & Green, P. J. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol. Cell 15, 173–183 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. German, M. A. et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nature Biotech. 26, 941–946 (2008).

    Article  CAS  Google Scholar 

  75. Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. & Axtell, M. J. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schwab, R. et al. Specific effects of microRNAs on the plant transcriptome. Dev. Cell 8, 517–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Aukerman, M. J. & Sakai, H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gandikota, M. et al. The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 49, 683–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185–1190 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Lanet, E. et al. Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 21, 1762–1768 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dugas, D. V. & Bartel, B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol. Biol. 67, 403–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Todesco, M., Rubio-Somoza, I., Paz-Ares, J. & Weigel, D. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet. 6, e1001031 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Rev. Mol. Cell Biol. 11, 113–127 (2010).

    Article  CAS  Google Scholar 

  85. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jinek, M. & Doudna, J. A. A three-dimensional view of the molecular machinery of RNA interference. Nature 457, 405–412 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research in this laboratory is supported by the Max Planck Society, by grants from the Deutsche Forschungsgemeinschaft (DFG, FOR855 and the Gottfried Wilhelm Leibniz Program awarded to E.I.), and by the Sixth Framework Programme of the European Commission through the SIROCCO Integrated Project LSHG-CT-2006-037900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Izaurralde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Argonaute family proteins

The effectors of RNA-mediated gene-silencing pathways. Small RNAs (for example, small interfering RNAs or microRNAs) guide Argonautes to their RNA targets; Argonautes carry out regulation either directly or by recruiting additional factors. Most multicellular eukaryotes have several Argonaute paralogues.

5′-cap

Eukaryotic mRNA is modified by the addition of an m7G(5′)ppp(5′)N structure at the 5′ terminus. Capping is essential for several important steps of gene expression — for example, mRNA stabilization, splicing, mRNA export from the nucleus and translation initiation.

Polysome

A functional unit of protein synthesis that consists of several ribosomes attached along the length of a single molecule of RNA.

Internal ribosome entry site

(IRES). A structured RNA element, usually present in the 5′ UTR, that allows m7G-cap-independent association of a ribosome with mRNA.

Krebs-2 ascites tumour cells

Tumour cells grown in vivo in the peritoneal cavity of the mouse.

5′-to-3′ mRNA decay pathway

A major decay pathway for bulk mRNA that is initiated by the removal of the poly(A) tail by deadenylases and is followed by decapping and subsequent 5′-to-3′ exonucleolytic digestion of the mRNA body.

Ribozyme

An RNA molecule with a catalytic activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huntzinger, E., Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12, 99–110 (2011). https://doi.org/10.1038/nrg2936

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2936

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing