Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing

Subjects

Abstract

Catalysed by members of the adenosine deaminase acting on RNA (ADAR) family of enzymes, adenosine-to-inosine (A-to-I) editing converts adenosines in RNA molecules to inosines, which are functionally equivalent to guanosines. Recently, global approaches to studying this widely conserved phenomenon have emerged. The use of bioinformatics, high-throughput sequencing and other approaches has increased the number of known editing sites by several orders of magnitude, and we now have a greater understanding of the control and the biological significance of editing. This Progress article reviews some of these recent global studies and their results.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adenosine-to-inosine editing and bioinformatics.
Figure 2: Padlock capture, amplification and sequencing of editing-site candidates.
Figure 3: Verification of editing sites by the inosine chemical erasing (ICE) method.

Similar content being viewed by others

References

  1. Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79, 321–349 (2010).

    Article  CAS  Google Scholar 

  2. Bass, B. L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).

    Article  CAS  Google Scholar 

  3. Jepson, J. E. & Reenan, R. A. RNA editing in regulating gene expression in the brain. Biochim. Biophys. Acta 1779, 459–470 (2008).

    Article  CAS  Google Scholar 

  4. Jin, Y., Zhang, W. & Li, Q. Origins and evolution of ADAR-mediated RNA editing. IUBMB Life 61, 572–578 (2009).

    Article  CAS  Google Scholar 

  5. Maas, S., Kawahara, Y., Tamburro, K. M. & Nishikura, K. A-to-I RNA editing and human disease. RNA Biol. 3, 1–9 (2006).

    Article  CAS  Google Scholar 

  6. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    Article  CAS  Google Scholar 

  7. Paul, M. S. & Bass, B. L. Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. EMBO J. 17, 1120–1127 (1998).

    Article  CAS  Google Scholar 

  8. Hoopengardner, B., Bhalla, T., Staber, C. & Reenan, R. Nervous system targets of RNA editing identified by comparative genomics. Science 301, 832–836 (2003).

    Article  CAS  Google Scholar 

  9. Levanon, E. Y. et al. Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res. 33, 1162–1168 (2005).

    Article  CAS  Google Scholar 

  10. Levanon, E. Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nature Biotechnol. 22, 1001–1005 (2004).

    Article  CAS  Google Scholar 

  11. Kim, D. D. et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 14, 1719–1725 (2004).

    Article  CAS  Google Scholar 

  12. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    Article  Google Scholar 

  13. Zaranek, A. W., Levanon, E. Y., Zecharia, T., Clegg, T. & Church, G. M. A survey of genomic traces reveals a common sequencing error, RNA editing, and DNA editing. PLoS Genet. 6, e1000954 (2010).

    Article  Google Scholar 

  14. Enstero, M. et al. A computational screen for site selective A-to-I editing detects novel sites in neuron specific Hu proteins. BMC Bioinformatics 11, 6 (2010).

    Article  Google Scholar 

  15. Li, J. B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213 (2009).

    Article  CAS  Google Scholar 

  16. Sakurai, M., Yano, T., Kawabata, H., Ueda, H. & Suzuki, T. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nature Chem. Biol. 6, 733–740 (2010).

    Article  CAS  Google Scholar 

  17. Enstero, M., Daniel, C., Wahlstedt, H., Major, F. & Ohman, M. Recognition and coupling of A-to-I edited sites are determined by the tertiary structure of the RNA. Nucleic Acids Res. 37, 6916–6926 (2009).

    Article  Google Scholar 

  18. Barak, M. et al. Evidence for large diversity in the human transcriptome created by Alu RNA editing. Nucleic Acids Res. 37, 6905–6915 (2009).

    Article  CAS  Google Scholar 

  19. Paz-Yaacov, N. et al. Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc. Natl Acad. Sci. USA 107, 12174–12179 (2010).

    Article  CAS  Google Scholar 

  20. Wahlstedt, H., Daniel, C., Enstero, M. & Ohman, M. Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res. 19, 978–986 (2009).

    Article  CAS  Google Scholar 

  21. Osenberg, S. et al. Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing. PLoS ONE 5, e11173 (2010).

    Article  Google Scholar 

  22. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  23. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nature Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  Google Scholar 

  24. Luciano, D. J., Mirsky, H., Vendetti, N. J. & Maas, S. RNA editing of a miRNA precursor. RNA 10, 1174–1177 (2004).

    Article  CAS  Google Scholar 

  25. Blow, M. J. et al. RNA editing of human microRNAs. Genome Biol. 7, R27 (2006).

    Article  Google Scholar 

  26. Kawahara, Y. et al. Frequency and fate of microRNA editing in human brain. Nucleic Acids Res. 36, 5270–5280 (2008).

    Article  CAS  Google Scholar 

  27. Yang, W. et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nature Struct. Mol. Biol. 13, 13–21 (2006).

    Article  CAS  Google Scholar 

  28. Kawahara, Y., Zinshteyn, B., Chendrimada, T. P., Shiekhattar, R. & Nishikura, K. RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep. 8, 763–769 (2007).

    Article  CAS  Google Scholar 

  29. Iizasa, H. et al. Editing of Epstein-Barr Virus-encoded BART6 MicroRNAs Controls Their Dicer Targeting and Consequently Affects Viral Latency. J. Biol. Chem. 285, 33358–33370 (2010).

    Article  CAS  Google Scholar 

  30. Linsen, S. E., de Wit, E., de Bruijn, E. & Cuppen, E. Small RNA expression and strain specificity in the rat. BMC Genomics 11, 249 (2010).

    Article  Google Scholar 

  31. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  Google Scholar 

  32. Chiang, H. R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).

    Article  CAS  Google Scholar 

  33. de Hoon, M. J. et al. Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries. Genome Res. 20, 257–264 (2010).

    Article  CAS  Google Scholar 

  34. Liang, H. & Landweber, L. F. Hypothesis: RNA editing of microRNA target sites in humans? RNA 13, 463–467 (2007).

    Article  CAS  Google Scholar 

  35. Borchert, G. M. et al. Adenosine deamination in human transcripts generates novel microRNA binding sites. Hum. Mol. Genet. 18, 4801–4807 (2009).

    Article  CAS  Google Scholar 

  36. Paz, N. et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res. 17, 1586–1595 (2007).

    Article  CAS  Google Scholar 

  37. Kiran, A. & Baranov, P. V. DARNED: a DAtabase of RNa EDiting in humans. Bioinformatics 26, 1772–1776 (2010).

    Article  CAS  Google Scholar 

  38. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.-E.W. is a recipient of a University of Pennsylvania Vagelos scholarship. M.S. is supported in part by a fellowship from the Japan Society for the Promotion of Science. K.N. is supported by grants from the US National Institutes of Health, the Ellison Medical Foundation and the Commonwealth Universal Research Enhancement Program, Pennsylvania Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bjorn-Erik Wulff or Kazuko Nishikura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Kazuko Nishikura's homepage

Database of RNA Editing (DARNED)

NCBI Trace Archive

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wulff, BE., Sakurai, M. & Nishikura, K. Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing. Nat Rev Genet 12, 81–85 (2011). https://doi.org/10.1038/nrg2915

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing