Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic modulators, modifiers and mediators in cancer aetiology and progression

Key Points

  • The functional classification system introduced here divides the genes that shape the cancer epigenome into three categories: epigenetic modifiers that directly modify the cancer epigenome and are frequent targets of mutations and epimutations; epigenetic mediators that drive the tumour or its progenitor cells towards a more stem-like state; and epigenetic modulators that transmit environmental signals to epigenetic modifiers.

  • Epigenetic mediator-induced epigenetic variation in the cells of origin might lead to increased phenotypic flexibility and heterogeneity long before the emergence of oncogenic mutations and is subsequently selected in the tumour tissue during progression.

  • Sites of increased epigenetic variation in precancerous lesions and cancer localize to large domains, called hypomethylated blocks, that overlap with regions of repressive chromatin modifications acquired during development (large organized chromatin K9 modifications) and are particularly sensitive to ageing and cancer-predisposing environmental signals.

  • Increased epigenetic variation is a predictor of cancer risk and cancer progression; it promotes the adaptation of the tumour tissue to changing environmental cues by continuously re-establishing tumour cell phenotypic heterogeneity.

  • The mechanism of increased epigenetic variation is functionally intertwined with the perturbations of the 3D genome organization and the disruption of heterochromatin compartments within the nuclear architecture.

Abstract

This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of 'tumour progenitor genes'. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: 'epigenetic mediators', corresponding to the tumour progenitor genes suggested earlier; 'epigenetic modifiers' of the mediators, which are frequently mutated in cancer; and 'epigenetic modulators' upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional classification of cancer genes and their contribution to malignancy.
Figure 2: Change in cell state towards cancer stem cell states induced by reprogramming of the 3D epigenome.
Figure 3: Waddington landscape of phenotypic plasticity in development and cancer.

Similar content being viewed by others

References

  1. Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 7, 21–33 (2006). This is the model suggesting that some genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, causing altered differentiation throughout tumour evolution; the current Review revisits this model.

    Article  CAS  PubMed  Google Scholar 

  2. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, R. S. et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Invest. 122, 2983–2988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mack, S. C. et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506, 445–450 (2014). This paper reported an absence of recurrent mutations in a subtype of paediatric posterior fossa ependymoma, suggesting the existence of alternative, non-mutational mechanisms for cancer initiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, J. et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481, 329–334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pugh, T. J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hovestadt, V. et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510, 537–541 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Shen, H. & Laird, P. W. Interplay between the cancer genome and epigenome. Cell 153, 38–55 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plass, C. et al. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 14, 765–780 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Suva, M. L., Riggi, N. & Bernstein, B. E. Epigenetic reprogramming in cancer. Science 339, 1567–1570 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Ley, T. J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yan, X. J. et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat. Genet. 43, 309–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Couronne, L., Bastard, C. & Bernard, O. A. TET2 and DNMT3A mutations in human T-cell lymphoma. N. Engl. J. Med. 366, 95–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Grossmann, V. et al. The molecular profile of adult T-cell acute lymphoblastic leukemia: mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL. Genes Chromosomes Cancer 52, 410–422 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Ribeiro, A. F. et al. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood 119, 5824–5831 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2012).

    Article  CAS  Google Scholar 

  17. Challen, G. A. et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15, 350–364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mayle, A. et al. Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. Blood 125, 629–638 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Celik, H. et al. Enforced differentiation of Dnmt3a-null bone marrow leads to failure with c-Kit mutations driving leukemic transformation. Blood 125, 619–628 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Abdel-Wahab, O. et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114, 144–147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Langemeijer, S. M. et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat. Genet. 41, 838–842 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Chou, W. C. et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood 118, 3803–3810 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Papaemmanuil, E. et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122, 3616–3627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Itzykson, R. et al. Clonal architecture of chronic myelomonocytic leukemias. Blood 121, 2186–2198 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Madzo, J. et al. Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis. Cell Rep. 6, 231–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Biegel, J. A. et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 59, 74–79 (1999).

    CAS  PubMed  Google Scholar 

  30. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43, 830–837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Nikoloski, G. et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet. 42, 665–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Simon, C. et al. A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev. 26, 651–656 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, G. G., Cai, L., Pasillas, M. P. & Kamps, M. P. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat. Cell Biol. 9, 804–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Martinez-Garcia, E. et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 117, 211–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jaffe, J. D. et al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat. Genet. 45, 1386–1391 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hakimi, A. A. et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin. Cancer Res. 19, 3259–3267 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mar, B. G. et al. Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia. Nat. Commun. 5, 3469 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature 362, 747–749 (1993). This and the next paper represent the discovery of altered imprinting in cancer.

    Article  CAS  PubMed  Google Scholar 

  52. Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature 362, 749–751 (1993). This and the previous paper represent the discovery of altered imprinting in cancer.

    Article  CAS  PubMed  Google Scholar 

  53. Zhan, S., Shapiro, D. N. & Helman, L. J. Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J. Clin. Invest. 94, 445–448 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rainier, S., Dobry, C. J. & Feinberg, A. P. Loss of imprinting in hepatoblastoma. Cancer Res. 55, 1836–1838 (1995).

    CAS  PubMed  Google Scholar 

  55. Levine, A. J. et al. Genetic variation in insulin pathway genes and distal colorectal adenoma risk. Int. J. Colorectal Dis. 27, 1587–1595 (2012).

    Article  PubMed  Google Scholar 

  56. Falls, J. G., Pulford, D. J., Wylie, A. A. & Jirtle, R. L. Genomic imprinting: implications for human disease. Am. J. Pathol. 154, 635–647 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hassan, A. B. & Howell, J. A. Insulin-like growth factor II supply modifies growth of intestinal adenoma in Apc(Min/+) mice. Cancer Res. 60, 1070–1076 (2000).

    CAS  PubMed  Google Scholar 

  58. Bjornsson, H. T. et al. Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors. J. Natl Cancer Inst. 99, 1270–1273 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Sakatani, T. et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 307, 1976–1978 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Shan, J. et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology 56, 1004–1014 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. DeBaun, M. R. et al. Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am. J. Hum. Genet. 70, 604–611 (2002). This paper showed that epigenetic changes can precede and specifically confer risk of cancer, providing epigenetic epidemiological causal evidence similar to Li-Fraumeni and p53 mutations for genetic epidemiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ferron, S. R. et al. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis. Nat. Commun. 6, 8265 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Venkatraman, A. et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500, 345–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ziegler, A. N. et al. IGF-II promotes stemness of neural restricted precursors. Stem Cells 30, 1265–1276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, L. et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110, 4111–4119 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fischedick, G. et al. Nanog induces hyperplasia without initiating tumors. Stem Cell Res. 13, 300–315 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Lengner, C. J. et al. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 1, 403–415 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marucci, L. et al. Beta-catenin fluctuates in mouse ESCs and is essential for Nanog-mediated reprogramming of somatic cells to pluripotency. Cell Rep. 8, 1686–1696 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350–1353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu, X., Mazur, S. J., Lin, T., Appella, E. & Xu, Y. The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene 33, 2655–2664 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Ohnishi, K. et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156, 663–677 (2014). This paper provided a link between reprogramming and oncogenic transformation, showing that transient expression of reprogramming factors in an in vivo mouse model leads to tumour development in various tissues in the absence of irreversible genetic transformation.

    Article  CAS  PubMed  Google Scholar 

  72. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wen, B., Wu, H., Shinkai, Y., Irizarry, R. A. & Feinberg, A. P. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat. Genet. 41, 246–250 (2009). This paper showed that large areas of heterochromatin expand during differentiation and can distinguish cell types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tonge, P. D. et al. Divergent reprogramming routes lead to alternative stem-cell states. Nature 516, 192–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Shakya, A. et al. Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Mol. Cell. Biol. 35, 1014–1025 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gidekel, S., Pizov, G., Bergman, Y. & Pikarsky, E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4, 361–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Lee, B. K. et al. Tgif1 counterbalances the activity of core pluripotency factors in mouse embryonic stem cells. Cell Rep. 13, 52–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Rudin, C. M. et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat. Genet. 44, 1111–1116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bass, A. J. et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat. Genet. 41, 1238–1242 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Luo, W. et al. Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS ONE 8, e56324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chiou, S. H. et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 70, 10433–10444 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, D. et al. Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget 5, 10803–10815 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Visvader, J. E. Cells of origin in cancer. Nature 469, 314–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Friedmann-Morvinski, D. & Verma, I. M. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep. 15, 244–253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Medema, J. P. Cancer stem cells: the challenges ahead. Nat. Cell Biol. 15, 338–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Kai, K. et al. Maintenance of HCT116 colon cancer cell line conforms to a stochastic model but not a cancer stem cell model. Cancer Sci. 100, 2275–2282 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Friedmann-Morvinski, D. et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338, 1080–1084 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Kikushige, Y. et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 20, 246–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Chen, W. J. et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat. Commun. 5, 3472 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Borovski, T. et al. Tumor microvasculature supports proliferation and expansion of glioma-propagating cells. Int. J. Cancer 125, 1222–1230 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Badeaux, A. I. & Shi, Y. Emerging roles for chromatin as a signal integration and storage platform. Nat. Rev. Mol. Cell Biol. 14, 211–224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kolybaba, A. & Classen, A. K. Sensing cellular states – signaling to chromatin pathways targeting Polycomb and Trithorax group function. Cell Tissue Res. 356, 477–493 (2014).

    Article  PubMed  Google Scholar 

  101. Wu, B. K. & Brenner, C. Suppression of TET1-dependent DNA demethylation is essential for KRAS-mediated transformation. Cell Rep. 9, 1827–1840 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gazin, C., Wajapeyee, N., Gobeil, S., Virbasius, C. M. & Green, M. R. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 449, 1073–1077 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wajapeyee, N., Malonia, S. K., Palakurthy, R. K. & Green, M. R. Oncogenic RAS directs silencing of tumor suppressor genes through ordered recruitment of transcriptional repressors. Genes Dev. 27, 2221–2226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Serra, R. W., Fang, M., Park, S. M., Hutchinson, L. & Green, M. R. A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype. eLife 3, e02313 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Li, H. et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136–1139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Nguyen, L. V. et al. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells. Nature 528, 267–271 (2015). This paper describes the development of phenotypically heterogeneous, serially transplantable tumours from basal cells and luminal progenitors transduced with oncogenic KRAS.

    Article  CAS  PubMed  Google Scholar 

  107. Trosko, J. E. & Tai, M. H. Adult stem cell theory of the multi-stage, multi-mechanism theory of carcinogenesis: role of inflammation on the promotion of initiated stem cells. Contrib. Microbiol. 13, 45–65 (2006).

    Article  PubMed  Google Scholar 

  108. Suman, S. et al. Current perspectives of molecular pathways involved in chronic Inflammation-mediated breast cancer. Biochem. Biophys. Res. Commun. http://dx.doi.org/10.1016/j.bbrc.2015.10.133 (2015).

  109. Barham, W. et al. Aberrant activation of NF-κB signaling in mammary epithelium leads to abnormal growth and ductal carcinoma in situ. BMC Cancer 15, 647 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Levy, D. E. & Darnell, J. E. Jr. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Do, D. V. et al. A genetic and developmental pathway from STAT3 to the OCT4-NANOG circuit is essential for maintenance of ICM lineages in vivo. Genes Dev. 27, 1378–1390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tyagi, N. et al. p-21 activated kinase 4 (PAK4) maintains stem cell-like phenotypes in pancreatic cancer cells through activation of STAT3 signaling. Cancer Lett. 370, 260–267 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Hutchins, A. P., Diez, D. & Miranda-Saavedra, D. Genomic and computational approaches to dissect the mechanisms of STAT3's universal and cell type-specific functions. JAKSTAT 2, e25097 (2013).

    PubMed  PubMed Central  Google Scholar 

  116. Abu-Remaileh, M. et al. Chronic inflammation induces a novel epigenetic program that is conserved in intestinal adenomas and in colorectal cancer. Cancer Res. 75, 2120–2130 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130, 1083–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Lee, J. et al. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 151, 547–558 (2012). The paper showed that the activation of innate immunity enhances the reprogramming efficiency of Yamanaka factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Taniguchi, K. et al. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519, 57–62 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Strano, S. et al. The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA damage. Mol. Cell 18, 447–459 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Bora-Singhal, N. et al. YAP1 regulates OCT4 activity and SOX2 expression to facilitate self-renewal and vascular mimicry of stem-like cells. Stem Cells 33, 1705–1718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhu, J. et al. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525, 206–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pfister, N. T. et al. Mutant p53 cooperates with the SWI/SNF chromatin remodeling complex to regulate VEGFR2 in breast cancer cells. Genes Dev. 29, 1298–1315 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rai, K. et al. DNA demethylase activity maintains intestinal cells in an undifferentiated state following loss of APC. Cell 142, 930–942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012). This paper is a good example of metabolic epigenetic modulation by a tumour suppressor gene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Heyn, H. et al. Distinct DNA methylomes of newborns and centenarians. Proc. Natl Acad. Sci. USA 109, 10522–10527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Florath, I., Butterbach, K., Muller, H., Bewerunge-Hudler, M. & Brenner, H. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum. Mol. Genet. 23, 1186–1201 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Yuan, T. et al. An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging. PLoS Genet. 11, e1004996 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Teschendorff, A. E., West, J. & Beck, S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum. Mol. Genet. 22, R7–R15 (2013). The authors intriguingly argue that epigenetic drift has an evolutionary advantage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593–610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Siebold, A. P. et al. Polycomb Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress resistance. Proc. Natl Acad. Sci. USA 107, 169–174 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Greer, E. L. et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466, 383–387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang, W. et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160–1163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. McCord, R. P. et al. Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res. 23, 260–269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Riedel, C. G. et al. DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat. Cell Biol. 15, 491–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bungard, D. et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329, 1201–1205 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wilson, M. J., Shivapurkar, N. & Poirier, L. A. Hypomethylation of hepatic nuclear DNA in rats fed with a carcinogenic methyl-deficient diet. Biochem. J. 218, 987–990 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ghoshal, A. K. & Farber, E. The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens. Carcinogenesis 5, 1367–1370 (1984).

    Article  CAS  PubMed  Google Scholar 

  144. Bhave, M. R., Wilson, M. J. & Poirier, L. A. c-H-ras and c-K-ras gene hypomethylation in the livers and hepatomas of rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis 9, 343–348 (1988).

    Article  CAS  PubMed  Google Scholar 

  145. Pogribny, I. P. et al. Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res. 55, 1894–1901 (1995).

    CAS  PubMed  Google Scholar 

  146. Giovannucci, E. et al. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J. Natl Cancer Inst. 85, 875–884 (1993).

    Article  CAS  PubMed  Google Scholar 

  147. Ciappio, E. D., Mason, J. B. & Crott, J. W. Maternal one-carbon nutrient intake and cancer risk in offspring. Nutr. Rev. 69, 561–571 (2011).

    Article  PubMed  Google Scholar 

  148. Choi, S. W. et al. Chronic alcohol consumption induces genomic but not p53-specific DNA hypomethylation in rat colon. J. Nutr. 129, 1945–1950 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. van Engeland, M. et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res. 63, 3133–3137 (2003).

    CAS  PubMed  Google Scholar 

  150. Cortessis, V. K. et al. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum. Genet. 131, 1565–1589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zochbauer-Muller, S. et al. Aberrant methylation of multiple genes in the upper aerodigestive tract epithelium of heavy smokers. Int. J. Cancer 107, 612–616 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Russo, A. L. et al. Differential DNA hypermethylation of critical genes mediates the stage-specific tobacco smoke-induced neoplastic progression of lung cancer. Clin. Cancer Res. 11, 2466–2470 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Bollati, V. et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 67, 876–880 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Maekita, T. et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin. Cancer Res. 12, 989–995 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Chan, A. O. et al. Eradication of Helicobacter pylori infection reverses E-cadherin promoter hypermethylation. Gut 55, 463–468 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Christensen, B. C. et al. Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res. 69, 227–234 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pujadas, E. & Feinberg, A. P. Regulated noise in the epigenetic landscape of development and disease. Cell 148, 1123–1131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hansen, K. D. et al. Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization. Genome Res. 24, 177–184 (2014). This paper showed the link between hypomethylated blocks, variable gene expression, and heterochromatin LOCKs/LADs in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Meuleman, W. et al. Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res. 23, 270–280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Banerji, C. R. et al. Cellular network entropy as the energy potential in Waddington's differentiation landscape. Sci. Rep. 3, 3039 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Chen, X. et al. G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes Dev. 26, 2499–2511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liu, N. et al. Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev. 29, 379–393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ahmed, K. et al. Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS One 5, e10531 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Therizols, P. et al. Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 346, 1238–1242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38, 452–464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vallot, C., Herault, A., Boyle, S., Bickmore, W. A. & Radvanyi, F. PRC2-independent chromatin compaction and transcriptional repression in cancer. Oncogene 34, 741–751 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Lemaitre, C. & Bickmore, W. A. Chromatin at the nuclear periphery and the regulation of genome functions. Histochem. Cell Biol. 144, 111–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Burke, B. & Stewart, C. L. The nuclear lamins: flexibility in function. Nat. Rev. Mol. Cell Biol. 14, 13–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Shah, P. P. et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 27, 1787–1799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Harr, J. C. et al. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J. Cell Biol. 208, 33–52 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Towbin, B. D. et al. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150, 934–947 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Guarda, A., Bolognese, F., Bonapace, I. M. & Badaracco, G. Interaction between the inner nuclear membrane lamin B receptor and the heterochromatic methyl binding protein, MeCP2. Exp. Cell Res. 315, 1895–1903 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Schooley, A., Moreno-Andres, D., De Magistris, P., Vollmer, B. & Antonin, W. The lysine demethylase LSD1 is required for nuclear envelope formation at the end of mitosis. J. Cell Sci. 128, 3466–3477 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Montes de Oca, R., Shoemaker, C. J., Gucek, M., Cole, R. N. & Wilson, K. L. Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners. PLoS One 4, e7050 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Demmerle, J., Koch, A. J. & Holaska, J. M. The nuclear envelope protein emerin binds directly to histone deacetylase 3 (HDAC3) and activates HDAC3 activity. J. Biol. Chem. 287, 22080–22088 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Somech, R. et al. The nuclear-envelope protein and transcriptional repressor LAP2β interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylation. J. Cell Sci. 118, 4017–4025 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Holaska, J. M. & Wilson, K. L. An emerin “proteome”: purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry 46, 8897–8908 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Finlan, L. E. et al. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet. 4, e1000039 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Melcer, S. et al. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation. Nat. Commun. 3, 910 (2012).

    Article  PubMed  CAS  Google Scholar 

  180. Adamo, A. et al. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat. Cell Biol. 13, 652–659 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Ma, D. K., Chiang, C. H., Ponnusamy, K., Ming, G. L. & Song, H. G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells 26, 2131–2141 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sadaie, M. et al. Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev. 27, 1800–1808 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zane, L., Sharma, V. & Misteli, T. Common features of chromatin in aging and cancer: cause or coincidence? Trends Cell Biol. 24, 686–694 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Shankar, S. R. et al. G9a, a multipotent regulator of gene expression. Epigenetics 8, 16–22 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. McDonald, O. G., Wu, H., Timp, W., Doi, A. & Feinberg, A. P. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat. Struct. Mol. Biol. 18, 867–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Feinberg, A. P. & Irizarry, R. A. Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl Acad. Sci. USA 107 (Suppl. 1), 1757–1764 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Timp, W. & Feinberg, A. P. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat. Rev. Cancer 13, 497–510 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ohlsson, R. et al. Epigenetic variability and the evolution of human cancer. Adv. Cancer Res. 88, 145–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 43, 768–775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Timp, W. et al. Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors. Genome Med. 6, 61 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44, 40–46 (2012).

    Article  CAS  Google Scholar 

  193. Teschendorff, A. E. et al. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation. Genome Med. 4, 24 (2012). This paper showed that epigenetic variability in normal tissue predicts the development of later cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Teschendorff, A. E. & Widschwendter, M. Differential variability improves the identification of cancer risk markers in DNA methylation studies profiling precursor cancer lesions. Bioinformatics 28, 1487–1494 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Dinalankara, W. & Bravo, H. C. Gene expression signatures based on variability can robustly predict tumor progression and prognosis. Cancer Inform. 14, 71–81 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Vandiver, A. R. et al. Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin. Genome Biol. 16, 80 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Teschendorff, A. E., Banerji, C. R., Severini, S., Kuehn, R. & Sollich, P. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks. Sci. Rep. 5, 9646 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kumar, R. M. et al. Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516, 56–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Singer, Z. S. et al. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell 55, 319–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Landan, G. et al. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat. Genet. 44, 1207–1214 (2012). This paper demonstrated stochastic epipolymorphisms in cancer.

    Article  CAS  PubMed  Google Scholar 

  201. Reddy, K. L. & Feinberg, A. P. Higher order chromatin organization in cancer. Semin. Cancer Biol. 23, 109–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Carone, D. M. & Lawrence, J. B. Heterochromatin instability in cancer: from the Barr body to satellites and the nuclear periphery. Semin. Cancer Biol. 23, 99–108 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Schlimgen, R. J., Reddy, K. L., Singh, H. & Krangel, M. S. Initiation of allelic exclusion by stochastic interaction of Tcrb alleles with repressive nuclear compartments. Nat. Immunol. 9, 802–809 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhao, H. et al. PARP1- and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription. Mol. Cell 59, 984–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Wassef, M. et al. Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes Dev. 29, 2547–2562 (2015).

    PubMed  PubMed Central  Google Scholar 

  207. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Boros, J., Arnoult, N., Stroobant, V., Collet, J. F. & Decottignies, A. Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1alpha at chromatin. Mol. Cell. Biol. 34, 3662–3674 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Hnisz, D. et al. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol. Cell 58, 362–370 (2015). The paper showed that super-enhancers integrate developmental cues and oncogenic signalling pathways to regulate genes that control cell identity or tumour development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Bahar Halpern, K. et al. Bursty gene expression in the intact mammalian liver. Mol. Cell 58, 147–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Lam, A. & Deans, T. L. A noisy tug of war: the battle between transcript production and degradation in the liver. Dev. Cell 33, 3–4 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Noordermeer, D. et al. Variegated gene expression caused by cell-specific long-range DNA interactions. Nat. Cell Biol. 13, 944–951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Whyte, W. A. et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482, 221–225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Dey, A., Nishiyama, A., Karpova, T., McNally, J. & Ozato, K. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol. Biol. Cell 20, 4899–4909 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Adam, R. C. et al. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature 521, 366–370 (2015). This paper showed that the microenvironment dynamically reprogrammes the location of super-enhancers in follicular stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Gomez-Diaz, E. & Corces, V. G. Architectural proteins: regulators of 3D genome organization in cell fate. Trends Cell Biol. 24, 703–711 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015). This paper showed that disruption of TAD structure can result in pathological long-range enhancer–promoter interactions and disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Kanduri, C. et al. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr. Biol. 10, 853–856 (2000).

    Article  CAS  PubMed  Google Scholar 

  221. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014). This paper used multi-region sequencing to analyse tumour evolution in renal cell carcinoma and reported distinct, spatially separated mutations converging on modifiers of specific histone marks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yildirim, E., Sadreyev, R. I., Pinter, S. F. & Lee, J. T. X-chromosome hyperactivation in mammals via nonlinear relationships between chromatin states and transcription. Nat. Struct. Mol. Biol. 19, 56–61 (2012).

    Article  CAS  Google Scholar 

  223. Stephens, A. D. et al. Pericentric chromatin loops function as a nonlinear spring in mitotic force balance. J. Cell Biol. 200, 757–772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Pang, B., de Jong, J., Qiao, X., Wessels, L. F. & Neefjes, J. Chemical profiling of the genome with anti-cancer drugs defines target specificities. Nat. Chem. Biol. 11, 472–480 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. Cheng, J. et al. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells. Nat. Commun. 6, 7209 (2015).

    Article  PubMed  Google Scholar 

  226. Love, C. et al. The genetic landscape of mutations in Burkitt lymphoma. Nat. Genet. 44, 1321–1325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764 (2012).

    Article  CAS  PubMed  Google Scholar 

  230. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  231. Li, M. et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat. Genet. 43, 828–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Stephens, P. J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Smith, M. J. et al. Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat. Genet. 45, 295–298 (2013).

    Article  CAS  PubMed  Google Scholar 

  236. Jiao, Y. et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331, 1199–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  238. Kolla, V., Zhuang, T., Higashi, M., Naraparaju, K. & Brodeur, G. M. Role of CHD5 in human cancers: 10 years later. Cancer Res. 74, 652–658 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Puente, X. S. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526, 519–524 (2015).

    Article  CAS  PubMed  Google Scholar 

  240. Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Tahara, T. et al. Colorectal carcinomas with CpG island methylator phenotype 1 frequently contain mutations in chromatin regulators. Gastroenterology 146, 530–538 e5 (2014).

    Article  CAS  PubMed  Google Scholar 

  242. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Le Gallo, M. et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat. Genet. 44, 1310–1315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Neumann, M. et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood 121, 4749–4752 (2013).

    Article  CAS  PubMed  Google Scholar 

  245. Kanai, Y., Ushijima, S., Nakanishi, Y., Sakamoto, M. & Hirohashi, S. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett. 192, 75–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  246. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    Article  PubMed  Google Scholar 

  247. Scourzic, L., Mouly, E. & Bernard, O. A. TET proteins and the control of cytosine demethylation in cancer. Genome Med. 7, 9 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Krauthammer, M. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat. Genet. 44, 1006–1014 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Peifer, M. et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 44, 1104–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ward, R., Johnson, M., Shridhar, V., van Deursen, J. & Couch, F. J. CBP truncating mutations in ovarian cancer. J. Med. Genet. 42, 514–518 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Mullighan, C. G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Ropero, S. et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat. Genet. 38, 566–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  255. Hanigan, C. L. et al. An inactivating mutation in HDAC2 leads to dysregulation of apoptosis mediated by APAF1. Gastroenterology 135, 1654–1664 (2008).

    Article  CAS  PubMed  Google Scholar 

  256. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  257. Thirman, M. J. et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N. Engl. J. Med. 329, 909–914 (1993).

    Article  CAS  PubMed  Google Scholar 

  258. Krivtsov, A. V. & Armstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7, 823–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  259. Rao, R. C. & Dou, Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer 15, 334–346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Zang, Z. J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  262. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Vougiouklakis, T., Hamamoto, R., Nakamura, Y. & Saloura, V. The NSD family of protein methyltransferases in human cancer. Epigenomics 7, 863–874 (2015).

    Article  CAS  PubMed  Google Scholar 

  264. Fontebasso, A. M. et al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol. 125, 659–669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41, 521–523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Van Vlierberghe, P. et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia 25, 130–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  268. Van Vlierberghe, P. et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat. Genet. 42, 338–342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Huether, R. et al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat. Commun. 5, 3630 (2014).

    Article  PubMed  CAS  Google Scholar 

  270. Wang, G. G. et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459, 847–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. French, C. A. et al. BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19). Am. J. Pathol. 159, 1987–1992 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Pena, P. V. et al. Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J. Mol. Biol. 380, 303–312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Behjati, S. et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet. 45, 1479–1482 (2013).

    Article  CAS  PubMed  Google Scholar 

  274. Li, H. et al. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood 123, 1487–1498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Ohlsson for his valuable comments on the text and figures. The work discussed here was supported by the US National Institutes of Health grant CA54358 to A.F. and a grant from Karolinska Institutet to A.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Feinberg.

Ethics declarations

Competing interests

Under a licensing agreement between the Johns Hopkins University and Orion Genomics, A.P.F. is entitled to a share of royalty received by the university on technology related to the loss of imprinting described in this article, under terms managed by the Johns Hopkins University in accordance with its conflict of interest policies. M.A.K. and A.G. declare no competing interests.

PowerPoint slides

Glossary

Field effect

Epigenetic changes in a region of normal cells around a tumour.

CpG island methylator phenotype

The classification of cancers characterized by increased methylation at CpG-rich promoter regions, best characterized in colorectal cancer and glioma and associated with distinct histological and molecular features.

Epimutations

Abnormal epigenetic alterations leading to aberrant gene expression or silencing.

Cancer stem cells

(CSCs). A subpopulation of cancer cells with the ability to propagate the cancer cell population.

Loss of imprinting

(LOI). Loss of parent of origin-specific expression of imprinted genes in cancer.

Epigenetic stochasticity

Non-deterministic changes to epigenetic marks such as DNA methylation, giving rise to epigenetic variation that underlies cellular plasticity in both normal and pathological states, and that can be localized to specific genomic regions.

Canalization

The ability of an organism to produce a consistent developmental outcome despite variations in its environment.

Pleiotropic

Genetic or epigenetic changes that affect multiple seemingly unrelated phenotypic traits.

Non-linear dynamics

The behaviour of a system in which a small change in an input variable can induce a large change in the output. Modelling of chromatin structure and of the impact of chromatin states on transcription has demonstrated non-linear behaviour.

Waddington landscape

A metaphor of development, in which valleys and ridges illustrate the epigenetic landscape that guides a pluripotent cell to a well-defined differentiated state, represented by a ball rolling down the landscape.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feinberg, A., Koldobskiy, M. & Göndör, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 17, 284–299 (2016). https://doi.org/10.1038/nrg.2016.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.13

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer