Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sod mimetics are coming of age

Key Points

  • Under normal circumstances, formation of superoxide anions is kept under tight control by superoxide dismutase enzymes. These include the manganese (Mn) enzyme in mitochondria and the copper (Cu)/zinc (Zn) enzyme that is present in the cytosol or on extracellular surfaces.

  • Superoxide anions are formed by means of several pathways, including through normal cellular respiration, by inflammatory cells, by endothelial cells and in the metabolism of arachidonic acid.

  • Extensive scientific research over the past twenty years has shown that, in acute and chronic inflammation, superoxide anions are produced at a rate that overwhelms the capacity of the endogenous superoxide dismutase enzyme-defence system to remove them. Such an imbalance results in superoxide-mediated damage.

  • Protective and beneficial roles of superoxide dismutase have been shown in a broad range of diseases, both preclinically and clinically. The results from the latter studies prove the concept that superoxide anions have an important role in human disease, and that their removal by the native enzyme does in fact result in beneficial outcomes.

  • Although the native enzymes have shown promising anti-inflammatory properties in both preclinical and clinical studies in various diseases, there were drawbacks and issues that were associated with the use of the native enzymes as therapeutic agents and as pharmacological tools.

  • On the basis that removing superoxide anions modulates the course of inflammation, synthetic, low-molecular-mass mimetics of the superoxide dismutase enzymes, which can overcome some of the limitations that are associated with the use of the native enzymes, have been developed as potential therapeutic agents.

Abstract

The list of pathophysiological conditions that are associated with the overproduction of superoxide anions expands every day. The most exciting realization is that there seems to be a similarity between the tissue injury that is observed in various disease states, as superoxide anions produce tissue injury and associated inflammation in all tissues in similar ways. Tissue injury and inflammation form the basis of many disease pathologies, including ischaemia and reperfusion injuries, radiation injury, hyperoxic lung damage and atherosclerosis. This commonality provides a unique opportunity to manipulate numerous disease states with an agent that removes superoxide anions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biochemical effects of superoxide generation.
Figure 2
Figure 3: Structure and characteristics of M40403.
Figure 4: Proposed scheme of some of the potential sites for the protective actions of M40403.

Similar content being viewed by others

References

  1. Huber, W. et al. Some chemical and pharmacological properties of a novel anti-inflammatory protein. Toxicol. Appl. Pharmacol. 12, 308–324 (1968).This paper describes the pharmacological recognition that Orgotein has potent anti-inflammatory activity

    Google Scholar 

  2. McCord, J. M. & Fridovich, I. Superoxide dismutase: an enzymatic function for erythrocuprein. J. Biol. Chem. 244, 6049–6055 (1969).The recognition that the corresponding protein to Orgotein catalyses the dismutation of superoxide anions into hydrogen peroxide and molecular oxygen, which indicates that removal of superoxide is beneficial in inflammation.

    CAS  PubMed  Google Scholar 

  3. Reaume, A. G. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet. 13, 43–47 (1996).

    CAS  PubMed  Google Scholar 

  4. Carlsson, L. M., Jonsson, J., Edlundand, T. & Marklund, S. L. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc. Natl Acad. Sci. USA 92, 6264–6268 (1995).References 3 and 4 show that the Cu/Zn SOD is not necessary for normal cell survival, but is required under physiologically stressful conditions after injury.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lebovitz, R. M. et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide-deficient mice. Proc. Natl Acad. Sci. USA 93, 9782–9787 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Melov, S. et al. Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc. Natl Acad. Sci. USA 96, 846–851 (1999).References 5 and 6 highlight the importance of the mitocondrial Mn SOD enzyme for cell survival — knockout animals are not viable.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Droy-Lefaix, M. T., Drouet, Y., Geraud, G., Hosfod, D. & Braquet, P. Superoxide dimutase (SOD) and the PAF-antagonist (BN 52021) reduce small intestinal damage induced by ischemia–reperfusion. Free Radic. Res. Commun. 12-13, 725–735 (1991).

    CAS  Google Scholar 

  8. Haglind, E., Xia, G. & Rylander, R. Effects of antioxidants and PAF receptor antagonist in intestinal shock in the rat. Circ. Shock 42, 83–91 (1994).

    CAS  PubMed  Google Scholar 

  9. Fantone, J. C. & Ward, P. A. A review: role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Pathol. 107, 395–418 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Deitch, E. A., Bridges, W., Berg, R., Specian, R. D. & Granger, N. Hemorrhagic shock-induced bacterial translocation: the role of neutrophils and hydroxyl radicals. J. Trauma 30, 942–951 (1990).

    CAS  PubMed  Google Scholar 

  11. Boughton-Smith, N. K., Evans, S. M., Laszlo, F., Whittle, B. J. & Moncada, S. The induction of nitric oxide synthase and intestinal vascular permeability by endotoxin in the rat. Br. J. Pharmacol. 110, 1189–1195 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Salvemini, D. et al. Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema. Eur. J Pharmacol. 303, 217–220 (1996).

    CAS  PubMed  Google Scholar 

  13. Salvemini, D. et al. Protective effects of a superoxide dismutase mimetic and peroxynitrite decomposition catalysts in endotoxin-induced intestinal damage. Br. J. Pharmacol. 127, 685–692 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dix, T. A. et al. Mechanism of site-selective DNA nicking by the hydrodioxyl (perhydroxyl) radical. Biochemistry 35, 4578–4583 (1996).

    CAS  PubMed  Google Scholar 

  15. Beckman, J. S., Beckman, T. W., Chen, J., Marshalland, P. A. & Freeman, B. A. Apparent hydroxyl radical production by peroxynitrite: implication for endothelial injury from nitric oxide and superoxide. Proc. Natl Acad. Sci. USA 87, 1620–1624 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ischiropoulos, H., Zhu, L. & Beckman, J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298, 446–451 (1992).

    CAS  PubMed  Google Scholar 

  17. Crow, J. P. & Beckman, J. S. Reactions between nitric oxide, superoxide, and peroxynitrite: footprints of peroxynitrite in vivo. Adv. Pharmacol. 34, 17–43 (1995).

    CAS  PubMed  Google Scholar 

  18. Salvemini, D., Wang, Z.-Q., Stern, M. K., Currie, M. G. & Misko, T. P. Peroxynitrite decomposition catalysts: novel therapeutics for peroxynitrite-mediated pathology. Proc. Natl Acad. Sci. USA 95, 2659–2663 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Macarthur, H., Westfall, T. C., Riley, D. P., Misko, T. P. & Salvemini, D. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc. Natl Acad. Sci. USA 97, 9753–9758 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Klug-Roth, D., Fridovich, I. & Rabani, J. Pulse radiolytic investigations of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase. J. Am. Chem. Soc. 95, 2786–2790 (1973).

    CAS  PubMed  Google Scholar 

  21. Waldo, G. S. & Penner-Hahn, J. E. Mechanism of manganese catalase peroxide disproportionation: determination of manganese oxidation states during turnover. Biochemistry 7, 1507–1512 (1995).

    Google Scholar 

  22. Krall, J., Bagley, A. C., Mullenbach, G. T., Hallewell, R. A. & Lynch, R. E. Superoxide mediates the toxicity of paraquat for cultured mammalian cells. J. Biol. Chem. 263, 1910–1914 (1988).

    CAS  PubMed  Google Scholar 

  23. Ho, Y. S., Vincent, R., Dey, M. S., Slot, J. W. & Crapo, J. D. Transgenic models for the study of lung antioxidant defense: enhanced manganese-containing superoxide dismutase activity gives partial protection to B6C3 hybrid mice exposed to hyperoxia. Am. J. Respir. Cell Mol. Biol. 18, 538–547 (1998).

    CAS  PubMed  Google Scholar 

  24. Sohal, R. S., Agarwal, A., Agarwal, S. & Orr, W. C. Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem. 270, 15671–15674 (1995).

    CAS  PubMed  Google Scholar 

  25. Halliwell, B. & Gutteridge, J. M. C. in Free Radicals in Biology and Medicine (eds Baum, H., Gergely, J. & Fanburg, B. L.) 89–193 (Oxford Univ. Press, Oxford, 1985).

    Google Scholar 

  26. Maxwell, S. R. J. Prospects for the use of antioxidant therapies. Drugs 49, 345–361 (1995).

    CAS  PubMed  Google Scholar 

  27. McCord, J. M. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science 185, 529–531 (1974).

    CAS  PubMed  Google Scholar 

  28. Werns, S. W. et al. Sustained limitation by superoxide dismutase of canine myocardial injury due to ischemia followed by reperfusion. J. Cardiovasc. Pharmacol. 11, 36–44 (1988).

    CAS  PubMed  Google Scholar 

  29. Omar, B. A. & McCord, J. M. Interstitial equilibration of superoxide dismutase correlates with its protective effect in the isolated rabbit heart. J. Mol. Cell. Cardiol. 23, 149–159 (1991).

    CAS  PubMed  Google Scholar 

  30. McCord, J. M. Superoxide dismutase: rationale for use in reperfusion injury and inflammation. J. Free Radic. Biol. Med. 2, 307–310 (1986).

    CAS  PubMed  Google Scholar 

  31. Ando, Y., Inoue, M., Hirota, M., Morino, Y. & Araki, S. Effect of superoxide dismutase derivative on cold-induced brain edema. Brain Res. 477, 286–291 (1989).

    CAS  PubMed  Google Scholar 

  32. Chan, P. H., Yang, G. Y., Chen, S. F., Carlson, E. & Epstein, C. J. Cold-induced brain edema and infarction are reduced in transgenic mice overexpressing superoxide dismutase. Ann. Neurol. 29, 482–486 (1991).

    CAS  PubMed  Google Scholar 

  33. Yang, G. et al. Human copper–zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25, 165–170 (1994).

    PubMed  Google Scholar 

  34. Zweier, J. L. Prevention of reperfusion-induced, free radical-mediated acute endothelial injury by superoxide dismutase as an effective tool to delay/prevent chronic renal allograft failure: a review. Transplant. Proc. 29, 2567–2568 (1997).

    Google Scholar 

  35. Oyanagui, Y. Participation of superoxide anions at the prostaglandin phase of carrageenan foot-oedema. Biochem. Pharmacol. 25, 1465–1472 (1976).

    CAS  PubMed  Google Scholar 

  36. Droy-Lefaix, M. T., Drouet, Y., Geraud, G., Hosford, D. & Braquet, P. Superoxide dismutase (SOD) and the PAF-antagonist (BN 52021) reduce small intestinal damage induced by ischemia–reperfusion. Free Radic. Res. Commun. 12–13, 725–735 (1991).

    Google Scholar 

  37. Shingu, M. et al. Anti-inflammatory effects of recombinant human manganese superoxide dismutase on adjuvant arthritis in rats. Rheumatol. Int. 14, 77–81 (1994).

    CAS  PubMed  Google Scholar 

  38. Bravard, A. et al. SOD2: a new type of tumor-suppressor gene? Int. J. Cancer 51, 476–480 (1992).

    CAS  PubMed  Google Scholar 

  39. Church, S. L. et al. Increased manganese superoxide dismutase expression suppresses the malignant human melanoma cells. Proc. Natl Acad. Sci. USA 90, 3113–3117 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. St Clair, D. K., Oberley, T. D., Muse, K. E. & St Clair, W. H. Expression of manganese superoxide dismutase promotes cellular differentiation. Free Radic. Biol. Med. 16, 275–282 (1994).

    CAS  PubMed  Google Scholar 

  41. Safford, S. E., Oberley, T. D., Urano, M. & St Clair, D. K. Suppression of fibrosarcoma metastasis by elevated expression of manganese dismutase. Cancer Res. 54, 4261–4265 (1994).

    CAS  PubMed  Google Scholar 

  42. Yoshizaki, N. et al. Suppressive effect of recombinant human Cu,Zn-superoxide dismutase on lung metastasis of murine tumor cells. Int. J. Cancer 57, 287–292 (1994).

    CAS  PubMed  Google Scholar 

  43. Flores, S. C. et al. Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc. Natl Acad. Sci. USA 90, 7632–7636 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Edas, M. A. et al. Clastogenic factors in plasma of HIV-1 infected patients activate HIV-1 replication in vitro: inhibition by superoxide dismutase. Free Radic. Biol. Med. 23, 571–578 (1997).

    Google Scholar 

  45. Mollace, V. et al. Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci. 24, 411–416 (2001).

    CAS  PubMed  Google Scholar 

  46. Salminen, U. et al. Superoxide dismutase in development of obliterative bronchiolitis. Transplant. Proc. 33, 2477 (2001).

    CAS  PubMed  Google Scholar 

  47. Barnes, J. P. Chronic obstructive pulmonary disease. N. Engl. J. Med. 343, 269–280 (2000).

    CAS  PubMed  Google Scholar 

  48. Nishiguchi, K. et al. Pharmaceutical studies for gene therapy: expression of human Cu,Zn-superoxide dismutase gene transfected by lipofection in rat skin fibroblasts. Biol. Pharm. Bull. 19, 1073–1077 (1996).

    CAS  PubMed  Google Scholar 

  49. Batinic-Haberle, I., Benov, L., Spasojevic, I. & Fridovich, I. The ortho effect makes manganese(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin a powerful and potentially useful superoxide dismutase mimic. J. Biol. Chem. 273, 24521–24528 (1998).

    CAS  PubMed  Google Scholar 

  50. Lawrence, G. D. & Sawyer, D. T. Potentiometric titrations and oxidation–reduction potentials of manganese and copper–zinc superoxide dismutases. Biochemistry 18, 3045–3050 (1979).

    CAS  PubMed  Google Scholar 

  51. Day, B. J., Shawen, S., Liochev, S. I. & Crapo, J. D. A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced endothelial cell injury, in vitro. J. Pharmacol. Exp. Ther. 275, 1227–1232 (1995).

    CAS  PubMed  Google Scholar 

  52. Day, B. J., Fridovich, I. & Crapo, J. D. Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch. Biochem. Biophys. 347, 256–262 (1997).

    CAS  PubMed  Google Scholar 

  53. Day, B. J., Batinic-Haberle, J. & Crapo, J. D. Metalloporphyrins are potent inhibitors of lipid peroxidation. Free Radic. Biol. Med. 26, 730–736 (1999).

    CAS  PubMed  Google Scholar 

  54. Faulkner, K. M., Liochev, S. I. & Fridovich, I. Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J. Biol. Chem. 269, 23471–23476 (1994).References 54 and 59 show that stable compounds with SOD activity can function in vivo as SODs and ameliorate inflammation in in vivo animal models of inflammation. That these same Mn iii porphyrin-based catalysts are not selective for superoxide anions, but also react with hydrogen peroxide, is pointed out in reference 52. So, the use of Mn iii porphyrin-based SOD mimetics limits the ability to determine whether superoxide or hydrogen peroxide are the pro-inflammatory mediators.

    CAS  PubMed  Google Scholar 

  55. Szabó, C., Day, B. J. & Salzman, A. L. Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages, using a novel mesoporphyrin superoxide dismutase analog and peroxynitrite scavenger. FEBS Lett. 381, 82–86 (1996).

    PubMed  Google Scholar 

  56. Dolphin, D., Forman, A., Borg, D. C., Fajer, J. & Felton, R. H. Compounds I of catalase and horse radish peroxidase: π-cation radicals. Proc. Natl Acad. Sci. USA 68, 614–618 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gardner, P. R., Nguyen, D. D. & White, C. W. Superoxide scavenging by Mn(II/III) tetrakis (1-methyl-4-pyridyl) porphyrin in mammalian cells. Arch. Biochem. Biophys. 325, 20–28 (1996).

    CAS  PubMed  Google Scholar 

  58. Misko, T. P. et al. Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J. Biol. Chem. 273, 15646–15653 (1998).

    CAS  PubMed  Google Scholar 

  59. Cuzzocrea, S., Zingarelli, B., Costantino, G. & Caputi, A. P. Beneficial effects of Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimetic, in carrageenan-pleurisy. Free Radic. Biol. Med. 26, 25–33 (1999).

    CAS  PubMed  Google Scholar 

  60. Zingarelli, B., Day, B. J., Crapo, J. D., Salzman, A. L. & Szabo, C. The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. Br. J. Pharmacol. 120, 259–267 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Szabo, C. Potential role of the peroxynitrate– poly(ADP-ribose) synthetase pathway in a rat model of severe hemorrhagic shock. Shock 9, 341–344 (1998).

    CAS  PubMed  Google Scholar 

  62. Baudry, M. et al. Salen–manganese complexes are superoxide dismutase-mimics. Biochem. Biophys. Res. Commun. 192, 964–968 (1993).

    CAS  PubMed  Google Scholar 

  63. Doctrow, S. R. et al. Salen–manganese complexes: combined superoxide dismutase/catalase mimics with broad pharmacological efficacy. Adv. Pharmacol. 38, 247–269 (1997).

    CAS  PubMed  Google Scholar 

  64. Malfroy, B. et al. Prevention and suppression of autoimmune encephalomyelitis by EUK-8, a synthetic catalytic scavenger of oxygen-reactive metabolites. Cell. Immunol. 177, 62–68 (1997).

    CAS  PubMed  Google Scholar 

  65. Baker, K. et al. Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J. Pharmacol. Exp. Ther. 284, 215–221 (1998).

    CAS  PubMed  Google Scholar 

  66. Bianca, R. et al. Superoxide dismutase mimetic with catalase activity, EUK-134, attenuates the multiple organ injury and dysfunction caused by endotoxin in the rat. Med. Sci. Monit. 8, BR1–BR7 (2002).

    PubMed  Google Scholar 

  67. Henke, S. L. Superoxide dismutase mimics as future therapeutics. Exp. Opin. Ther. Patents 9, 169 (1999).

  68. Riley, D. P., Henke, S. L., Lennon, P. J. & Aston, K. Computer-aided design (CAD) of synzymes: use of molecular mechanics (MM) for the rational design of superoxide dismutase mimics. Inorg. Chem. 38, 1908–1917 (1999).

    CAS  PubMed  Google Scholar 

  69. Riley, D. P. Rational design of synthetic enzymes and their potential utility as human pharmaceuticals: development of Mn(II)-based superoxide dismutase mimics. Adv. Supramol. Chem. 6, 217–244 (1999).

    Google Scholar 

  70. Salvemini, D. et al. A non-peptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science 286, 304–306 (1999).A key reference that shows, for the first time, that a selective catalyst for the dismutation of superoxide anions has in vivo efficacy in animal models of inflammation. This shows that selective removal of superoxide anions, not the removal of hydrogen peroxide or hypochlorite, is the event in blocking inflammation, and that superoxide is a key initiator of reactive oxygen species and mediator of inflammation.

    CAS  PubMed  Google Scholar 

  71. Salvemini, D. et al. Pharmacological manipulation of the inflammatory cascade by the superoxide dismutase mimetic, M40403. Br. J. Pharmacol. 132, 815–827 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Riley, D. P. et al. Synthesis, characterization and stability of manganese (II) C-substituted 1,4,7,10,13-pentaazacyclopentadecane complexes exhibiting superoxide dismutase activity. Inorg. Chem. 35, 5213–5231 (1996).

    CAS  Google Scholar 

  73. Riley, D. P., Lennon, P. J., Neumann, W. L. & Weiss, R. H. Toward the rational design of superoxide dismutase mimics: mechanistic studies for the elucidation of substituent effects on the catalysis activity of macrocyclic manganese (II) complexes. J. Am. Chem. Soc. 119, 6522–6528 (1997).

    CAS  Google Scholar 

  74. Cuzzocrea, S. et al. Protective effects of a new stable, highly active SOD mimetic, M40401 in splanchnic artery occlusion and reperfusion. Br. J. Pharmacol. 132, 19–29 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Salvemini, D. et al. Amelioration of joint disease in a rat model of collagen-induced arthritis by M40403, a superoxide dismutase mimetic. Arthritis Rheum. 44, 2909–2921 (2001).

    CAS  PubMed  Google Scholar 

  76. Squadrito, G. L. & Pryor, W. A. The formation of peroxynitrite in vivo from nitric oxide and superoxide. Chem. Biol. Interact. 96, 203–206 (1995).

    CAS  PubMed  Google Scholar 

  77. Salvemini, D., Jensen, M. P., Riley, D. P. & Misko, T. P. Therapeutic manipulations of peroxynitrite. Drug News Persp. 11, 204–214 (1988).

    Google Scholar 

  78. Stern, M. K., Jensen, M. P. & Kramer, K. Peroxynitrite decomposition catalysts. J. Am. Chem. Soc. 118, 8735–8736 (1996).

    CAS  Google Scholar 

  79. Beckman, J. S. Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol. 9, 836–844 (1996).

    CAS  PubMed  Google Scholar 

  80. Ischiropoulos, H., Al-Mehdi, A. B. & Fisher, A. B. Reactive species in ischemic rat lung injury: contribution of peroxynitrite. Am. J. Physiol. 269, 158–164 (1995).

    Google Scholar 

  81. Salvemini, D., Jensen, M. P., Riley, D. P. & Misko, T. P. Therapeutic manipulation of peroxinitrite. Drug News Persp. 11, 204–214 (1998).

    CAS  Google Scholar 

  82. Gryglewski, R. J., Palmer, R. M. & Moncada, S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320, 454–456 (1986).Reference 82 is the seminal discovery that superoxide anions interact with, and destroy, the biological activity of the endothelium-derived relaxing factor (now known as nitric oxide), while generating the potent cytotoxic mediator peroxynitrite, as indicated in reference 15 . These references indicate that removal of superoxide anions preserves the beneficial activity of nitric oxide, while inhibiting the formation of cytotoxic peroxynitrite.

    CAS  PubMed  Google Scholar 

  83. Salvemini, D. et al. NO activates cyclooxygenase enzymes. Proc. Natl Acad. Sci. USA 90, 7240–7244 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Salvemini, D., Marino, M. H. & Seibert, K. Activation of the cyclooxygenase pathway by nitric oxide: new concepts of inflammation and therapy. Drug News Persp., 204–219 (1996).

  85. Inoue, S. & Kawanishi, S. Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS Lett. 371, 86–88 (1995).

    CAS  PubMed  Google Scholar 

  86. Salgo, M. G., Bermudez, E., Squadrito, G. & Pryor, W. Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes. Arch. Biochem. Biophys. 322, 500–505 (1995).

    CAS  PubMed  Google Scholar 

  87. Szabó, C. & Dawson, V. L. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia–reperfusion. Trends Pharmacol. Sci. 19, 287–298 (1999).

    Google Scholar 

  88. Cuzzocrea, S. et al. Protective effects of 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthase in carrageenan-induced models of local inflammation. Eur. J. Pharmacol. 342, 67–76 (1998).

    CAS  PubMed  Google Scholar 

  89. Szabó, C. et al. Inhibition of poly(ADP-ribose) synthetase exerts anti-inflammatory effects and inhibits neutrophil recruitment. J. Exp. Med. 186, 1041–1049 (1997).

    PubMed  PubMed Central  Google Scholar 

  90. Warren, J. S., Yabroff, K. R., Mandel, D. M., Johnson, K. J. & Ward, P. A. Role Of O2 in neutrophil recruitment into sites of dermal and pulmonary vasculitis. Free Radic. Biol. Med. 8, 163–172 (1990).

    CAS  PubMed  Google Scholar 

  91. Al-Shabanah, O. A., Mansour, M. A. & Elmazar, M. M. Enhanced generation of leukotriene B4 and superoxide radical from calcium ionophore (A23187) stimulated human neutrophils after priming with interferon-α. Res. Commun. Mol. Pathol. Pharmacol. 106, 115–128 (1999).

    CAS  PubMed  Google Scholar 

  92. Lowe, D., Pagel, P. S., McGough, M. F., Hettrick, D. A. & Warltier, D. C. Comparison of the cardiovascular effects of two novel superoxide dismutase mimetics, SC-55858 and SC-54417, in conscious dogs. Eur. J. Pharmacol. 304, 81–86 (1996).

    CAS  PubMed  Google Scholar 

  93. Cuzzocrea, S., Riley, D. P., Caputi, A. P. & Salvemini, D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol. Rev. 53, 135–159 (2001).

    CAS  PubMed  Google Scholar 

  94. Cuzzocrea, S. et al. Beneficial effects of peroxynitrite decomposition catalyst in rat model of splanchnic artery occlusion and reperfusion. FASEB J. 14, 1061–1072 (2000).

    CAS  PubMed  Google Scholar 

  95. Volk, T., Gerst, J., Faust-Belbe, G., Stroehmann, A. & Kox, W. J. Monocyte stimulation by reactive oxygen species: role of superoxide and intracellular Ca2+. Inflamm. Res. 48, 544–549 (1999).

    CAS  PubMed  Google Scholar 

  96. Haddad, J. J. & Land, S. C. Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated TNF-α biosynthesis. Br. J. Pharmacol. 135, 520–536 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. McInnis, J. et al. The role of superoxide and NF-κB signaling in N-methyl-d-aspartate-induced necrosis and apoptosis. J. Pharmacol. Exp. Ther. 301, 1–10 (2002).

    Google Scholar 

  98. Baeuerle, P. A. & Henkel, T. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12, 141–179 (1994).

    CAS  PubMed  Google Scholar 

  99. Barnes, P. J. & Karin, M. Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J Med. 336, 1066–1071 (1997).

    CAS  PubMed  Google Scholar 

  100. Niwa, Y., Somiya, K., Michelson, A. M. & Puget K. Effect of liposomal-encapsulated superoxide dismutase on active oxygen-related human disorders. A preliminary study. Free Radic. Res. Commun. 1, 137–153 (1985).

    CAS  PubMed  Google Scholar 

  101. Flohe, L. Superoxide dismutase for therapeutic use: clinical experience, dead ends and hopes. Mol. Cell. Biochem. 84, 123–131 (1988).

    CAS  PubMed  Google Scholar 

  102. Goebel, K. M., Storck, U. & Neurath, F. Intrasynovial Orgotein therapy in rheumatoid arthritis. Lancet 1, 1015–1017 (1981).

    CAS  PubMed  Google Scholar 

  103. Goebel, K. M. & Storck, U. Effect of intra-articular Orgotein versus a corticosteroid on rheumatoid arthritis of the knees. Am. J. Med. 74, 124–128 (1983).

    CAS  PubMed  Google Scholar 

  104. Lund-Olesen, K. & Menander-Huber, K. B. Intra-articular Orgotein therapy in osteoarthritis of the knee. A double-blind, placebo-controlled trial. Drug Res. 8, 1199–1203 (1983).

    Google Scholar 

  105. Gammer, W. & Broback, L. G. Clinical comparison of Orgotein and methylprednisolone acetate in the treatment of osteoarthrosis of the knee joint. Scand. J. Rheumatol. 13, 108–112 (1984).

    CAS  PubMed  Google Scholar 

  106. McIlwain, H. et al. Intra-articular Orgotein in osteoarthritis of the knee: a placebo-controlled efficacy, safety, and dosage comparison. Am. J. Med. 87, 295–300 (1989).

    CAS  PubMed  Google Scholar 

  107. Mazieres, B., Masquelier, A. M. & Capron, M. H. A French controlled multicenter study of intraarticular Orgotein versus intraarticular corticosteroids in the treatment of knee osteoarthritis: a one-year followup. J. Rheumatol. 18, 134–137 (1991).

    Google Scholar 

  108. Lin, Y., Pape, H. D. & Friedrich, R. Use of superoxide dismutase (SOD) in patients with temporomandibular joint dysfunction — a preliminary study. J. Oral Maxillofac. Surg. 23, 428–429 (1994).References 102–108 show that removal of superoxide by Orgotein is anti-inflammatory.

    CAS  Google Scholar 

  109. Pascu, O. & Dejica, D. Oxygen free radicals and duodenal ulcer pain. Preliminary data. Med. Interne 25, 81–84 (1987).

    CAS  PubMed  Google Scholar 

  110. Edsmyr, F., Huber, W. & Menander, K. B. Orgotein efficacy in ameliorating side effects due to radiation therapy. I. Double-blind, placebo-controlled trial in patients with bladder tumors. Curr. Ther. Res. Clin. Exp. 19, 198–211 (1976).

    CAS  PubMed  Google Scholar 

  111. Marberger, H., Huber, W., Bartsch, G., Schulte, T. & Swoboda, P. Orgotein: a new antiinflammatory metalloprotein drug evaluation of clinical efficacy and safety in inflammatory conditions of the urinary tract. Int. Urol. Nephrol. 6, 61–74 (1974).

    CAS  PubMed  Google Scholar 

  112. Housset, M., Faillet, F., Michelson, A. M. & Puget, K. Action of liposomal superoxide dismutase on measurable radiation-induced fibrosis. Ann. Med. Interne (Paris) 140, 365–367 (1989).

    CAS  Google Scholar 

  113. Villasor, R. P. in The Pathology of Oxygen (ed. Autor, A. P.) 303–314 (Academic, New York, 1982).

    Google Scholar 

  114. Perderau, B. et al. Superoxide dismutase (Cu/Zn) in cutaneous application in the treatment of radiation-induced fibrosis. Bull. Cancer 81, 659–669 (1994).

    Google Scholar 

  115. Delanian, S. et al. Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: clinical trial. Radiother. Oncol. 32, 12–20 (1994).

    CAS  PubMed  Google Scholar 

  116. Sanchiz, F. et al. Prevention of radioinduced cystitis by Orgotein: a randomized study. Anticancer Res. 16, 2025–2028 (1996).

    CAS  PubMed  Google Scholar 

  117. Marberger, H., Bartsch, G., Huber, W., Menander, K. B. & Schulte, T. Orgotein: a new drug for the treatment of radiation cystitis. Curr. Ther. Res. Clin. Exp. 18, 466–475 (1975).

    CAS  PubMed  Google Scholar 

  118. Marberger, H., Huber, W., Menander-Huber, K. B. & Bartsch, G. Orgotein, a new drug for the treatment of Peyronie's disease. Eur. J. Rheumatol. Inflamm. 4, 244–249 (1981).

    CAS  PubMed  Google Scholar 

  119. Menander-Huber, K. B., Edsmyr, F. & Huber, W. Orgotein (superoxide dismutase): a drug for the amelioration of radiation-induced side effects. A double-blind, placebo-controlled study in patients with bladder tumours. Urol. Res. 6, 255–257 (1978).

    CAS  PubMed  Google Scholar 

  120. Babior, B. M. Superoxide: a two-edged sword. Braz. J. Med. Biol. Res. 30, 141–155 (1982).References 112–120 show that removal of superoxide by Orgotein is protective against radiation-induced damage, and is effective in reversing established fibrosis post-radiation therapy in human clinical trials. Along with references 102–108 , these papers support the concept that superoxide has an important role in human disease.

    Google Scholar 

  121. Riley, D. P., Rivers, W. J. & Weiss, R. H. Stopped-flow kinetic analysis for monitoring superoxide decay in aqueous systems. Anal. Biochem. 196, 344–349 (1991).

    CAS  PubMed  Google Scholar 

  122. Evans, S. M. & Whittle, B. J. Interactive roles of superoxide and inducible nitric oxide synthase in rat intestinal injury provoked by non-steroidal anti-inflammatory drugs. Eur. J. Pharmacol. 429, 287–296 (2001).

    CAS  PubMed  Google Scholar 

  123. Lefaix, J. L. et al. Successful treatment of radiation induced fibrosis using Cu/Zn-SOD and Mn-SOD: an experimental study. Int. J. Radiat. Oncol. Biol. Phys. 35, 305–312 (1996)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Salvemini.

Related links

Related links

DATABASES

LocusLink

ICAM1

IL-1β

IL-6

IL-10

NF-κB

PARP

P-selectin

SOD1

Sod1

SOD2

Sod2

SOD3

Sod3

TNF-α

xanthine oxidase

OMIM

Crohn's disease

osteoarthritis

Parkinson's disease

rheumatoid arthritis

LINKS

Metaphore Pharmaceuticals

Glossary

ENZYME MIMETIC

A chemical entity that exactly copies the functional property of an enzyme.

DISMUTATION

A chemical reaction in which two molecules of the same compound react together to produce two new molecules.

NEUTROPHILS

Circulating white blood cells in the granulocyte series that represent from 55–65% of the total number of leukocytes.

HYPOTENSION

Subnormal arterial blood pressure.

REDUCING EQUIVALENT

A reducing agent that provides a source of electrons.

METALLOPORPHYRIN

A metal complex with a porphyrin ligand — a completely unsaturated macrocyclic tetrapyrrole ligand that contains a π-conjugated ring system of the class that includes the iron-containing oxygen-binding site (haem) of haemoglobin.

FREE RADICAL

Any species capable of independent existence that contains one or more unpaired electrons — an unpaired electron being one that is alone in an orbital.

CATALASE

A haem-containing protein (enzyme) that catalytically converts hydrogen peroxide to water and dioxygen.

CARRAGEENAN

The name given to a family of sulphated polysaccharides that are obtained from various seaweeds.

REACTIVE OXYGEN SPECIES

These include O2, OH and H2O2, as well as unstable intermediates that are produced during the peroxidation of lipids.

CYCLIC VOLTAMETRY EXPERIMENT

A standard electrochemical technique for measuring oxidation.

INTRA-ARTICULAR INJECTION

An injection into the articular space.

ELECTROPARAMAGNETIC RESONANCE

(EPR). A name applied to a routine technique that is used to study molecules and ions that contain unpaired electrons by observing the magnetic fields at which they are in resonance with monochromatic radiation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvemini, D., Riley, D. & Cuzzocrea, S. Sod mimetics are coming of age. Nat Rev Drug Discov 1, 367–374 (2002). https://doi.org/10.1038/nrd796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd796

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing