Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drugging the p53 pathway: understanding the route to clinical efficacy

An Erratum to this article was published on 14 March 2014

This article has been updated

Key Points

  • Several drugs that target the tumour suppressor p53 pathway are now in clinical trials.

  • Small-molecule drugs that inhibit the protein–protein interaction between p53 and the E3 ubiquitin protein ligase MDM2 have been developed by many academic and pharmaceutical groups; some can induce complete regressions in xenograft models of human cancer.

  • Stapled peptides are an alternative to classical small-molecule inhibitors; they are active in animal models of cancer as dual inhibitors of the p53–MDM2 and p53–MDM4 interactions.

  • The potential side effects of activating p53 in normal tissues are still being explored. So far, the major effect seems to be the induction of neutropenia.

  • The activation of p53 by the MDM2 inhibitors can induce growth arrest, senescence or apoptosis in tumour cells. Studies to understand this variation have identified expression levels of key components of both the intrinsic and extrinsic apoptotic machinery as key regulators. Drug combinations that target these apoptotic pathways may increase the efficacy of p53 therapy.

  • Drugs that reactivate the wild-type functions of mutant p53 are also in clinical trials, although their mechanism of action is still unclear.

  • Structural studies of mutant p53 are providing druggable sites on the surface of the protein to which small molecules can bind.

  • As well as inducing apoptotic death in cancer cells, the p53 pathway has a role in preventing the earliest development of cancer. This surveillance function of p53 is distinct and involves a discrete group of p53-induced genes that regulate DNA repair and metabolism, and does not require the genes encoding p53-upregulated modulator of apoptosis (PUMA), phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1; also known as NOXA) or cyclin-dependent kinase inhibitor 1A (CDKN1A).

  • The p53-inducing drugs may have a role in chemoprevention.

Abstract

The tumour suppressor p53 is the most frequently mutated gene in human cancer, with more than half of all human tumours carrying mutations in this particular gene. Intense efforts to develop drugs that could activate or restore the p53 pathway have now reached clinical trials. The first clinical results with inhibitors of MDM2, a negative regulator of p53, have shown efficacy but hint at on-target toxicities. Here, we describe the current state of the development of p53 pathway modulators and new pathway targets that have emerged. The challenge of targeting protein–protein interactions and a fragile mutant transcription factor has stimulated many exciting new approaches to drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The multiple functions of p53 and their impact on therapy.
Figure 2: Mechanisms of activation of wild-type p53 to eliminate tumour cells.
Figure 3: Mechanisms of mutant p53 reactivation.

Similar content being viewed by others

Change history

  • 14 March 2014

    The name of one of the authors — Kian Hoe Khoo — was incorrectly ordered in the published version. This has now been corrected in the online version..

References

  1. Lane, D. P. & Verma, C. Mdm2 in evolution. Genes Cancer 3, 320–324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hock, A. & Vousden, K. H. Regulation of the p53 pathway by ubiquitin and related proteins. Int. J. Biochem. Cell Biol. 42, 1618–1621 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Huang, L. et al. The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. Proc. Natl Acad. Sci. USA 108, 12001–12006 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004). This is the critical first paper describing a p53–MDM2 interaction inhibitor.

    Article  CAS  PubMed  Google Scholar 

  6. MacCallum, D. E. et al. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 13, 2575–2587 (1996).

    CAS  PubMed  Google Scholar 

  7. Komarova, E. A. et al. Transgenic mice with p53-responsive lacZ: 53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J. 16, 1391–1400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christophorou, M. A., Ringshausen, I., Finch, A. J., Swigart, L. B. & Evan, G. I. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443, 214–217 (2006). This paper uses a toggled p53 genetic construct to show, for the first time, that that the p53-mediated DNA damage response can be separated from its tumour suppressor activity.

    Article  CAS  PubMed  Google Scholar 

  9. Ringshausen, I., O'Shea, C. C., Finch, A. J., Swigart, L. B. & Evan, G. I. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10, 501–514 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Mendrysa, S. M. & Perry, M. E. Tumor suppression by p53 without accelerated aging: just enough of a good thing? Cell Cycle 5, 714–717 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Mendrysa, S. M. et al. Mdm2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol. Cell. Biol. 23, 462–472 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bond, G. L. et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119, 591–602 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Cao, I. et al. “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21, 6225–6235 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Efeyan, A., Garcia-Cao, I., Herranz, D., Velasco-Miguel, S. & Serrano, M. Tumour biology: policing of oncogene activity by p53. Nature 443, 159 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Martins, C. P., Brown-Swigart, L. & Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323–1334 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269–1283 (2012). This paper is one of three recently published studies that conclude — using an acetylation-defective mutant p53 — that p53-dependent tumour suppression can occur without inducing p21 cell cycle arrest or PUMA- and NOXA-driven apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brady, C. A. et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145, 571–583 (2011). This paper shows that a p53 mutant that is defective in either TAD1 or TAD2 is still able to suppress tumour development. The double TAD1/TAD2 mutant is inactive, which implies that some p53-dependent transcription is needed, but not of the commonly studied target genes CDKN1A, PUMA and NOXA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang, D. et al. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proc. Natl Acad. Sci. USA 108, 17123–17128 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 302, 1036–1038 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Valente, L. J. et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep. 3, 1339–1345 (2013). In this paper, p53 is shown to be able to block tumour development in mice that lack genes encoding p21, PUMA and NOXA.

    Article  CAS  PubMed  Google Scholar 

  24. Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nature Med. 11, 1306–1313 (2005). This remarkable paper shows that treatment with the antioxidant compound N -acetylcysteine blocks tumour development in p53-null mice.

    Article  CAS  PubMed  Google Scholar 

  25. Robertson, K. D. & Jones, P. A. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell. Biol. 18, 6457–6473 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roxburgh, P. et al. Small molecules that bind the Mdm2 RING stabilize and activate p53. Carcinogenesis 33, 791–798 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Li, C. & Johnson, D. E. Liberation of functional p53 by proteasome inhibition in human papilloma virus-positive head and neck squamous cell carcinoma cells promotes apoptosis and cell cycle arrest. Cell Cycle 12, 923–934 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitagaki, J., Agama, K. K., Pommier, Y., Yang, Y. & Weissman, A. M. Targeting tumor cells expressing p53 with a water-soluble inhibitor of Hdm2. Mol. Cancer Ther. 7, 2445–2454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lain, S. et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13, 454–463 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brachmann, R. K., Yu, K., Eby, Y., Pavletich, N. P. & Boeke, J. D. Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations. EMBO J. 17, 1847–1859 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nikolova, P. V., Wong, K. B., DeDecker, B., Henckel, J. & Fersht, A. R. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations. EMBO J. 19, 370–378 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Petitjean, A. et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28, 622–629 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R. & Lane, D. P. Awakening guardian angels: drugging the p53 pathway. Nature Rev. Cancer 9, 862–873 (2009).

    Article  CAS  Google Scholar 

  34. Cheok, C. F., Verma, C. S., Baselga, J. & Lane, D. P. Translating p53 into the clinic. Nature Rev. Clin. Oncol. 8, 25–37 (2011).

    Article  CAS  Google Scholar 

  35. Picksley, S. M., Vojtesek, B., Sparks, A. & Lane, D. P. Immunochemical analysis of the interaction of p53 with MDM2; fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9, 2523–2529 (1994).

    CAS  PubMed  Google Scholar 

  36. Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Bottger, A. et al. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol. 7, 860–869 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Chene, P. et al. A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J. Mol. Biol. 299, 245–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, S., Zhao, Y., Bernard, D., Aguilar, A. & Kumar, S. in Protein-Protein Interactions Vol. 8 (ed. Wendt, M. D.) 57–79 (Springer, 2012).

    Book  Google Scholar 

  40. Grasberger, B. L. et al. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J. Med. Chem. 48, 909–912 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Allen, J. G. et al. Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2−tumor protein 53 protein−protein interaction. J. Med. Chem. 52, 7044–7053 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Orner, B. P., Ernst, J. T. & Hamilton, A. D. Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an α-helix. J. Am. Chem. Soc. 123, 5382–5383 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Yin, H. et al. Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew. Chem. Int. Ed. Engl. 44, 2704–2707 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Go, M. L., Wu, X. & Liu, X. L. Chalcones: an update on cytotoxic and chemoprotective properties. Curr. Med. Chem. 12, 483–499 (2005).

    Article  CAS  Google Scholar 

  45. Stoll, R. et al. Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 40, 336–344 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Shangary, S. et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc. Natl Acad. Sci. USA 105, 3933–3938 (2008). This paper describes the second set of p53–MDM2 inhibitors, showing dramatic preclinical activity in mouse models.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhao, Y. et al. A potent small-molecule inhibitor of the MDM2–p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J. Med. Chem. 56, 5553–5561 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Czarna, A. et al. Robust generation of lead compounds for protein–protein interactions by computational and MCR chemistry: 53/Hdm2 antagonists. Angew. Chem. Int. Ed. 49, 5352–5356 (2010).

    Article  CAS  Google Scholar 

  49. Boettcher, A. et al. 3-imidazolyl-indoles for the treatment of proliferative diseases. WO Patent 2008119741 (2008).

  50. Hardcastle, I. R. et al. Isoindolinone inhibitors of the murine double minute 2 (MDM2)-p53 protein-protein interaction: structure-activity studies leading to improved potency. J. Med. Chem. 54, 1233–1243 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Burdack, C. et al. HDM2 ligands. WO Patent 2010028862 (2010).

  52. Essmann, F. & Schulze-Osthoff, K. Translational approaches targeting the p53 pathway for anti-cancer therapy. Br. J. Pharmacol. 165, 328–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bogen, S. L. et al. Substituted piperidines that increase P53 activity and the uses thereof. WO Patent 2011046771A1 (2011).

  54. Bertamino, A. et al. Synthesis, in vitro, and in cell studies of a new series of [indoline-3,2′-thiazolidine]-based p53 modulators. J. Med. Chem. 56, 5407–5421 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Galatin, P. S. & Abraham, D. J. A nonpeptidic sulfonamide inhibits the p53-mdm2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. J. Med. Chem. 47, 4163–4165 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Rew, Y. et al. Structure-based design of novel inhibitors of the MDM2–p53 interaction. J. Med. Chem. 55, 4936–4954 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Gonzalez-Lopez de Turiso, F. et al. Rational design and binding mode duality of MDM2–p53 inhibitors. J. Med. Chem. 56, 4053–4070 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Lucas, B. S. et al. An expeditious synthesis of the MDM2–p53 inhibitor AM-8553. J. Am. Chem. Soc. 134, 12855–12860 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Riedinger, C. et al. Understanding small-molecule binding to MDM2: insights into structural effects of isoindolinone inhibitors from NMR spectroscopy. Chem. Biol. Drug Design 77, 301–308 (2011).

    Article  CAS  Google Scholar 

  60. Michelsen, K. et al. Ordering of the N-terminus of human MDM2 by small molecule inhibitors. J. Am. Chem. Soc. 134, 17059–17067 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Wei, S. J. et al. In vitro selection of mutant HDM2 resistant to Nutlin inhibition. PLoS ONE 8, e62564 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vu, B. et al. Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med. Chem. Lett. 4, 466–469 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ding, Q. et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J. Med. Chem. 56, 5979–5983 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Wade, M. & Wahl, G. M. Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol. Cancer Res. 7, 1–11 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gembarska, A. et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nature Med. 18, 1239–1247 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Lu, M. et al. Restoring p53 function in human melanoma cells by inhibiting MDM2 and cyclin B1/CDK1-phosphorylated nuclear iASPP. Cancer Cell 23, 618–633 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. van Leeuwen, I. M. et al. Mechanism-specific signatures for small-molecule p53 activators. Cell Cycle 10, 1590–1598 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Leão, M. et al. Discovery of a new small-molecule inhibitor of p53–MDM2 interaction using a yeast-based approach. Biochem. Pharmacol. 85, 1234–1245 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Nakamura, Y. et al. Siladenoserinols A–L: new sulfonated serinol derivatives from a tunicate as inhibitors of p53–Hdm2 interaction. Org. Lett. 15, 322–325 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Reed, D. et al. Identification and characterization of the first small molecule inhibitor of MDMX. J. Biol. Chem. 285, 10786–10796 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Noguchi, T. et al. Affinity-based screening of MDM2/MDMX–p53 interaction inhibitors by chemical array: identification of novel peptidic inhibitors. Bioorg. Med. Chem. Lett. 23, 3802–3805 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Graves, B. et al. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc. Natl Acad. Sci. USA 109, 11788–11793 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. ElSawy, K. M. et al. On the interaction mechanisms of a p53 peptide and nutlin with the MDM2 and MDMX proteins: a Brownian dynamics study. Cell Cycle 12, 394–404 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hernychova, L. et al. Identification of a second Nutlin-3 responsive interaction site in the N-terminal domain of MDM2 using hydrogen/deuterium exchange mass spectrometry. Proteomics 13, 2512–2525 (2013). This paper characterizes, for the first time, the relevance of a secondary interaction site for MDM2 inhibitors, thus possibly identifying a new druggable site.

    Article  CAS  PubMed  Google Scholar 

  75. Pazgier, M. et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc. Natl Acad. Sci. USA 106, 4665–4670 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Phan, J. et al. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. J. Biol. Chem. 285, 2174–2183 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Li, C. et al. Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions. J. Mol. Biol. 398, 200–213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, M. et al. D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc. Natl Acad. Sci. USA 107, 14321–14326 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dastidar, S. G., Lane, D. P. & Verma, C. S. Multiple peptide conformations give rise to similar binding affinities: molecular simulations of p53-MDM2. J. Am. Chem. Soc. 130, 13514–13515 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Brown, C. J. et al. C-terminal substitution of MDM2 interacting peptides modulates binding affinity by distinctive mechanisms. PLoS ONE 6, e24122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou, W. et al. Improved eIF4E binding peptides by phage display guided design: plasticity of interacting surfaces yield collective effects. PLoS ONE 7, e47235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schafmeister, C. E., Po, J. & Verdine, G. L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc. 122, 5891–5892 (2000).

    Article  CAS  Google Scholar 

  83. Bernal, F., Tyler, A. F., Korsmeyer, S. J., Walensky, L. D. & Verdine, G. L. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J. Am. Chem. Soc. 129, 2456–2457 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bernal, F. et al. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell 18, 411–422 (2010). This is the first description of stapled peptide inhibitors of the p53–MDM2interaction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brown, C. J. et al. Stapled peptides with improved potency and specificity that activate p53. ACS Chem. Biol. 8, 506–512 (2013). This paper describes new stapled peptides that have potent activity in the induction of p53 in cell-based reporter assays.

    Article  CAS  PubMed  Google Scholar 

  86. Chang, Y. S. et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl Acad. Sci. USA 110, E3445–E3454 (2013). This paper describes a stapled peptide developed by Aileron Therapeutics that shows in vitro and in vivo efficacy.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Brown, Z. Z. et al. A spiroligomer alpha-helix mimic that binds HDM2, penetrates human cells and stabilizes HDM2 in cell culture. PLoS ONE 7, e45948 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ji, Y. et al. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide. J. Am. Chem. Soc. 135, 11623–11633 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Walensky, L. D. et al. A stapled BID BH3 helix directly binds and activates BAX. Mol. Cell 24, 199–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Okamoto, T. et al. Stabilizing the pro-apoptotic BimBH3 helix (BimSAHB) does not necessarily enhance affinity or biological activity. ACS Chem. Biol. 8, 297–302 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Khoo, K. H., Andreeva, A. & Fersht, A. R. Adaptive evolution of p53 thermodynamic stability. J. Mol. Biol. 393, 161–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Joerger, A. C. & Fersht, A. R. Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77, 557–582 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Sawkar, A. R. et al. Chemical chaperones increase the cellular activity of N370S beta-glucosidase: a therapeutic strategy for Gaucher disease. Proc. Natl Acad. Sci. USA 99, 15428–15433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sawkar, A. R. et al. Gaucher disease-associated glucocerebrosidases show mutation-dependent chemical chaperoning profiles. Chem. Biol. 12, 1235–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Boeckler, F. M. et al. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc. Natl Acad. Sci. USA 105, 10360–10365 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wilcken, R. et al. Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. J. Am. Chem. Soc. 134, 6810–6818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, X. et al. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res. 41, 6034–6044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Basse, N. et al. Toward the rational design of p53-stabilizing drugs: probing the surface of the oncogenic Y220C mutant. Chem. Biol. 17, 46–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Bykov, V. J. et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nature Med. 8, 282–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Zache, N., Lambert, J. M., Wiman, K. G. & Bykov, V. J. PRIMA-1MET inhibits growth of mouse tumors carrying mutant p53. Cell Oncol. 30, 411–418 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zandi, R. et al. PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53. Clin. Cancer Res. 17, 2830–2841 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Lehmann, S. et al. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J. Clin. Oncol. 30, 3633–3639 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Lambert, J. M. et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15, 376–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Kaar, J. L. et al. Stabilization of mutant p53 via alkylation of cysteines and effects on DNA binding. Protein Sci. 19, 2267–2278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wassman, C. D. et al. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nature Commun. 4, 1407 (2013).

    Article  CAS  Google Scholar 

  108. Scotcher, J. et al. Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 888–897 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Held, J. M. et al. Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach. Mol. Cell Proteom. 9, 1400–1410 (2010).

    Article  CAS  Google Scholar 

  110. Shalom-Feuerstein, R. et al. Impaired epithelial differentiation of induced pluripotent stem cells from ectodermal dysplasia-related patients is rescued by the small compound APR-246/PRIMA-1MET. Proc. Natl Acad. Sci. USA 110, 2152–2156 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Shen, J. et al. APR-246/PRIMA-1(MET) rescues epidermal differentiation in skin keratinocytes derived from EEC syndrome patients with p63 mutations. Proc. Natl Acad. Sci. USA 110, 2157–2162 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rokaeus, N. et al. PRIMA-1(MET)/APR-246 targets mutant forms of p53 family members p63 and p73. Oncogene 29, 6442–6451 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Stegh, A. H. Targeting the p53 signaling pathway in cancer therapy — the promises, challenges and perils. Expert Opin. Ther. Targets 16, 67–83 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Article  CAS  PubMed  Google Scholar 

  115. Loh, S. N. The missing zinc: p53 misfolding and cancer. Metallomics 2, 442–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Joerger, A. C. & Fersht, A. R. Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 26, 2226–2242 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Puca, R., Nardinocchi, L., Givol, D. & D'Orazi, G. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene 29, 4378–4387 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Puca, R. et al. Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle 10, 1679–1689 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nature Med. 10, 1321–1328 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Azmi, A. S. et al. MI-219-zinc combination: a new paradigm in MDM2 inhibitor-based therapy. Oncogene 30, 117–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Yu, X., Vazquez, A., Levine, A. J. & Carpizo, D. R. Allele-specific p53 mutant reactivation. Cancer Cell 21, 614–625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Linde, L. & Kerem, B. Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet. 24, 552–563 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Rowe, S. M. & Clancy, J. P. Pharmaceuticals targeting nonsense mutations in genetic diseases: progress in development. BioDrugs 23, 165–174 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Floquet, C., Deforges, J., Rousset, J. P. & Bidou, L. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res. 39, 3350–3362 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Sermet-Gaudelus, I. et al. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am. J. Respir. Crit. Care Med. 182, 1262–1272 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Kerem, E. et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 372, 719–727 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Auld, D. S. et al. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124. Proc. Natl Acad. Sci. USA 107, 4878–4883 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Auld, D. S., Thorne, N., Maguire, W. F. & Inglese, J. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proc. Natl Acad. Sci. USA 106, 3585–3590 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kayali, R. et al. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum. Mol. Genet. 21, 4007–4020 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Choong, M. L., Yang, H., Lee, M. A. & Lane, D. P. Specific activation of the p53 pathway by low dose actinomycin D: a new route to p53 based cyclotherapy. Cell Cycle 8, 2810–2818 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. MacCallum, D. E. et al. Seliciclib (CYC202, R-roscovitine) induces cell death in multiple myeloma cells by inhibition of RNA polymerase II-dependent transcription and down-regulation of Mcl-1. Cancer Res. 65, 5399–5407 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Smart, P. et al. Effects on normal fibroblasts and neuroblastoma cells of the activation of the p53 response by the nuclear export inhibitor leptomycin B. Oncogene 18, 7378–7386 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Blank, J. L. et al. Novel DNA damage checkpoints mediating cell death induced by the NEDD8-activating enzyme inhibitor MLN4924. Cancer Res. 73, 225–234 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Li, L. et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 21, 266–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rigatti, M. J., Verma, R., Belinsky, G. S., Rosenberg, D. W. & Giardina, C. Pharmacological inhibition of Mdm2 triggers growth arrest and promotes DNA breakage in mouse colon tumors and human colon cancer cells. Mol. Carcinog. 51, 363–378 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Verma, R., Rigatti, M. J., Belinsky, G. S., Godman, C. A. & Giardina, C. DNA damage response to the Mdm2 inhibitor nutlin-3. Biochem. Pharmacol. 79, 565–574 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Secchiero, P. et al. The MDM-2 antagonist nutlin-3 promotes the maturation of acute myeloid leukemic blasts. Neoplasia 9, 853–861 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shin, J. S. et al. Structural insights into the dual-targeting mechanism of Nutlin-3. Biochem. Biophys. Res. Commun. 420, 48–53 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Long, J. et al. Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in adult acute myelogenous leukemia. Blood 116, 71–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Secchiero, P. et al. Functional integrity of the p53-mediated apoptotic pathway induced by the nongenotoxic agent nutlin-3 in B-cell chronic lymphocytic leukemia (B-CLL). Blood 107, 4122–4129 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Saha, M. N., Jiang, H. & Chang, H. Molecular mechanisms of nutlin-induced apoptosis in multiple myeloma: evidence for p53-transcription-dependent and -independent pathways. Cancer Biol. Ther. 10, 567–578 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Van Maerken, T. et al. Antitumor activity of the selective MDM2 antagonist nutlin-3 against chemoresistant neuroblastoma with wild-type p53. J. Natl Cancer Inst. 101, 1562–1574 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Tabe, Y. et al. MDM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin. Cancer Res. 15, 933–942 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Momand, J., Jung, D., Wilczynski, S. & Niland, J. The MDM2 gene amplification database. Nucleic Acids Res. 26, 3453–3459 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ohnstad, H. O. et al. Correlation of TP53 and MDM2 genotypes with response to therapy in sarcoma. Cancer 119, 1013–1022 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Tovar, C. et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc. Natl Acad. Sci. USA 103, 1888–1893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Paris, R., Henry, R. E., Stephens, S. J., McBryde, M. & Espinosa, J. M. Multiple p53-independent gene silencing mechanisms define the cellular response to p53 activation. Cell Cycle 7, 2427–2433 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Gutekunst, M. et al. p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS ONE 6, e19198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gutekunst, M. et al. Cisplatin hypersensitivity of testicular germ cell tumors is determined by high constitutive Noxa levels mediated by Oct-4. Cancer Res. 73, 1460–1469 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Ross, C. J. et al. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nature Genet. 41, 1345–1349 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Kracikova, M., Akiri, G., George, A., Sachidanandam, R. & Aaronson, S. A. A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis. Cell Death Differ. 20, 576–588 (2013). This is a careful, quantitative analysis of p53 signal intensity and the duration needed to cross the apoptotic threshold.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tovar, C. et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 73, 2587–2597 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Ray-Coquard, I. et al. Effect of the MDM2 antagonist RG7112 on the p53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol. 13, 1133–1140 (2012). This is the first description of the clinical trial of MDM2 inhibitors in the treatment of sarcoma.

    Article  CAS  PubMed  Google Scholar 

  154. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Carter, B. Z. et al. Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML. Blood 115, 306–314 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Valentine, J. M., Kumar, S. & Moumen, A. A p53-independent role for the MDM2 antagonist Nutlin-3 in DNA damage response initiation. BMC Cancer 11, 79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Iancu-Rubin, C. et al. Activation of p53 by the MDM2 inhibitor RG7112 impairs thrombopoiesis. Exp. Hematol. http://dx.doi.org/10.1016/j.exphem.2013.11.012 (2013).

  158. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Michaelis, M. et al. Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multi-drug-resistant cancer cells. Cell Death Dis. 2, e243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Aziz, M. H., Shen, H. & Maki, C. G. Acquisition of p53 mutations in response to the non-genotoxic p53 activator Nutlin-3. Oncogene 30, 4678–4686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jones, R. J., Bjorklund, C. C., Baladandayuthapani, V., Kuhn, D. J. & Orlowski, R. Z. Drug resistance to inhibitors of the human double minute-2 E3 ligase is mediated by point mutations of p53, but can be overcome with the p53 targeting agent RITA. Mol. Cancer Ther. 11, 2243–2253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Brummelkamp, T. R. et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nature Chem. Biol. 2, 202–206 (2006).

    Article  CAS  Google Scholar 

  163. Shchors, K. et al. Using a preclinical mouse model of high-grade astrocytoma to optimize p53 restoration therapy. Proc. Natl Acad. Sci. USA 110, E1480–E1489 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Rudin, C. M. et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin. Cancer Res. 18, 3163–3169 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Roberts, A. W. et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol. 30, 488–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. van Delft, M. F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10, 389–399 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Konopleva, M. et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10, 375–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Yecies, D., Carlson, N. E., Deng, J. & Letai, A. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood 115, 3304–3313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rooswinkel, R. W., van de Kooij, B., Verheij, M. & Borst, J. Bcl-2 is a better ABT-737 target than Bcl-xL or Bcl-w and only Noxa overcomes resistance mediated by Mcl-1, Bfl-1, or Bcl-B. Cell Death Dis. 3, e366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lew, Q. J. et al. NPMc+ AML cell line shows differential protein expression and lower sensitivity to DNA-damaging and p53-inducing anticancer compounds. Cell Cycle 10, 1978–1987 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Kojima, K., Konopleva, M., Samudio, I. J., Ruvolo, V. & Andreeff, M. Mitogen-activated protein kinase kinase inhibition enhances nuclear proapoptotic function of p53 in acute myelogenous leukemia cells. Cancer Res. 67, 3210–3219 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Konopleva, M. et al. MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia 26, 778–787 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Glaser, S. P. et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 26, 120–125 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Vo, T. T. et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 151, 344–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ni Chonghaile, T. et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334, 1129–1133 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Patton, J. T. et al. Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res. 66, 3169–3176 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Wade, M., Wong, E. T., Tang, M., Stommel, J. M. & Wahl, G. M. Hdmx modulates the outcome of p53 activation in human tumor cells. J. Biol. Chem. 281, 33036–33044 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Garcia, D. et al. Validation of MdmX as a therapeutic target for reactivating p53 in tumors. Genes Dev. 25, 1746–1757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wei, S. J. Inhibition of Nutlin-resistant HDM2 mutants by stapled peptides. PLoS ONE 8, e81068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Michaelis, M. et al. Reversal of P-glycoprotein-mediated multidrug resistance by the murine double minute 2 antagonist nutlin-3. Cancer Res. 69, 416–421 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Ribas, J., Boix, J. & Meijer, L. (R)-roscovitine (CYC202, seliciclib) sensitizes SH-SY5Y neuroblastoma cells to nutlin-3-induced apoptosis. Exp. Cell Res. 312, 2394–2400 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Cheok, C. F., Dey, A. & Lane, D. P. Cyclin-dependent kinase inhibitors sensitize tumor cells to nutlin-induced apoptosis: a potent drug combination. Mol. Cancer Res. 5, 1133–1145 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Kojima, K., Konopleva, M., Tsao, T., Nakakuma, H. & Andreeff, M. Concomitant inhibition of Mdm2-p53 interaction and Aurora kinases activates the p53-dependent postmitotic checkpoints and synergistically induces p53-mediated mitochondrial apoptosis along with reduced endoreduplication in acute myelogenous leukemia. Blood 112, 2886–2895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cheok, C. F., Kua, N., Kaldis, P. & Lane, D. P. Combination of nutlin-3 and VX-680 selectively targets p53 mutant cells with reversible effects on cells expressing wild-type p53. Cell Death Differ. 17, 1486–1500 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Coll-Mulet, L. et al. MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 107, 4109–4114 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Cao, C. et al. Radiosensitization of lung cancer by nutlin, an inhibitor of murine double minute 2. Mol. Cancer Ther. 5, 411–417 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Supiot, S., Hill, R. P. & Bristow, R. G. Nutlin-3 radiosensitizes hypoxic prostate cancer cells independent of p53. Mol. Cancer Ther. 7, 993–999 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Zhang, W. et al. Blockade of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase and murine double minute synergistically induces apoptosis in acute myeloid leukemia via BH3-only proteins Puma and Bim. Cancer Res. 70, 2424–2434 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Thompson, T., Andreeff, M., Studzinski, G. P. & Vassilev, L. T. 1,25-dihydroxyvitamin D3 enhances the apoptotic activity of MDM2 antagonist nutlin-3a in acute myeloid leukemia cells expressing wild-type p53. Mol. Cancer Ther. 9, 1158–1168 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. McCormack, E. et al. Synergistic induction of p53 mediated apoptosis by valproic acid and nutlin-3 in acute myeloid leukemia. Leukemia 26, 910–917 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Li, M., Luo, J., Brooks, C. L. & Gu, W. Acetylation of p53 inhibits its ubiquitination by Mdm2. J. Biol. Chem. 277, 50607–50611 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Wade, M., Rodewald, L. W., Espinosa, J. M. & Wahl, G. M. BH3 activation blocks Hdmx suppression of apoptosis and cooperates with Nutlin to induce cell death. Cell Cycle 7, 1973–1982 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Kojima, K. et al. Concomitant inhibition of MDM2 and Bcl-2 protein function synergistically induce mitochondrial apoptosis in AML. Cell Cycle 5, 2778–2786 (2006).

    Article  CAS  PubMed  Google Scholar 

  194. Mir, R. et al. Mdm2 antagonists induce apoptosis and synergize with cisplatin overcoming chemoresistance in TP53 wild-type ovarian cancer cells. Int. J. Cancer 132, 1525–1536 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Tovar, C. et al. MDM2 antagonists boost antitumor effect of androgen withdrawal: implications for therapy of prostate cancer. Mol. Cancer 10, 49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Konopleva, M. et al. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 16, 1713–1724 (2002).

    Article  CAS  PubMed  Google Scholar 

  197. Davids, M. S. et al. Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia. Blood 120, 3501–3509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sullivan, K. D. et al. ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53. Nature Chem. Biol. 8, 646–654 (2012).

    Article  CAS  Google Scholar 

  199. Zauli, G. et al. Dasatinib plus Nutlin-3 shows synergistic antileukemic activity in both p53 wild-type and p53 mutated B chronic lymphocytic leukemias by inhibiting the Akt pathway. Clin. Cancer Res. 17, 762–770 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. Zauli, G. et al. The sorafenib plus nutlin-3 combination promotes synergistic cytotoxicity in acute myeloid leukemic cells irrespectively of FLT3 and p53 status. Haematologica 97, 1722–1730 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lehmann, B. D. et al. A dominant role for p53-dependent cellular senescence in radiosensitization of human prostate cancer cells. Cell Cycle 6, 595–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Blagosklonny, M. V. & Pardee, A. B. Exploiting cancer cell cycling for selective protection of normal cells. Cancer Res. 61, 4301–4305 (2001).

    CAS  PubMed  Google Scholar 

  203. Blagosklonny, M. V. & Pardee, A. B. The restriction point of the cell cycle. Cell Cycle 1, 103–110 (2002).

    CAS  PubMed  Google Scholar 

  204. Carvajal, D. et al. Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res. 65, 1918–1924 (2005).

    Article  CAS  PubMed  Google Scholar 

  205. Kranz, D. & Dobbelstein, M. Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res. 66, 10274–10280 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Lane, D. P. Cancer. p53, guardian of the genome. Nature 358, 15–16 (1992).

    Article  CAS  PubMed  Google Scholar 

  207. van Leeuwen, I. M., Rao, B., Sachweh, M. C. & Lain, S. An evaluation of small-molecule p53 activators as chemoprotectants ameliorating adverse effects of anticancer drugs in normal cells. Cell Cycle 11, 1851–1861 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. van Leeuwen, I. M. Cyclotherapy: opening a therapeutic window in cancer treatment. Oncotarget 3, 596–600 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Sur, S. et al. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc. Natl Acad. Sci. USA 106, 3964–3969 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).

    Article  CAS  PubMed  Google Scholar 

  211. Chen, X. & Ko, L. J., Jayaraman, L. & Prives, C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10, 2438–2451 (1996).

    Article  CAS  PubMed  Google Scholar 

  212. Veprintsev, D. B. & Fersht, A. R. Algorithm for prediction of tumour suppressor p53 affinity for binding sites in DNA. Nucleic Acids Res. 36, 1589–1598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Schlereth, K. et al. DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 38, 356–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  214. Schlereth, K., Charles, J. P., Bretz, A. C. & Stiewe, T. Life or death: 53-induced apoptosis requires DNA binding cooperativity. Cell Cycle 9, 4068–4076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Timofeev, O. et al. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep. 3, 1512–1525 (2013).

    Article  CAS  PubMed  Google Scholar 

  216. Samuels-Lev, Y. et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell 8, 781–794 (2001).

    Article  CAS  PubMed  Google Scholar 

  217. Bergamaschi, D. et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nature Genet. 38, 1133–1141 (2006).

    Article  CAS  PubMed  Google Scholar 

  218. Zhang, X., Wang, M., Zhou, C., Chen, S. & Wang, J. The expression of iASPP in acute leukemias. Leuk. Res. 29, 179–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  219. Jiang, L. et al. iASPP and chemoresistance in ovarian cancers: effects on paclitaxel-mediated mitotic catastrophe. Clin. Cancer Res. 17, 6924–6933 (2011).

    Article  CAS  PubMed  Google Scholar 

  220. Kruse, J. P. & Gu, W. Modes of p53 regulation. Cell 137, 609–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lane, D. P., Brown, C. J., Verma, C. & Cheok, C. F. New insights into p53 based therapy. Discov. Med. 12, 107–117 (2011).

    PubMed  Google Scholar 

  222. Gannon, H. S., Woda, B. A. & Jones, S. N. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell 21, 668–679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Sakaguchi, K. et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J. Biol. Chem. 275, 9278–9283 (2000).

    Article  CAS  PubMed  Google Scholar 

  224. D'Orazi, G. et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nature Cell Biol. 4, 11–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  225. Hofmann, T. G. et al. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nature Cell Biol. 4, 1–10 (2002).

    Article  CAS  PubMed  Google Scholar 

  226. Ma, T. et al. Inability of p53-reactivating compounds Nutlin-3 and RITA to overcome p53 resistance in tumor cells deficient in p53Ser46 phosphorylation. Biochem. Biophys. Res. Commun. 417, 931–937 (2012).

    Article  CAS  PubMed  Google Scholar 

  227. Henry, R. E., Andrysik, Z., Paris, R., Galbraith, M. D. & Espinosa, J. M. A. DR4:tBID axis drives the p53 apoptotic response by promoting oligomerization of poised BAX. EMBO J. 31, 1266–1278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Michalak, E. M., Villunger, A., Adams, J. M. & Strasser, A. In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ. 15, 1019–1029 (2008).

    Article  PubMed  Google Scholar 

  229. Happo, L. et al. Maximal killing of lymphoma cells by DNA damage-inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim. Blood 116, 5256–5267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Chen, L. et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17, 393–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  231. Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  232. Chipuk, J. E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004).

    Article  CAS  PubMed  Google Scholar 

  233. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Jackson, J. G. et al. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell 21, 793–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Vassilev, L. T. Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3, 419–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  236. Uoto, K. et al. Imidazothiazole derivative having 4,7-diazaspiro [2.5] octane ring structure. WO Patent 2009151069A1 (2009).

  237. Koblish, H. K. et al. Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol. Cancer Ther. 5, 160–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  238. Secchiero, P., Vaccarezza, M., Gonelli, A. & Zauli, G. TNF-related apoptosis-inducing ligand (TRAIL): a potential candidate for combined treatment of hematological malignancies. Curr. Pharm. Des. 10, 3673–3681 (2004).

    Article  CAS  PubMed  Google Scholar 

  239. Vatsyayan, R., Singhal, J., Nagaprashantha, L. D., Awasthi, S. & Singhal, S. S. Nutlin-3 enhances sorafenib efficacy in renal cell carcinoma. Mol. Carcinog. 52, 39–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  240. Kojima, K. et al. Prognostic impact and targeting of CRM1 in acute myeloid leukemia. Blood 121, 4166–4174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Lane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoo, K., Verma, C. & Lane, D. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 13, 217–236 (2014). https://doi.org/10.1038/nrd4236

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4236

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer