Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer immunotherapy – revisited

Key Points

  • Clinical development of immunotherapy has been hampered by the complexity of defining the optimal dose and schedule, and the lack of financial support.

  • There is an urgent need for assays that can adequately monitor the induced antitumour immune response and predict the response to immunotherapy.

  • The kinetics of antitumour responses are considerably different between immunotherapy and cytotoxic chemotherapy, as initial progression and even the appearance of new lesions may precede tumour shrinkage following immunotherapy.

  • The clinical applicability of immunotherapy has recently been boosted by the positive results of various approaches, such as CTLA4-specific antibody therapy.

  • Recent findings on a positive interaction between immunotherapy and chemotherapy warrant further investigations

Abstract

Our insight into antitumour immune responses has increased considerably during the past decades, yet the development of immunotherapy as a treatment modality for cancer has been hampered by several factors. These include difficulties in the selection of the optimal dose and schedule, the methods of evaluation, and financial support. Although durable clinical remissions have been observed with various immunotherapeutic strategies, the percentage of patients who benefited from these interventions has remained too small to justify the general use of such strategies. However, the recent positive results of clinical trials with novel immunoactive drugs as well as the unexpected finding of a positive interaction between immunotherapy and chemotherapy may herald a new era for the immunotherapy of cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of positive immunological effects of cytotoxic chemotherapeutics and targeted therapies.

Similar content being viewed by others

References

  1. Coley, W. B. The treatment of inoperable sarcoma with the mixed toxins of erysipelas and bacillus prodigiosus: immediate and final results in one hundred and forty cases. JAMA 31, 389–395 (1898).

    Article  Google Scholar 

  2. Gajewski, T. F., Louahed, J. & Brichard, V. G. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16, 399–403 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Giaccone, G. et al. A Phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer Res. 8, 3702–3709 (2002).

    CAS  PubMed  Google Scholar 

  4. Garland, S. M. et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N. Engl. J. Med. 356, 1928–1943 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Paavonen, J. et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 374, 301–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Kenter, G. G. et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 361, 1838–1847 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Moore, P. S. & Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nature Rev. Cancer 10, 878–889 (2010).

    Article  CAS  Google Scholar 

  8. Kaufman, H. L. et al. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann. Surg. Oncol. 17, 718–730 (2010).

    Article  PubMed  Google Scholar 

  9. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. De Francesco, L. Landmark approval for Dendreon's cancer vaccine. Nature Biotech. 28, 531–532 (2010).

    Article  CAS  Google Scholar 

  11. Schuster, S. J. et al. Vaccination with patient-specific tumor-derived antigen in first remission improves disease-free survival in follicular lymphoma. J. Clin. Oncol. 31 May 2011 (doi:10.1200/JCO.2010.33.3005).

  12. Schwartzentruber, D. J. et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 364, 2119–2127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kantoff, P. W. et al. Overall survival analysis of a Phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28, 1099–1105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vansteenkiste, J. et al. Final results of a multi-center, double-blind, randomized, placebo controlled Phase II study to assess the efficacy of MAGE-A3 immunotherapeutic as adjuvant therapy in stage IB/II non-small cell lung cancer (NSCLC). J. Clin. Oncol. (Meeting Abstracts) 25, S7554 (2007).

    Article  CAS  Google Scholar 

  15. Dougan, M. & Dranoff, G. Immune therapy for cancer. Annu. Rev. Immunol. 27, 83–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nature Med. 10, 909–915 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Medical Research Council Renal Cancer Collaborators. Interferon-α and survival in metastatic renal carcinoma: early results of a randomised controlled trial. Lancet 353, 14–17 (1999).

  18. Eggermont, A. M. et al. Post-surgery adjuvant therapy with intermediate doses of interferon alfa 2b versus observation in patients with stage IIb/III melanoma (EORTC 18952): randomised controlled trial. Lancet 366, 1189–1196 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman, A. J. & Allison, J. P. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 206, 1717–1725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Elsas, A., Hurwitz, A. A. & Allison, J. P. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190, 355–366 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ribas, A. et al. Antitumor activity in melanoma and anti-self responses in a Phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J. Clin. Oncol. 23, 8968–8977 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Weber, J. S. et al. Phase I/II study of ipilimumab for patients with metastatic melanoma. J. Clin. Oncol. 26, 5950–5956 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010). This was the first evidence of the survival benefit of CTLA4-specific antibody therapy with ipilimumab in metastatic melanoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ribas A. et al. Phase III, open-label, randomized, comparative study of tremelimumab (CP-675,206) and chemotherapy (temozolomide [TMZ] or dacarbazine [DTIC]) in patients with advanced melanoma. J. Clin. Oncol. (Meeting Abstracts) 26, LBA9011 (2008).

    Article  Google Scholar 

  25. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 5 Jun 2011 (doi:10.1056/NEJMoa1104621).

  26. Zou, W. & Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nature Rev. Immunol. 8, 467–477 (2008).

    Article  CAS  Google Scholar 

  27. Thompson, R. H. et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 66, 3381–3385 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Bates, G. J. et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J. Clin. Oncol. 24, 5373–5380 (2006).

    Article  PubMed  Google Scholar 

  30. Salama, P. et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J. Clin. Oncol. 27, 186–192 (2009).

    Article  PubMed  Google Scholar 

  31. Farinha, P. et al. The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood 115, 289–295 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. de Vries, I. J. et al. Frequency of circulating Tregs with demethylated FOXP3 intron 1 in melanoma patients receiving tumor vaccines and potentially Treg-depleting agents. Clin. Cancer Res. 17, 841–848 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Dannull, J. et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 115, 3623–3633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jacobs, J. F. et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a Phase I/II study in metastatic melanoma patients. Clin. Cancer Res. 16, 5067–5078 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Rech, A. J. & Vonderheide, R. H. Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann. NY Acad. Sci. 1174, 99–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Litzinger, M. T. et al. IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110, 3192–3201 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sylvester, R. J. et al. Long-term efficacy results of EORTC genito-urinary group randomized phase 3 study 30911 comparing intravesical instillations of epirubicin, bacillus Calmette-Guerin, and bacillus Calmette-Guerin plus isoniazid in patients with intermediate- and high-risk stage Ta T1 urothelial carcinoma of the bladder. Eur. Urol. 57, 766–773 (2010).

    Article  PubMed  Google Scholar 

  38. Heslop, H. E. et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115, 925–935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002). This research showed that the adoptive transfer of tumour-reactive T cells in patients with melanoma induces tumour regressions as well as autoimmune melanocyte destruction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dudley, M. E. et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346–2357 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Besser, M. J. et al. Clinical responses in a Phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin. Cancer Res. 16, 2646–2655 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006). This research showed that the adoptive transfer of autologous lymphocytes that are transduced with a retrovirus encoding a T cell receptor in patients with melanoma results in durable engraftment and objective tumour responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johnson, L. A. et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114, 535–546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lamers, C. H. et al. Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions in vivo. Cancer Immunol. Immunother. 56, 1875–1883 (2007).

    Article  PubMed  Google Scholar 

  46. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Vries, I. J. et al. Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J. Clin. Oncol. 23, 5779–5787 (2005). In patients with metastatic melanoma who were treated with autologous antigen-pulsed dendritic cells, a correlation was shown between clinical outcome and antitumour reactivity in delayed-type hypersensitivity skin biopsy samples.

    Article  CAS  PubMed  Google Scholar 

  49. Schuler-Thurner, B. et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J. Exp. Med. 195, 1279–1288 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Banchereau, J. et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 61, 6451–6458 (2001).

    CAS  PubMed  Google Scholar 

  51. Janetzki, S. et al. “MIATA” — minimal information about T cell assays. Immunity 31, 527–528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lurquin, C. et al. Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J. Exp. Med. 201, 249–257 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. World Health Organization. WHO Handbook for Reporting Results of Cancer Treatment. (WHO, Geneva, 1979).

  54. Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl Cancer Inst. 92, 205–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Weber, J. Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol. Immunother. 58, 823–830 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Hoos, A. et al. Improved endpoints for cancer immunotherapy trials. J. Natl Cancer Inst. 102, 1388–1397 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zitvogel, L. et al. The anticancer immune response: indispensable for therapeutic success? J. Clin. Invest. 118, 1991–2001 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bast, R. C. Jr et al. Regression of established tumors and induction of tumor immunity by intratumor chemotherapy. J. Natl Cancer Inst. 56, 829–832 (1976).

    Article  CAS  PubMed  Google Scholar 

  61. Turk, J. L., Parker, D. & Poulter, L. W. Functional aspects of the selective depletion of lymphoid tissue by cyclophosphamide. Immunology 23, 493–501 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lutsiak, M. E. et al. Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105, 2862–2868 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Nowak, A. K., Robinson, B. W. & Lake, R. A. Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res. 63, 4490–4496 (2003). In this article (as well as in Ref. 86) the possible synergistic effect of cytotoxic chemotherapy and immunotherapy is demonstrated for the first time.

    CAS  PubMed  Google Scholar 

  64. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med. 13, 54–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nature Med. 15, 1170–1178 (2009). The seminal studies in Refs 64–66 provide definite proof that cytotoxic chemotherapy and radiotherapy can induce an immunogenic form of tumour cell death.

    Article  CAS  PubMed  Google Scholar 

  67. Tesniere, A. et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29, 482–491 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Nistico, P. et al. Chemotherapy enhances vaccine-induced antitumor immunity in melanoma patients. Int. J. Cancer 124, 130–139 (2008).

    Article  CAS  Google Scholar 

  69. Lesterhuis, W. J. et al. A pilot study on the immunogenicity of dendritic cell vaccination during adjuvant oxaliplatin/capecitabine chemotherapy in colon cancer patients. Br. J. Cancer 103, 1415–1421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nierkens, S. et al. In vivo colocalization of antigen and CpG within dendritic cells is associated with the efficacy of cancer immunotherapy. Cancer Res. 68, 5390–5396 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Blander, J. M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Milas, L. et al. CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res. 64, 5074–5077 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Rosenberg, S. A. et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med. 316, 889–897 (1987).

    Article  CAS  PubMed  Google Scholar 

  76. West, W. H. et al. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N. Engl. J. Med. 316, 898–905 (1987).

    Article  CAS  PubMed  Google Scholar 

  77. Schadendorf, D. et al. Immunotherapy of distant metastatic disease. Ann. Oncol. 20 (Suppl. 6), vi41–vi50 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. Zhang, H. et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nature Med. 11, 1238–1243 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Palucka, K., Banchereau, J. & Mellman, I. Designing vaccines based on biology of human dendritic cell subsets. Immunity 33, 464–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lesterhuis, W. J. et al. Dendritic cell vaccines in melanoma: from promise to proof? Crit. Rev. Oncol. Hematol. 66, 118–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. de Vries, I. J. et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nature Biotech. 23, 1407–1413 (2005).

    Article  CAS  Google Scholar 

  82. Nestle, F. O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med. 4, 328–332 (1998). This was the first demonstration of the clinical efficacy of vaccination with autologous antigen-loaded dendritic cells in patients with cancer.

    Article  CAS  PubMed  Google Scholar 

  83. Schadendorf, D. et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized Phase III trial of the DC study group of the DeCOG. Ann. Oncol. 17, 563–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Shurin, G. V., Tourkova, I. L., Kaneno, R. & Shurin, M. R. Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J. Immunol. 183, 137–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Alfaro, C. et al. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. Br. J. Cancer 100, 1111–1119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nowak, A. K. et al. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J. Immunol. 170, 4905–4913 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Gassner, F. J. et al. Fludarabine modulates composition and function of the T cell pool in patients with chronic lymphocytic leukaemia. Cancer Immunol. Immunother. 60, 75–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bracci, L. et al. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin. Cancer Res. 13, 644–653 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Zhao, J. et al. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res. 70, 4850–4858 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Beyer, M. et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106, 2018–2025 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Desar, I. M. et al. Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients. Int. J. Cancer 129, 507–512 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Correale, P. et al. Treatment of colon and breast carcinoma cells with 5-fluorouracil enhances expression of carcinoembryonic antigen and susceptibility to HLA-A(*)02.01 restricted, CEA-peptide-specific cytotoxic T cells in vitro. Int. J. Cancer 104, 437–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Ramakrishnan, R. et al. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J. Clin. Invest. 120, 1111–1124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Burnet, M. Cancer — a biological approach. I. The processes of control. Br. Med. J. 1, 779–786 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zinkernagel, R. M. & Doherty, P. C. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature 251, 547–548 (1974).

    Article  CAS  PubMed  Google Scholar 

  97. Zinkernagel, R. M. & Doherty, P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).

    Article  CAS  PubMed  Google Scholar 

  98. Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137, 1142–1162 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bevan, M. J. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med. 143, 1283–1288 (1976).

    Article  CAS  PubMed  Google Scholar 

  100. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  101. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Kawakami, Y. et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl Acad. Sci. USA 91, 3515–3519 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Morales, A., Eidinger, D. & Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 116, 180–183 (1976).

    Article  CAS  PubMed  Google Scholar 

  107. Bindon, C. et al. Clearance rates and systemic effects of intravenously administered interleukin 2 (IL-2) containing preparations in human subjects. Br. J. Cancer 47, 123–133 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kirkwood, J. M. et al. Comparison of intramuscular and intravenous recombinant α-2 interferon in melanoma and other cancers. Ann. Intern. Med. 103, 32–36 (1985).

    Article  CAS  PubMed  Google Scholar 

  109. Rosenberg, S. A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313, 1485–1492 (1985).

    Article  CAS  PubMed  Google Scholar 

  110. Lienard, D., Ewalenko, P., Delmotte, J. J., Renard, N. & Lejeune, F. J. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J. Clin. Oncol. 10, 52–60 (1992).

    Article  CAS  PubMed  Google Scholar 

  111. van Seters, M. et al. Treatment of vulvar intraepithelial neoplasia with topical imiquimod. N. Engl. J. Med. 358, 1465–1473 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Thomas, E. D., Lochte, H. L. Jr, Lu, W. C. & Ferrebee, J. W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257, 491–496 (1957).

    Article  CAS  PubMed  Google Scholar 

  113. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Den Brok, M. H. et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res. 64, 4024–4029 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Nathan, P. D. & Eisen, T. G. The biological treatment of renal-cell carcinoma and melanoma. Lancet Oncol. 3, 89–96 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

W.J.L. is supported by a Translation Research Fellowship of the Dutch Cancer Society and by the Netherlands Organization for Scientific Research (Grant 920-03-250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelis J. A. Punt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Cytotoxic T lymphocyte

Cytotoxic (CD8+) lymphocytes can kill tumour cells following recognition of tumour-associated antigens that are presented by major histocompatibility complex class I.

Cytotoxic T lymphocyte-associated antigen 4

(CTLA4). A co-inhibitory molecule that is expressed by T cells. Binding of its ligands B7.1 or B7.2 on antigen-presenting cells results in negative regulation of T cell activity.

Toll-like receptor 4

(TLR4). A member of the Toll-like receptor family of innate immune receptors that recognize molecular patterns of microbes or danger signals derived from tissue damage.

NLRP3

NOD-, LRR and pyrin domain-containing 3. This is a pyrin-like protein that is involved in inflammation and immune responses.

Crosspresentation

The mechanism by which certain APCs take up, process and present extracellular antigens on MHC class I molecules to stimulate cytotoxic T cells. This property is atypical, as most cells exclusively present peptides from endogenous proteins on MHC class I molecules.

Immunogenic cell death

The process of immunogenic cell death takes place when dying tumour cells provide an alerting or activating signal to the immune system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesterhuis, W., Haanen, J. & Punt, C. Cancer immunotherapy – revisited. Nat Rev Drug Discov 10, 591–600 (2011). https://doi.org/10.1038/nrd3500

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3500

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer