Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Factors underlying sensitivity of cancers to small-molecule kinase inhibitors

Key Points

  • There are 518 predicted protein kinases encoded by the human genome, and many of these have been implicated in various aspects of tumorigenesis by virtue of overexpression and/or mutational activation. Consequently, kinases have emerged as a potentially important class of targets for the development of therapeutic anti-cancer agents. There has been a tremendous and rapidly expanding effort during the past decade to develop and test kinase-targeted antibodies as well as small-molecule inhibitors of catalysis.

  • Despite early scepticism about the ability to develop selective and potent kinase inhibitors, there are now 10 kinase inhibitors approved for treatment of patients with cancer on the basis of good clinical efficacy. These include the Bcr-Abl kinase inhibitor imatinib, which has become the standard of care for treatment of patients with chronic myelogenous leukaemia, and erlotinib, which is widely used in patients with chemotherapy-refractory non-small cell lung cancer.

  • The expanding clinical use of kinase inhibitors has revealed that they are typically effective in subsets of treated patients, and many factors seem to contribute to this variable clinical responsiveness. Among the most critical determinants of response to the selective kinase inhibitors is the presence of activating mutations in the gene encoding the targeted kinase — which are well correlated with drug sensitivity.

  • Several additional factors have been implicated in the variable clinical response among treated patients. These include: genomic alterations that have an impact on the signalling pathway mediated by the targeted kinase, germline polymorphic differences that have an impact on drug metabolism, distinct features of the tumour microenvironment and the emergence of acquired drug resistance. Each of these factors may present an opportunity to develop strategies to improve clinical outcomes with kinase inhibitors and to broaden their therapeutic utility.

  • Collectively, such findings have highlighted the importance of 'personalized cancer medicine', an emerging approach to cancer therapy that exploits the increasingly appreciated genomic heterogeneity among patients with cancer — even those with histologically indistinguishable disease — and aims to match patients with appropriate drugs, many of which are currently kinase inhibitors.

Abstract

Selective small-molecule kinase inhibitors have emerged over the past decade as an important class of anti-cancer agents, and have demonstrated impressive clinical efficacy in several different diseases, including relatively common malignancies such as breast and lung cancer. However, clinical benefit is typically limited to a fraction of treated patients. Genomic features of individual tumours contribute significantly to such clinical responses, and these seem to vary tremendously across patients. Additional factors, including pharmacogenomics, the tumour microenvironment and rapidly acquired drug resistance, also contribute to the clinical sensitivity of various cancers, and should be considered and applied in the development and use of new kinase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of drug metabolism in the variable response to selective kinase inhibitors.
Figure 2: Mechanisms of acquired resistance to EGFR TKIs in lung cancer.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nature Rev. Cancer 9, 28–39 (2009). This is a review summarizing the challenges and successes associated with the development of small-molecule kinase inhibitors to treat human cancer.

    Google Scholar 

  2. Pegram, M. D. et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized antip185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J. Clin. Oncol. 16, 2659–2671 (1998).

    CAS  PubMed  Google Scholar 

  3. Saltz, L. B. et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol. 22, 1201–1208 (2004).

    CAS  PubMed  Google Scholar 

  4. Robert, F. et al. Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J. Clin. Oncol. 19, 3234–3243 (2001).

    CAS  PubMed  Google Scholar 

  5. Yan, L., Hsu, K. & Beckman, R. A. Antibody-based therapy for solid tumors. Cancer J. 14, 178–183 (2008).

    CAS  PubMed  Google Scholar 

  6. Bibeau, F. et al. Impact of FcγRIIa-FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J. Clin. Oncol. 27, 1122–1129 (2009). This paper reports a significant recent clinical finding that demonstrates the importance of activating KRAS mutations in the identification of colorectal cancer patients unlikely to respond to a kinase-targeted therapy.

    CAS  PubMed  Google Scholar 

  7. Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnol. 26, 127–132 (2008).

    CAS  Google Scholar 

  8. Sharma, S. V. & Settleman, J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 21, 3214–3231 (2007).

    CAS  PubMed  Google Scholar 

  9. Shah, N. P. et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 14, 485–493 (2008).

    CAS  PubMed  Google Scholar 

  10. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    CAS  PubMed  Google Scholar 

  11. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002). This is a landmark report demonstrating the activity of a small-molecule kinase inhibitor in a solid tumour setting.

    CAS  PubMed  Google Scholar 

  12. Sequist, L. V. First-generation epidermal growth factor receptor tyrosine kinase inhibitors in EGFR mutation: positive non-small cell lung cancer patients. J. Thorac. Oncol. 3, S143–145 (2008).

    PubMed  Google Scholar 

  13. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of nonsmallcell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    CAS  PubMed  Google Scholar 

  14. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    CAS  PubMed  Google Scholar 

  15. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    PubMed  PubMed Central  Google Scholar 

  16. Verstovsek, S. et al. A phase I/II study of INCB018424, an oral, selective JAK inhibitor, in patients with primary myelofibrosis (PMF) and post polycythemia vera/essential thrombocythemia myelofibrosis (Post-PV/ET MF). J. Clin. Oncol. 26 (abstr 7004) (2008).

    Google Scholar 

  17. Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer 4, 177–183 (2004).

    CAS  Google Scholar 

  18. McDermott, U. et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl Acad. Sci. USA 104, 19936–19941 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hipp, S. et al. Inhibition of the mammalian target of rapamycin and the induction of cell cycle arrest in mantle cell lymphoma cells. Haematologica 90, 1433–1434 (2005).

    CAS  PubMed  Google Scholar 

  20. Costa, L. J., Gemmill, R. M. & Drabkin, H. A. Upstream signaling inhibition enhances rapamycin effect on growth of kidney cancer cells. Urology 69, 596–602 (2007).

    PubMed  Google Scholar 

  21. Younes, A. Therapeutic activity of mTOR inhibitors in mantle cell lymphoma: clues but no clear answers. Autophagy 4, 707–709 (2008).

    CAS  PubMed  Google Scholar 

  22. Le Tourneau, C., Faivre, S., Serova, M. & Raymond, E. mTORC1 inhibitors: is temsirolimus in renal cancer telling us how they really work? Br. J. Cancer 99, 1197–1203 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Weinstein, I. B. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 297, 63–64 (2002).

    CAS  PubMed  Google Scholar 

  24. Sordella, R., Bell, D. W., Haber, D. A. & Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163–1167 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Smolen, G. A. et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA665752. Proc. Natl Acad. Sci. USA 103, 2316–2321 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lutterbach, B. et al. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res. 67, 2081–2088 (2007).

    CAS  PubMed  Google Scholar 

  27. Knudsen, B. S. & Vande Woude, G. Showering cMETdependent cancers with drugs. Curr. Opin. Genet. Dev. 18, 87–96 (2008).

    CAS  PubMed  Google Scholar 

  28. Kunii, K. et al. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res. 68, 2340–2348 (2008).

    CAS  PubMed  Google Scholar 

  29. Dutt, A. et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc. Natl Acad. Sci. USA 105, 8713–8717 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. George, R. E. et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455, 975–978 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. McDermott, U. et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 68, 3389–3395 (2008).

    CAS  PubMed  Google Scholar 

  32. Koivunen, J. P. et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin. Cancer Res. 14, 4275–4283 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263, 1281–1284 (1994).

    CAS  PubMed  Google Scholar 

  34. Janoueix-Lerosey, I. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967–970 (2008).

    CAS  PubMed  Google Scholar 

  35. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in nonsmallcell lung cancer. Nature 448, 561–566 (2007).

    CAS  PubMed  Google Scholar 

  36. Chen, Y. et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455, 971–974 (2008).

    CAS  PubMed  Google Scholar 

  37. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002). This paper describes an important finding of cancer genome resequencing efforts by identifying BRAF mutations as very frequent in some human cancers.

    CAS  PubMed  Google Scholar 

  38. Montagut, C. & Settleman, J. Targeting the RAFMEKERK pathway in cancer therapy. Cancer Lett. 11 February 2009 (doi:10.1016/j.canlet.2009.01.022).

    CAS  PubMed  Google Scholar 

  39. Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3kinases as regulators of growth and metabolism. Nature Rev. Genet. 7, 606–619 (2006).

    CAS  PubMed  Google Scholar 

  40. Ihle, N. T. et al. Mutations in the phosphatidylinositol3kinase pathway predict for antitumor activity of the inhibitor PX866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer Res. 69, 143–150 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharma, S. V., Fischbach, M. A., Haber, D. A. & Settleman, J. “Oncogenic shock”: explaining oncogene addiction through differential signal attenuation. Clin. Cancer Res. 12, 4392s–4395s (2006).

    CAS  PubMed  Google Scholar 

  42. Sharma, S. V. et al. A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell 10, 425–435 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006). This is a highly cited report demonstrating the importance of a specific activating kinase allele ( BRAF ) as a drug-sensitizing mutation based on cell culture findings.

    CAS  PubMed  Google Scholar 

  44. Pratilas, C. A. et al. Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res. 68, 9375–9383 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kang, S. et al. FGFR3 activates RSK2 to mediate hematopoietic transformation through tyrosine phosphorylation of RSK2 and activation of the MEK/ERK pathway. Cancer Cell 12, 201–214 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Prieur, A., Tirode, F., Cohen, P. & Delattre, O. EWS/FLI1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol. Cell Biol. 24, 7275–7283 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Scotlandi, K. et al. Insulin-like growth factor I receptor-mediated circuit in Ewing's sarcoma/peripheral neuroectodermal tumor: a possible therapeutic target. Cancer Res. 56, 4570–4574 (1996).

    CAS  PubMed  Google Scholar 

  48. Scotlandi, K. et al. Antitumor activity of the insulin-like growth factorI receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res. 65, 3868–3876 (2005).

    CAS  PubMed  Google Scholar 

  49. Tolcher, A. W., Rothenberg, M. L. & Rodon, J. A phase I pharmacokinetic and pharmacodynamic study of AMG 479, a fully human monoclonal antibody against insulin-like growth factor type 1 receptor (IGF-1R), in advanced solid tumors. J. Clin. Oncol. 25 (18 suppl), 3002 (2007).

    Google Scholar 

  50. Wu, Z., Gioeli, D., Conaway, M., Weber, M. J. & Theodorescu, D. Restoration of PTEN expression alters the sensitivity of prostate cancer cells to EGFR inhibitors. Prostate 68, 935–944 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Noro, R. et al. PTEN inactivation in lung cancer cells and the effect of its recovery on treatment with epidermal growth factor receptor tyrosine kinase inhibitors. Int. J. Oncol. 31, 1157–1163 (2007).

    CAS  PubMed  Google Scholar 

  52. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    CAS  PubMed  Google Scholar 

  53. Lin, W. M. et al. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res. 68, 664–673 (2008).

    CAS  PubMed  Google Scholar 

  54. Singer, C. F., Kostler, W. J. & Hudelist, G. Predicting the efficacy of trastuzumab-based therapy in breast cancer: current standards and future strategies. Biochim. Biophys. Acta 1786, 105–113 (2008).

    CAS  PubMed  Google Scholar 

  55. Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117–127 (2004).

    CAS  PubMed  Google Scholar 

  56. Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005). This is a clinical report demonstrating the activity of an EGFR-targeted therapy in a genotype-defined sub-population of treated glioma pateints.

    CAS  PubMed  Google Scholar 

  57. Endoh, H., Yatabe, Y., Kosaka, T., Kuwano, H. & Mitsudomi, T. PTEN and PIK3CA expression is associated with prolonged survival after gefitinib treatment in EGFR-mutated lung cancer patients. J. Thorac. Oncol. 1, 629–634 (2006).

    PubMed  Google Scholar 

  58. Eichhorn, P. J. et al. Phosphatidylinositol 3kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3kinase inhibitor NVP-BEZ235. Cancer Res. 68, 9221–9230 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Engelman, J. A. et al. Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J. Clin. Invest. 116, 2695–2706 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Parsons, R. Human cancer, PTEN and the PI3 kinase pathway. Semin. Cell Dev. Biol. 15, 171–176 (2004).

    CAS  PubMed  Google Scholar 

  61. Li, J., Zhao, M., He, P., Hidalgo, M. & Baker, S. D. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin. Cancer Res. 13, 3731–3737 (2007).

    CAS  PubMed  Google Scholar 

  62. Rudin, C. M. et al. Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J. Clin. Oncol. 26, 1119–1127 (2008).

    CAS  PubMed  Google Scholar 

  63. Hamilton, M. et al. Effects of smoking on the pharmacokinetics of erlotinib. Clin. Cancer Res. 12, 2166–2171 (2006).

    CAS  PubMed  Google Scholar 

  64. Hughes, A. N. et al. Overcoming CYP1A1/1A2 mediated induction of metabolism by escalating erlotinib dose in current smokers. J. Clin. Oncol. 27, 1220–1226 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, J. et al. Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol. Ther. 6, 432–438 (2007).

    CAS  PubMed  Google Scholar 

  66. Cusatis, G. et al. Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J. Natl Cancer Inst. 98, 1739–1742 (2006).

    CAS  PubMed  Google Scholar 

  67. Delbaldo, C. et al. Pharmacokinetic-pharmacodynamic relationships of imatinib and its main metabolite in patients with advanced gastrointestinal stromal tumors. Clin. Cancer Res. 12, 6073–6078 (2006).

    CAS  PubMed  Google Scholar 

  68. Petain, A. et al. Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin. Cancer Res. 14, 7102–7109 (2008).

    CAS  PubMed  Google Scholar 

  69. Amador, M. L. et al. An epidermal growth factor receptor intron 1 polymorphism mediates response to epidermal growth factor receptor inhibitors. Cancer Res. 64, 9139–9143 (2004).

    CAS  PubMed  Google Scholar 

  70. Huang, C. L. et al. EGFR intron 1 dinucleotide repeat polymorphism is associated with the occurrence of skin rash with gefitinib treatment. Lung Cancer 64, 346–351 (2009).

    PubMed  Google Scholar 

  71. Liu, W. et al. Interethnic difference in the allelic distribution of human epidermal growth factor receptor intron 1 polymorphism. Clin. Cancer Res. 9, 1009–1012 (2003).

    CAS  PubMed  Google Scholar 

  72. Shepherd, F. A. et al. Erlotinib in previously treated nonsmallcell lung cancer. N. Engl. J. Med. 353, 123–132 (2005).

    CAS  PubMed  Google Scholar 

  73. Thatcher, N. et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced nonsmallcell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366, 1527–1537 (2005).

    CAS  PubMed  Google Scholar 

  74. Tiseo, M. et al. Epidermal growth factor receptor intron1 polymorphism predicts gefitinib outcome in advanced non-small cell lung cancer. J. Thorac. Oncol. 3, 1104–1111 (2008).

    PubMed  Google Scholar 

  75. Liu, G. et al. Epidermal growth factor receptor polymorphisms and clinical outcomes in nonsmallcell lung cancer patients treated with gefitinib. Pharmacogenomics J. 8, 129–138 (2008).

    CAS  PubMed  Google Scholar 

  76. Fitzgerald, L. M. et al. Association of FGFR4 genetic polymorphisms with prostate cancer risk and prognosis. Prostate Cancer Prostatic Dis. (2008).

  77. Morimoto, Y. et al. Single nucleotide polymorphism in fibroblast growth factor receptor 4 at codon 388 is associated with prognosis in high-grade soft tissue sarcoma. Cancer 98, 2245–2250 (2003).

    CAS  PubMed  Google Scholar 

  78. Sasaki, H. et al. Fibroblast growth factor receptor 4 mutation and polymorphism in Japanese lung cancer. Oncol. Rep. 20, 1125–1130 (2008).

    CAS  PubMed  Google Scholar 

  79. Thussbas, C. et al. FGFR4 Arg388 allele is associated with resistance to adjuvant therapy in primary breast cancer. J. Clin. Oncol. 24, 3747–3755 (2006).

    CAS  PubMed  Google Scholar 

  80. Kilpivaara, O. et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nature Genet. 41, 455–459 (2009). This paper presents a clinical finding implicating a germline kinase gene polymorphism in cancer predisposition.

    CAS  PubMed  Google Scholar 

  81. Dressman, M. A. et al. Correlation of major cytogenetic response with a pharmacogenetic marker in chronic myeloid leukemia patients treated with imatinib (STI571). Clin. Cancer Res. 10, 2265–2271 (2004).

    CAS  PubMed  Google Scholar 

  82. Hirata, A. et al. ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res. 62, 2554–2560 (2002).

    CAS  PubMed  Google Scholar 

  83. Amin, D. N., Hida, K., Bielenberg, D. R. & Klagsbrun, M. Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res. 66, 2173–2180 (2006).

    CAS  PubMed  Google Scholar 

  84. Amin, D. N., Bielenberg, D. R., Lifshits, E., Heymach, J. V. & Klagsbrun, M. Targeting EGFR activity in blood vessels is sufficient to inhibit tumor growth and is accompanied by an increase in VEGFR2 dependence in tumor endothelial cells. Microvasc. Res. 76, 15–22 (2008).

    CAS  PubMed  Google Scholar 

  85. Yano, S. et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res. 68, 9479–9487 (2008). This is a report describing the role of an RTK ligand (HGF) in conferring resistance to therapy with an EGFR-targeted kinase inhibitor.

    CAS  PubMed  Google Scholar 

  86. Gurevich, F. & Perazella, M. A. Renal effects of anti-angiogenesis therapy: update for the internist. Am. J. Med. 122, 322–328 (2009).

    CAS  PubMed  Google Scholar 

  87. Engelman, J. A. & Settleman, J. Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr. Opin. Genet. Dev. 18, 73–79 (2008).

    CAS  PubMed  Google Scholar 

  88. Kobayashi, S. et al. EGFR mutation and resistance of nonsmallcell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005). This is a report describing the detection of a secondary mutation in EGFR that confers acquired resistance to EGFR TKIs.

    CAS  PubMed  Google Scholar 

  89. Shah, N. P. et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117–125 (2002).

    CAS  PubMed  Google Scholar 

  90. Cools, J. et al. Prediction of resistance to small molecule FLT3 inhibitors: implications for molecularly targeted therapy of acute leukemia. Cancer Res. 64, 6385–6389 (2004).

    CAS  PubMed  Google Scholar 

  91. Blencke, S. et al. Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors. Chem. Biol. 11, 691–701 (2004).

    CAS  PubMed  Google Scholar 

  92. Yun, C. H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA 105, 2070–2075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007). This is a report describing amplification of the gene encoding the MET kinase in NSCLC patients with acquired resistance to EGFR TKI therapy.

    CAS  PubMed  Google Scholar 

  94. Bean, J. et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl Acad. Sci. USA 104, 20932–20937 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kobayashi, S. et al. An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res. 65, 7096–7101 (2005).

    CAS  PubMed  Google Scholar 

  96. Kwak, E. L. et al. Epidermal growth factor receptor kinase domain mutations in esophageal and pancreatic adenocarcinomas. Clin. Cancer Res. 12, 4283–4287 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, D. et al. Bronchial and peripheral murine lung carcinomas induced by T790ML858R mutant EGFR respond to HKI272 and rapamycin combination therapy. Cancer Cell 12, 81–93 (2007).

    CAS  PubMed  Google Scholar 

  98. Godin-Heymann, N. et al. The T790M “gatekeeper” mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Mol. Cancer Ther. 7, 874–879 (2008).

    CAS  PubMed  Google Scholar 

  99. Sergina, N. V. et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445, 437–441 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Guix, M. et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J. Clin. Invest. 118, 2609–2619 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bachleitner-Hofmann, T. et al. HER kinase activation confers resistance to MET tyrosine kinase inhibition in MET oncogene-addicted gastric cancer cells. Mol. Cancer Ther. 7, 3499–3508 (2008).

    CAS  PubMed  Google Scholar 

  102. Sun, S. Y. et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 65, 7052–7058 (2005).

    CAS  PubMed  Google Scholar 

  103. O'Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, H. et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J. Clin. Invest. 117, 730–738 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, X. et al. Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation. Cancer Res. 68, 7409–7418 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fan, Q. W. et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9, 341–349 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ji, H. et al. Mutations in BRAF and KRAS converge on activation of the mitogen-activated protein kinase pathway in lung cancer mouse models. Cancer Res. 67, 4933–4939 (2007).

    CAS  PubMed  Google Scholar 

  108. Adjei, A. A. et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY142886) in patients with advanced cancers. J. Clin. Oncol. 26, 2139–2146 (2008).

    CAS  PubMed  Google Scholar 

  109. Lorusso, P. M. et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI1040 in patients with advanced malignancies. J. Clin. Oncol. 23, 5281–5293 (2005).

    CAS  PubMed  Google Scholar 

  110. Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Med. 14, 1351–1356 (2008).

    CAS  PubMed  Google Scholar 

  111. O'Brien, S. G. et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 348, 994–1004 (2003).

    CAS  PubMed  Google Scholar 

  112. Inoue, A. et al. Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced nonsmallcell lung cancer with epidermal growth factor receptor gene mutations. J. Clin. Oncol. 24, 3340–3346 (2006).

    CAS  PubMed  Google Scholar 

  113. Sequist, L. V. et al. First-line gefitinib in patients with advanced nonsmallcell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol. 26, 2442–2449 (2008). This clinical study demonstrates the utility of pre-selecting NSCLC patients with EGFR mutations for treatment with EGFR TKIs.

    CAS  PubMed  Google Scholar 

  114. Asahina, H. et al. A phase II trial of gefitinib as first-line therapy for advanced non-small cell lung cancer with epidermal growth factor receptor mutations. Br. J. Cancer 95, 998–1004 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Tamura, K. et al. Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the West Japan Thoracic Oncology Group trial (WJTOG0403). Br. J. Cancer 98, 907–914 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Heinrich, M. C. et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 21, 4342–4349 (2003).

    CAS  PubMed  Google Scholar 

  117. Thomas, R. K. et al. High-throughput oncogene mutation profiling in human cancer. Nature Genet. 39, 347–351 (2007).

    CAS  PubMed  Google Scholar 

  118. Tsai, J. et al. Discovery of a selective inhibitor of oncogenic BRaf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA 105, 3041–3046 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tokarski, J. S. et al. The structure of Dasatinib (BMS354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 66, 5790–5797 (2006).

    CAS  PubMed  Google Scholar 

  120. Shah, N. P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    CAS  PubMed  Google Scholar 

  121. Tsang, C. K., Qi, H., Liu, L. F. & Zheng, X. F. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov. Today 12, 112–124 (2007).

    CAS  PubMed  Google Scholar 

  122. Gomez, H. L. et al. Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J. Clin. Oncol. 26, 2999–3005 (2008).

    CAS  PubMed  Google Scholar 

  123. Hilberg, F. et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 68, 4774–4782 (2008).

    CAS  PubMed  Google Scholar 

  124. Gunby, R. H. et al. Sensitivity to imatinib but low frequency of the TEL/PDGFRβ fusion protein in chronic myelomonocytic leukemia. Haematologica 88, 408–415 (2003).

    CAS  PubMed  Google Scholar 

  125. Magnusson, M. K., Meade, K. E., Nakamura, R., Barrett, J. & Dunbar, C. E. Activity of STI571 in chronic myelomonocytic leukemia with a platelet-derived growth factor beta receptor fusion oncogene. Blood 100, 1088–1091 (2002).

    CAS  PubMed  Google Scholar 

  126. Christensen, J. G. et al. Cytoreductive antitumor activity of PF2341066, a novel inhibitor of anaplastic lymphoma kinase and cMet, in experimental models of anaplastic large-cell lymphoma. Mol. Cancer Ther. 6, 3314–3322 (2007).

    CAS  PubMed  Google Scholar 

  127. Tuveson, D. A. et al. STI571 inactivation of the gastrointestinal stromal tumor cKIT oncoprotein: biological and clinical implications. Oncogene 20, 5054–5058 (2001).

    CAS  PubMed  Google Scholar 

  128. Illmer, T. & Ehninger, G. FLT3 kinase inhibitors in the management of acute myeloid leukemia. Clin. Lymphoma Myeloma 8 (Suppl. 1), 24–34 (2007).

    Google Scholar 

  129. Salgia, R. et al. A phase I study of XL184, a RET, VEGFR2, and MET kinase inhibitor, in patients (pts) with advanced malignancies, including pts with medullary thyroid cancer (MTC). J. Clin. Oncol. 26, 15S (2008).

    Google Scholar 

  130. Finn, R. S. et al. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/“triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res. Treat 105, 319–326 (2007).

    CAS  PubMed  Google Scholar 

  131. Fizazi, K. The role of Src in prostate cancer. Ann. Oncol. 18, 1765–1773 (2007).

    CAS  PubMed  Google Scholar 

  132. Ishizawar, R. & Parsons, S. J. cSrc and cooperating partners in human cancer. Cancer Cell 6, 209–214 (2004).

    CAS  PubMed  Google Scholar 

  133. Smalley, K. S. & Flaherty, K. T. Integrating BRAF/MEK inhibitors into combination therapy for melanoma. Br. J. Cancer 100, 431–435 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Warner, S. L., Stephens, B. J. & Von Hoff, D. D. Tubulin-associated proteins: Aurora and Polo-like kinases as therapeutic targets in cancer. Curr. Oncol. Rep. 10, 122–129 (2008).

    CAS  PubMed  Google Scholar 

  135. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Song, L. et al. Dasatinib (BMS354825) selectively induces apoptosis in lung cancer cells dependent on epidermal growth factor receptor signaling for survival. Cancer Res. 66, 5542–5548 (2006).

    CAS  PubMed  Google Scholar 

  138. Beadling, C. et al. KIT gene mutations and copy number in melanoma subtypes. Clin. Cancer Res. 14, 6821–6828 (2008).

    CAS  PubMed  Google Scholar 

  139. Hodi, F. S. et al. Major response to imatinib mesylate in KIT-mutated melanoma. J. Clin. Oncol. 26, 2046–2051 (2008). This clinical study demonstrates response to imatinib in rare melanomas harbouring activating mutations of the cKIT kinase.

    CAS  PubMed  Google Scholar 

  140. Kim, J. W. et al. The growth inhibitory effect of lapatinib, a dual inhibitor of EGFR and HER2 tyrosine kinase, in gastric cancer cell lines. Cancer Lett. 272, 296–306 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the authors of many important publications relevant to the topics covered in the Review that we were unable to cite due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Settleman.

Ethics declarations

Competing interests

P.A.J. and J.S. receive royalties as patent holders related to EGFR mutation testing in lung cancer.

Related links

Related links

DATABASES

OMIM

CML

Ewing's sarcoma

GIST

NSCLC

polycythemia vera

FURTHER INFORMATION

Jeff Settleman's homepage

Glossary

Personalized cancer medicine

The clinical strategy of matching a specific cohort of patients with cancer to an appropriate therapy on the basis of clinical features or biomarkers that are shared between the individuals in that cohort. The goal is to optimize the frequency of clinical responses to treatment and to avoid treating patients with agents that are unlikely to yield clinical benefit.

Small-molecule kinase inhibitors

Synthetic or natural compounds, typically of a molecular size of less than 1,000 Daltons, that selectively inhibit particular kinases, typically through ATP-competitive interactions with the catalytic pocket or through allosteric interactions with other regions of the kinase.

Protein kinases

A class of cellular enzymes that share an ATP-dependent catalytic activity that results in the covalent attachment of a phosphate group to amino acids (serines, threonines or tyrosines) in specific peptide sequences of substrate proteins. There are an estimated 518 protein kinases encoded by the human genome. This subgroup of genes constitutes the human kinome.

Off-target activity

Drug activity that results from interaction with, and consequent effects on, unintended cellular targets.

Oncogene addiction

The phenomenon wherein tumour cells, despite the accumulation of multiple genetic lesions that contribute to malignancy, retain a requirement for the maintained activity of a single activated gene or associated pathway for their sustained proliferation and/or survival.

Germline polymorphisms

Polymorphic differences at a defined genomic locus in germline-derived (constitutional) tissue across a human population.

Pharmacokinetics

The effects of the body on drug efficacy and metabolism.

Adjuvant therapy

Any therapy delivered subsequent to a primary treatment with the goal of increasing treatment efficacy.

Pharmacogenomics

Relating to the influence of genetic variation in the drug response among treated patients.

Tumour microenvironment

The tissue environment closely associated with tumor cells. This typically includes vasculature, stroma-derived cells, and infiltrating immune cells, the presence of which can substantially impact clinical course and response to treatment.

Xenografts

Cancer cells transplanted into animals, such as mice, to examine tumorigenic properties and responses to treatment in vivo.

Cell autonomous and non-cell autonomous

Properties of tumour cells that are solely attributed to the tumour cell irrespective of its environment are described as 'cell autonomous', whereas tumour cell properties that are dependent on the cellular context (for example, surrounding stromal cells or available cytokines) are described as 'non-cell autonomous'.

Biomarkers

Readily detectable cellular molecules — typically, gene mutations, proteins, or RNAs — the presence or level of which is associated with, or predictive of, a clinical outcome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jänne, P., Gray, N. & Settleman, J. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov 8, 709–723 (2009). https://doi.org/10.1038/nrd2871

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing