Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug development of MET inhibitors: targeting oncogene addiction and expedience

Key Points

  • The MET oncogene encodes the tyrosine kinase receptor for hepatocyte growth factor (HGF), a widely distributed cytokine that is mainly involved in triggering invasive growth.

  • Invasive growth involves a complex genetic programme in which cell proliferation combines with cell–cell dissociation and movement, matrix degradation and survival. It occurs under physiological conditions — during organ development and regeneration, angiogenesis or wound healing — and in carcinoma progression, in which it drives tumour invasion and metastasis.

  • MET activity is deregulated in a vast number of human cancers owing to gene amplification, activating genetic mutations, transcriptional upregulation or the production of HGF-dependent autocrine circuits.

  • Several inhibitors targeting the HGF/MET system have been developed in recent years, including HGF and MET biological antagonists, anti-HGF and anti-MET antibodies, and small molecules. Some of them are now in Phase I and Phase II clinical trials.

  • In cultured cell lines, amplification of the MET gene correlates with drug sensitivity and MET inhibition leads to cell-cycle arrest or apoptosis. This indicates that MET amplification has been selected during neoplastic progression to sustain growth and survival of tumour cells and that cells with MET amplification are dependent on the continued activity of this oncogene for maintaining their transformed phenotype ('oncogene addiction'). This also suggests that human tumours featuring MET amplifications are likely to respond effectively to MET-targeted therapies.

  • The 'physiological' pro-invasive, anti-apoptotic and pro-angiogenic properties of MET can be exploited by tumour cells (already transformed by other means) to optimise their metastatic propensity ('oncogene expedience').

  • Targeted therapies against MET could be effective both as a front-line intervention to treat a limited subset of MET-addicted tumours and also as a secondary approach to limit the progression of a much wider spectrum of advanced cancers that use MET as an expedient for cancer dissemination.

Abstract

The MET tyrosine kinase stimulates cell scattering, invasion, protection from apoptosis and angiogenesis, thereby acting as a powerful expedient for cancer dissemination. MET can also be genetically selected for the long-term maintenance of the primary transformed phenotype, and some tumours appear to be dependent on (or 'addicted' to) sustained MET activity for their growth and survival. Because of its dual role as an adjuvant, pro-metastatic gene for some tumour types and as a necessary oncogene for others, MET is a versatile candidate for targeted therapeutic intervention. Here we discuss recent progress in the development of molecules that inhibit MET function and consider their application in a subset of human tumours that are potentially responsive to MET-targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic structure of HGF and MET.
Figure 2: MET-dependent signalling pathways.
Figure 3: Complex between the MET Sema domain and the HGF β-chain.
Figure 4: Structures of selected small-molecule MET inhibitors.

Similar content being viewed by others

References

  1. Trusolino, L. & Comoglio, P. M. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nature Rev. Cancer 2, 289–300 (2002).

    Article  CAS  Google Scholar 

  2. Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G. F. Met, metastasis, motility and more. Nature Rev. Mol. Cell. Biol. 4, 915–925 (2003).

    Article  CAS  Google Scholar 

  3. Xiao, G. H. et al. Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc. Natl Acad. Sci. USA 98, 247–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Zeng, Q. et al. Hepatocyte growth factor inhibits anoikis in head and neck squamous cell carcinoma cells by activation of ERK and Akt signaling independent of NF-κB. J. Biol. Chem. 277, 25203–25208 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A. & Birchmeier, C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376, 768–771 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Streit, A. et al. A role for HGF/SF in neural induction and its expression in Hensen's node during gastrulation. Development 121, 813–824 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Andermacher, E., Surani, M. A. & Gherardi, E. Co-expression of the HGF/SF and c-met genes during early mouse embryogenesis precedes reciprocal expression in adjacent tissues during organogenesis. Dev. Genet. 18, 254–266 (1996).

    Article  Google Scholar 

  8. Takayama, H., La Rochelle, W. J., Anver, M., Bockman, D. E. & Merlino, G. Scatter factor/hepatocyte growth factor as a regulator of skeletal muscle and neural crest development. Proc. Natl Acad. Sci. USA 93, 5866–5871 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bussolino, F. et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119, 629–641 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt, C. et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699–702 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y. & Matsuda, H. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J. Clin. Invest. 106, 1511–1519 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsumoto, K. & Nakamura, T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int. 59, 2023–2038 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Rabkin, R. et al. Hepatocyte growth factor receptor in acute tubular necrosis. J. Am. Soc. Nephrol. 12, 531–540 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Okada, H. & Kalluri, R. Cellular and molecular pathways that lead to progression and regression of renal fibrogenesis. Curr. Mol. Med. 5, 467–474 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Y. & Yang, J. Hepatocyte growth factor: new arsenal in the fights against renal fibrosis? Kidney Int. 70, 238–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Ueki, T. et al. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nature Med. 5, 226–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Watanabe, M. et al. Hepatocyte growth factor gene transfer to alveolar septa for effective suppression of lung fibrosis. Mol. Ther. 12, 58–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Boccaccio, C. & Comoglio, P. M. Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nature Rev. Cancer 6, 637–645 (2006).

    Article  CAS  Google Scholar 

  20. Comoglio, P. M. & Trusolino, L. Invasive growth: from development to metastasis. J. Clin. Invest. 109, 857–862 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Danilkovitch-Miagkova, A. & Zbar, B. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J. Clin. Invest. 109, 863–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cooper, C. S. et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311, 29–33 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Liang, T. J., Reid, A. E., Xavier, R., Cardiff, R. D. & Wang, T. C. Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J. Clin. Invest. 97, 2872–2877 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boccaccio, C. et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature 434, 396–400 (2005). First in vivo demonstration that lentiviral-mediated somatic transduction of oncogenic MET in hepatocytes of adult mice leads to the development of hepatocellular carcinomas.

    Article  CAS  PubMed  Google Scholar 

  25. Soman, N. R., Correa, P., Ruiz, B. A. & Wogan, G. N. The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc. Natl Acad. Sci. USA 88, 4892–4896 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Houldsworth, J., Cordon-Cardo, C., Ladanyi, M., Kelsen, D. P. & Chaganti, R. S. Gene amplification in gastric and esophageal adenocarcinomas. Cancer Res. 50, 6417–6422 (1990).

    CAS  PubMed  Google Scholar 

  27. Kuniyasu, H. et al. Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem. Biophys. Res. Commun. 189, 227–232 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Hara, T. et al. Amplification of c-myc, K-sam, and c-met in gastric cancers: detection by fluorescence in situ hybridization. Lab. Invest. 78, 1143–1153 (1998).

    CAS  PubMed  Google Scholar 

  29. Miller, C. T. et al. Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene 25, 409–418 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Bean, J. et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl Acad. Sci. USA 104, 20932–20937 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tong, C. Y. et al. Detection of oncogene amplifications in medulloblastomas by comparative genomic hybridization and array-based comparative genomic hybridization. J. Neurosurg. 100, 187–193 (2004).

    CAS  PubMed  Google Scholar 

  32. Wang, R., Ferrell, L. D., Faouzi, S., Maher, J. J. & Bishop, J. M. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J. Cell Biol. 153, 1023–1034 (2001). First in vivo demonstration that transgenic overexpression of wild-type MET in mouse hepatocytes leads to the development of hepatocellular carcinomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Di Renzo, M. F. et al. Overexpression and amplification of the MET/HGF receptor gene during the progression of colorectal cancer. Clin. Cancer Res. 1, 147–154 (1995).

    CAS  PubMed  Google Scholar 

  34. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Genet. 16, 68–73 (1997). First identification of naturally-occurring oncogenic mutations of MET in humans.

    Article  CAS  PubMed  Google Scholar 

  35. Park, W. S. et al. Somatic mutations in the kinase domain of the MET/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res. 59, 307–310 (1999).

    CAS  PubMed  Google Scholar 

  36. Lee, J. H. et al. A novel germ line juxtamembrane MET mutation in human gastric cancer. Oncogene 19, 4947–4953 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Di Renzo, M. F. et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 19, 1547–1555 (2000). First report of a direct involvement of MET in tumour metastasis in humans. Neoplastic cells harbouring activating mutations of the MET gene undergo clonal expansion during the metastatic spreading of head and neck squamous-cell carcinomas.

    Article  CAS  PubMed  Google Scholar 

  38. Graveel, C. et al. Activating Met mutations produce unique tumor profiles in mice with selective duplication of the mutant allele. Proc. Natl Acad. Sci. USA 101, 17198–17203 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Danilkovitch-Miagkova, A. & Zbar, B. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J. Clin. Invest. 109, 863–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boccaccio, C., Gaudino, G., Gambarotta, G., Galimi, F. & Comoglio, P. M. Hepatocyte growth factor (HGF) receptor expression is inducible and is part of the delayed-early response to HGF. J. Biol. Chem. 269, 12846–12851 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Aguirre Ghiso, J. A., Alonso, D. F., Farias, E. F., Gomez, D. E. & de Kier Joffe, E. B. Deregulation of the signaling pathways controlling urokinase production. Its relationship with the invasive phenotype. Eur. J. Biochem. 263, 295–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Parr, C., Watkins, G., Mansel, R. E. & Jiang, W. G. The hepatocyte growth factor regulatory factors in human breast cancer. Clin. Cancer Res. 10, 202–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Michieli, P. et al. Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene 18, 5221–5231 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Koochekpour, S. et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res. 57, 5391–5398 (1997).

    CAS  PubMed  Google Scholar 

  45. Tuck, A. B., Park, M., Sterns, E. E., Boag, A. & Elliott, B. E. Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am. J. Pathol. 148, 225–232 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ferracini, R. et al. Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas. Oncogene 12, 1697–1705 (1996).

    CAS  PubMed  Google Scholar 

  47. Ferracini, R. et al. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 10, 739–749 (1995).

    CAS  PubMed  Google Scholar 

  48. Rong, S., Segal, S., Anver, M., Resau, J. H. & Vande Woude, G. F. Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc. Natl Acad. Sci. USA 91, 4731–4735 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bellusci, S. et al. Creation of an hepatocyte growth factor/scatter factor autocrine loop in carcinoma cells induces invasive properties associated with increased tumorigenicity. Oncogene 9, 1091–1099 (1994).

    CAS  PubMed  Google Scholar 

  50. Jeffers, M., Rong, S., Anver, M. & Vande Woude, G. F. Autocrine hepatocyte growth factor/scatter factor signalling induces transformation and the invasive/metastatic phenotype in C127 cells. Oncogene 13, 853–861 (1996).

    CAS  PubMed  Google Scholar 

  51. Takayama, H. et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc. Natl Acad. Sci. USA 94, 701–706 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Otsuka, T. et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res. 58, 5157–5167 (1998).

    CAS  PubMed  Google Scholar 

  53. Sharp, R. et al. Synergism between INK4a/ARF inactivation and aberrant HGF/SF signaling in rhabdomyosarcomagenesis. Nature Med. 8, 1276–1280 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Kobayashi, T. et al. Hepatocyte growth factor specifically binds to sulfoglycolipids. J. Biol. Chem. 269, 9817–9821 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Lyon, M., Deakin, J. A., Mizuno, K., Nakamura, T. & Gallagher, J. T. Interaction of hepatocyte growth factor with heparan-sulfate. Elucidation of the major heparan sulfate structural determinants. J. Biol. Chem. 269, 11216–11223 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Naldini, L. et al. Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor. EMBO J. 11, 4825–4833 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mars, W. M., Zarnegar, R. & Michalopoulos, G. K. Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am. J. Pathol. 143, 949–958 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lokker, N. A. et al. Structure–function analysis of hepatocyte growth factor: identification of variants that lack mitogenic activity yet retain high affinity receptor binding. EMBO J. 11, 2503–2510 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lietha, D., Chirgadze, D. Y., Mulloy, B., Blundell, T. L. & Gherardi, E. Crystal structures of NK1-heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor. EMBO J. 20, 5543–5555 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matsumoto, K., Kataoka, H., Date, K. & Nakamura, T. Cooperative interaction between α- and β-chains of hepatocyte growth factor on c-Met receptor confers ligand-induced receptor tyrosine phosphorylation and multiple biological responses. J. Biol. Chem. 273, 22913–22920 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Stamos, J., Lazarus, R. A., Yao, X., Kirchhofer, D. & Wiesmann, C. Crystal structure of the HGF β-chain in complex with the Sema domain of the Met receptor. EMBO J. 23, 2325–2335 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kirchhofer, D. et al. Structural and functional basis of the serine protease-like HGF beta-chain in Met binding and signaling. J. Biol. Chem. 279, 39915–39924 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Trusolino L, Pugliese L, Comoglio PM . Interactions between scatter factors and their receptors: hints for therapeutic applications. FASEB J. 12, 1267–1280 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Chan, A. M. et al. Identification of a competitive HGF antagonist encoded by an alternative transcript. Science 254, 1382–1385 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Montesano, R. et al. Differential effects of hepatocyte growth factor isoforms on epithelial and endothelial tubulogenesis. Cell Growth Differ. 9, 355–365 (1998).

    CAS  PubMed  Google Scholar 

  66. Matsumoto, K. & Nakamura, T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics, Cancer Sci. 94, 321–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Matsumoto, K. & Nakamura, T. NK4 gene therapy targeting HGF-Met and angiogenesis. Front. Biosci. 13, 1943–1951 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Kuba, K. et al. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res. 60, 6737–6743 (2000).

    CAS  PubMed  Google Scholar 

  69. Mazzone, M. et al. An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice. J. Clin. Invest. 114, 1418–1432 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Michieli, P. et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6, 61–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Kong-Beltran, M., Stamos, J. & Wickramasinghe, D. The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell 6, 75–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Burgess, T. et al. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res. 66, 1721–1729 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, K. J. et al. Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clin. Cancer Res. 12, 1292–1298 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Jun, H. T. et al. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin. Cancer Res. 13, 6735–6742 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Registry of federally and privately supported clinical trials conducted in the United States [online]

  76. Martens, T. et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res. 12, 6144–6152 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Petrelli, A. et al. Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc. Natl Acad. Sci. USA 103, 5090–5095 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Morotti, A., Mila, S., Accornero, P., Tagliabue, E. & Ponzetto, C. K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 21, 4885–4893 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Sattler, M. et al. A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res. 63, 5462–5469 (2003).

    CAS  PubMed  Google Scholar 

  80. Christensen, J. G. et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res. 63, 7345–7355 (2003).

    CAS  PubMed  Google Scholar 

  81. Berthou, S. et al. The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants. Oncogene 23, 5387–5393 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Smolen, G. A et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc. Natl Acad. Sci. USA 103, 2316–2321 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zou, H. Y. et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67, 4408–4417 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Eder, J. P. et al. Phase I experience with c-MET inhibitor XL880 administered orally to patients (pts) with solid tumors. J. Clin. Oncol. 25, 3526 (2007).

    Article  Google Scholar 

  85. Ross, R. W. et al. A phase 2 study of the dual MET/VEGFR2 inhibitor XL880 in patients with papillary renal carcinoma. Abstract B249. AACR-NCI-EORTC: Molecular Targets and Cancer Therapeutics, San Francisco, California, USA (2007).

    Google Scholar 

  86. Jeay, S. et al. ARQ197, a highly selective small molecule inhibitor of c-Met, with selective antitumor properties in a broad spectrum of human cancer cells. Abstract 2369. AACR Annual Meeting, Los Angeles, California, USA (2007).

    Google Scholar 

  87. Munshi, N. et al. ARQ197, a highly selective inhibitor of c-Met, inhibits invasive and metastatic growth of cancer cells. Abstract 2367. AACR Annual Meeting, Los Angeles, California, USA (2007).

    Google Scholar 

  88. Youzhi, L. I. et al. Anti-metastatic activity of ARQ197, a highly selective oral small molecule inhibitor of c-Met, in experimental metastatic models of colon cancer. Abstract 2191. AACR Annual Meeting, Los Angeles, California, USA (2007).

    Google Scholar 

  89. Youzhi, L. I. et al. Broad spectrum anti-cancer activity of ARQ197, a highly selective oral c-Met inhibitor, in multiple xenograft models. Abstract 2216. AACR Annual Meeting, Los Angeles, California, USA (2007).

    Google Scholar 

  90. Garcia, A. et al. Phase 1 study of ARQ 197, a selective inhibitor of the c-Met RTK in patients with metastatic solid tumors reaches recommended phase 2 dose. Abstract 3525. ASCO Annual Meeting, Chicago, Illinois, USA (2007).

    Google Scholar 

  91. Conquering cancer with novel therapeutics. ArQule website [online]

  92. SuperGen reports dosing of first patient in Phase I trial of novel tyrosine kinase inhibitor. SuperGen website [online]

  93. Froning, K. J. et al. SGX523: a potent and highly selective small molecule inhibitor of the MET receptor tyrosine kinase. Abstract 2366. AACR Annual Meeting, Los Angeles, California, USA (2007).

    Google Scholar 

  94. Perera, T. Selective inhibition of Met kinase: JNJ38877605. Spring CTEP Early Drug Development Meeting, Rockville, Maryland, USA (2007).

    Google Scholar 

  95. Bertotti, A. & Comoglio, P. M. Tyrosine kinase signal specificity: lessons from the HGF receptor. Trends Biochem. Sci. 28, 527–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Matzke, A., Herrlich, P., Ponta, H. & Orian-Rousseau, V. A five-amino-acid peptide blocks Met- and Ron-dependent cell migration. Cancer Res. 65, 6105–6110 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Atabey, N. et al. Potent blockade of hepatocyte growth factor-stimulated cell motility, matrix invasion and branching morphogenesis by antagonists of Grb2 Src homology 2 domain interactions. J. Biol. Chem. 276, 14308–14314 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Boccaccio, C. et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 391, 285–288 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nature Rev. Cancer 7, 169–181 (2007).

    Article  CAS  Google Scholar 

  100. Sharma, S. V. & Settleman, J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 21, 3214–3231 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Lutterbach, B. et al. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res. 67, 2081–2088 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Ivan, M., Bond, J. A., Prat, M., Comoglio, P. M. & Winford-Thomas, D. Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene 14, 2417–2423 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 3, 347–361 (2003).

    Article  PubMed  Google Scholar 

  104. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kmiecik, T. E., Keller, J. R., Rosen, E. & Vande Woude, G. F. Hepatocyte growth factor is a synergistic factor for the growth of hematopoietic progenitor cells. Blood 80, 2454–2457 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. Steeg, P. S. Angiogenesis inhibitors: motivators of metastasis? Nature Med. 9, 822–823 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Bottaro, D. P. & Liotta, L. A. Cancer: Out of air is not out of action. Nature 423, 593–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Amit, I., Wides, R. & Yarden, Y. Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy. Mol. Syst. Biol. 3, 151 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Abounader, R. et al. Regulation of c-Met-dependent gene expression by PTEN. Oncogene 23, 9173–9182 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Stommel, J. M. et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318, 287–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007). First description of MET gene amplification as a mechanism of acquired resistance to epidermal growth factor receptor inhibitors.

    Article  CAS  PubMed  Google Scholar 

  112. Kaposi-Novak, P. et al. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J. Clin. Invest. 116, 1582–1595 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Guo, A. et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl Acad. Sci. USA 105, 692–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Green, D. R. Even, G. I. A matter of life and death. Cancer Cell 1, 19–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Harrington, E. A., Fanidi, A. & Evan G. I. Oncogenes and cell death. Curr. Opin. Genet. Dev. 4, 120–129 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Tikhomirov, O. & Carpenter, G. Ligand-induced, p38-dependent apoptosis in cells expressing high levels of epidermal growth factor receptor and ErbB-2. J. Biol. Chem. 279, 12988–12996 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Shima, N. et al. Tumor cytotoxic factor/hepatocyte growth factor from human fibroblasts: cloning of its cDNA, purification and characterization of recombinant protein. Biochem. Biophys. Res. Commun. 180, 1151–1158 (1991).

    Article  CAS  PubMed  Google Scholar 

  119. Matteucci, E., Castoldi, R. & Desiderio, M. A. Hepatocyte growth factor induces pro-apoptotic genes in HepG2 hepatoma but not in B16-F1 melanoma cells. J. Cell. Physiol. 186, 387–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Rasola, A. et al. Hepatocyte growth factor sensitizes human ovarian carcinoma cell lines to paclitaxel and cisplatin. Cancer Res. 64, 1744–1750 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Coltella, N. et al. p38 MAPK turns hepatocyte growth factor to a death signal that commits ovarian cancer cells to chemotherapy-induced apoptosis. Int. J. Cancer 118, 2981–2990 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Michieli, P. et al. An HGF-MSP chimera disassociates the trophic properties of scatter factors from their pro-invasive activity. Nature Biotechnol. 20, 488–495 (2002).

    Article  CAS  Google Scholar 

  123. Orian-Rousseau, V., Chen, L., Sleeman, J. P., Herrlich, P. & Ponta, H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 16, 3074–3086 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Orian-Rousseau, V. et al. Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-actin. Mol. Biol. Cell 18, 76–83 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Trusolino, L., Bertotti, A. & Comoglio, P. M. A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell 107, 643–654 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Bertotti, A., Comoglio, P. M. & Trusolino, L. β4 integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis. Cancer Res. 65, 10674–10679 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Bertotti, A., Comoglio, P. M. & Trusolino, L. β4 integrin activates a Shp2-Src signaling pathway that sustains HGF-induced anchorage-independent growth. J Cell Biol. 175, 993–1003 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Giordano, S. et al. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nature Cell Biol. 4, 720–724 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Conrotto, P., Corso, S., Gamberini, S., Comoglio, P. M. & Giordano, S. Interplay between scatter factor receptors and B plexins controls invasive growth. Oncogene 23, 5131–5137 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Conrotto, P. et al. Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood 105, 4321–4329 (2005). References 123–130 provide information on how MET-dependent signals can be amplified and/or diversified by MET association with surface transmembrane partners, including CD44, β4 integrin and plexin B.

    Article  CAS  PubMed  Google Scholar 

  131. Di Renzo, M. F., et al. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene 7, 2549–2553 (1992).

    CAS  PubMed  Google Scholar 

  132. Ruco, L., et al. D. Expression of Met protein in thyroid tumours. J. Pathol. 180, 266–270 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Chen, B. K., et al. Overexpression of c-Met protein in human thyroid tumors correlated with lymph node metastasis and clinicopathologic state. Pathol. Res. Pract. 195, 427–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Di Renzo, M. F., et al. Overexpression of the Met/HGF receptor in ovarian cancer. Int. J. Cancer 58, 658–662 (1994).

    Article  CAS  PubMed  Google Scholar 

  135. Di Renzo, M. F., Poulsom, R., Olivero, M., Comoglio, P. M. & Lemoine, N. R. Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res. 55, 1129–1138 (1995).

    CAS  PubMed  Google Scholar 

  136. Humphrey, P. A., et al. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol. 147, 386–396 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Natali, P. G., et al. Overexpression of the met/HGF receptor in renal cell carcinomas. Int. J. Cancer 69, 212–217 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Ueki, T., Fujimoto, J., Suzuki, T., Yamamoto, H & Okamoto, E. Expression of hepatocyte growth factor and its receptor, the c-met proto-oncogene, in hepatocellular carcinoma. Hepatology 25, 619–623 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Tavian, D., et al. U-PA and c-MET mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocellular carcinoma. Int. J. Cancer 87, 644–649 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Camp, R. L., Rimm, E. B. & Rimm, D. L. Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma. Cancer 86, 2259–2265 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Wielenga, V. J., et al. Expression of c-Met and heparan-sulfate proteoglycan forms of CD44 in colorectal cancer. Am. J. Pathol. 157, 1563–1573 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Morello, S., et al. MET receptor is overexpressed but not mutated in oral squamous cell carcinomas. J. Cell. Physiol. 189, 285–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Big biotechs take antibody approach to blocking Met receptor. Chemical & Engineering news [online]

Download references

Acknowledgements

We thank A. Bertotti and C. Boccaccio for discussion and critical reading of the manuscript; J. Hickman, M. Burbridge, T. Perera and S. Buchanan for providing informative material; and A. Cignetto for excellent secretarial assistance. Work from the authors' laboratory is supported by Associazione Italiana per la Ricerca sul Cancro, European Union Framework Programmes, Ministero dell'Università e della Ricerca, Compagnia di San Paolo and Fondazione CRT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paolo M. Comoglio or Livio Trusolino.

Ethics declarations

Competing interests

P.M.C. received research support and/or consultation fees from AstraZeneca, Boehringer-Ingelheim, Johnson & Johnson, Merck and Servier.

Related links

Related links

FURTHER INFORMATION

Institute for Cancer Research and Treatment (IRCC)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comoglio, P., Giordano, S. & Trusolino, L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7, 504–516 (2008). https://doi.org/10.1038/nrd2530

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2530

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing