Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antibody-targeted radiation cancer therapy

Key Points

  • Increased understanding of the molecular differences between cancer cells and normal cells has led to the development of therapies that target cancer cells, including antibodies directed at tumour-associated antigens. The targeted nature of such therapies offers the promise of greater efficacy and less toxicity, and potentially greater treatment success.

  • Although such antibody therapies have shown significant success in cancer treatment, strategies to increase their efficacy are urgently needed. One such strategy is to link antibodies against tumour-associated antigens to highly toxic radioisotopes, which brings to bear the killing power of these isotopes on tumour cells.

  • In the past two years, the US FDA has approved the use of two radionuclide-based anti-CD20 monoclonal antibody (mAb) regimens for the treatment of NHL — 90Y ibritumomab tiuxetan (Zevalin; Biogen Idec), and tositumomab and 131I tositumomab (Bexxar; Corixa/GlaxoSmithKline) — making further targeted radiation therapy products probable.

  • This review describes radiolabelled-mAb-directed approaches, with an emphasis on the components (protein, radionuclide and chemistry), and discusses clinical trials of radiolabelled mAbs in haematological cancers.

Abstract

Several monoclonal antibodies are now approved for cancer therapy, such as rituximab, an anti-CD20 monoclonal antibody for the treatment of B-cell non-Hodgkin's lymphoma. Such 'naked' antibodies can recruit the body's immune effector mechanisms to kill cells expressing the target of the antibody. In recent years, the linking of radionuclides to antibodies to either augment inherent activity or to exploit the specific targeting properties of monoclonal antibodies has been a major area of development. Two radionuclide-bearing monoclonal antibody therapies have recently been approved by the US FDA, and several more are in clinical trials. Here, we discuss the development and use of radiolabelled monoclonal antibody therapies, with a focus on radiolabelled monoclonal antibodies that have been evaluated in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A monoclonal antibody linked to a radionuclide.
Figure 2: A representation of the periodic table, highlighting those elements that are of interest for nuclear medicine and radiation oncology applications.
Figure 3: Comparison of path lengths and emission tracks of α- and β-particle emissions used in antibody-targeted radiation therapy.
Figure 4: A general view of the conjugation of a bifunctional chelating agent to a monoclonal antibody.
Figure 5: Selected examples of bifunctional chelating agents that have been or are currently in antibody-targeted radiation therapy clinical trials.

Similar content being viewed by others

References

  1. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    CAS  PubMed  Google Scholar 

  2. Ehrlich, P., Herta, C. A. & Shigas, K. Ueber einige verwendungen der naphtochinosuflsaure. Z. Physiol. Chem. 61, 379–392 (1904).

    Google Scholar 

  3. Schlom, J. in Molecular Foundations of Oncology (ed. Broder, S.) 95–134 (Williams and Wilkins, Baltimore, 1990).

    Google Scholar 

  4. Milenic, D. E. Radioimmunotherapy: designer molecules to potentiate effective therapy. Semin. Radiat. Oncol. 10, 139–155 (2000).

    CAS  PubMed  Google Scholar 

  5. Srivastava, S. & Dadachova, E. Recent advances in radionuclide therapy. Semin. Nucl. Med. 31, 330–341 (2001).

    CAS  PubMed  Google Scholar 

  6. Humm, J. L. Dosimetric aspects of radiolabeled antibodies for tumor therapy. J. Nucl. Med. 27, 1490–1497 (1986).

    CAS  PubMed  Google Scholar 

  7. O'Donoghue, J. A., Bardies, M. & Wheldon, T. E. Relationships between tumor size and curability for uniformly targeted therapy with β-emitting radionuclides. J. Nucl. Med. 36, 1902–1909 (1995). Defines the limitations and boundary conditions of appropriate particle emission energy matched to scale of tumour lesion for optimal energy deposition and therapy.

    CAS  PubMed  Google Scholar 

  8. Mattes, M. J. et al. The advantage of residualizing radiolabels for targeting B-cell lymphomas with a radiolabeled anti-CD-22 monoclonal antibody. Int. J. Cancer 71, 429–435 (1997).

    CAS  PubMed  Google Scholar 

  9. Zhang, Y. et al. Comparative cellular catabolism and retention of astatine-, bismuth-, and lead-radiolabeled internalizing monoclonal antibody. J. Nucl. Med. 42, 1538–1544 (2001).

    Google Scholar 

  10. Knox, S. J. & Meredith, R. F. Clinical radioimmunotherapy. Semin. Radiat. Oncol. 10, 73–93 (2000). A comprehensive review of targeted radiation therapy that presents the reader with the milestones and limitations that have been encountered as clinical trials have proceeded forward.

    CAS  PubMed  Google Scholar 

  11. Mulligan, T. et al. Phase I study of intravenous Lu-labeled CC49 murine monoclonal antibody in patients with advanced adenocarcinoma. Clin. Cancer Res. 1, 1447–1454 (1995).

    CAS  PubMed  Google Scholar 

  12. Alvarez, R. D. et al. Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: a Phase I/II study. Gynecol. Oncol. 65, 94–101 (1997).

    CAS  PubMed  Google Scholar 

  13. O'Donnell, R. T. et al. A clinical trial of radioimmunotherapy with 67Cu-2IT-BAT-Lym-1 for non-Hodgkin's lymphoma. J. Nucl. Med. 40, 2014–2020 (1999).

    CAS  PubMed  Google Scholar 

  14. McDevitt, M. R. et al. Radioimmunotherapy with α-emitting nuclides. Eur. J. Nucl. Med. 25, 1341–1351 (1998).

    CAS  PubMed  Google Scholar 

  15. Hassfjell, S. & Brechbiel, M. W. The development of the α-particle emitting radionuclides 212Bi and 213Bi for therapeutic applications. Chem. Rev. 101, 2019–2036 (2001). This review article provides an overview of the radiochemistry, chelation chemistry and preclinical studies that have led to the clinical use of 213Bi.

    CAS  PubMed  Google Scholar 

  16. McDevitt, M. R. et al. Tumor therapy with targeted atomic nanogenerators. Science 294, 1537–1540 (2001).

    CAS  PubMed  Google Scholar 

  17. Geerlings, M. W. Radionuclides for radioimmunotherapy: criteria for selection. Int. J. Biol. Markers 8, 180–186 (1993).

    CAS  PubMed  Google Scholar 

  18. Vaidyanathan, G. & Zalutsky, M. R. Targeted therapy using α-emitters. Phys. Med. Biol. 41, 1915–1931 (1996).

    CAS  PubMed  Google Scholar 

  19. Kurtzman, S. H. et al. 212Bismuth linked to an antipancreatic carcinoma antibody: model for α-particle-emitter radioimmunotherapy. J. Natl Cancer Inst. 80, 449–452 (1988).

    CAS  PubMed  Google Scholar 

  20. Bethge, W. A. et al. Selective T-cell ablation with bismuth-213 labeled anti-TCRαβ as nonmyeloablative conditioning for allogeneic canine marrow transplantation. Blood 101, 5068–5075 (2003).

    CAS  PubMed  Google Scholar 

  21. Thorpe, P. E. & Derbyshire, E. J. Targeting of vasculature of solid tumors. J. Control. Release 48, 277–288 (1997).

    CAS  Google Scholar 

  22. Hartmann, F. et al. Radioimmunotherapy of nude mice bearing a human IL2Rα-expressing lymphoma utilizing the α-emitting radionuclide-conjugated monoclonal antibody 212Bi-anti-Tac. Cancer Res. 54, 4362–4370 (1994).

    CAS  PubMed  Google Scholar 

  23. Kassis, A. I., Harapanhalli, R. S. & Adelstein, S. J. Comparison of strand breaks in plasmid DNA after positional changes of auger electron-emitting iodine-125. Rad. Res. 151, 167–176 (1999).

    CAS  Google Scholar 

  24. Makrigiorgos, G., Adelstein, S. J. & Kassis, A. I. Auger electron emitters: insights gained from in vitro experiments. Rad. Environ. Biophys. 29, 75–91 (1990).

    CAS  Google Scholar 

  25. Michel, R. B., Brechbiel, M. W. & Mattes, M. J. A comparison of radionuclides conjugated to antibodies for single-cell kill. J. Nucl. Med. 44, 632–640 (2003).

    CAS  PubMed  Google Scholar 

  26. Packard, A. B., Kronauge, J. F. & Brechbiel, M. W. in A Metalloradiopharmaceuticals II, Diagnosis and Therapy (eds Clarke, M. J. & Sadler, P. J.) 45–116 (Springer, New York, 1999).

    Google Scholar 

  27. Ruegg, C. L. et al. Improved in vivo stability and tumor targeting of bismuth-labeled antibody. Cancer Res. 50, 4221–4226 (1990).

    CAS  PubMed  Google Scholar 

  28. Brechbiel, M. W. & Gansow, O. A. Synthesis of C-functionalized trans-cyclohexyldiethylene-triamine-pentaacetic acids for labelling of monoclonal antibodies with the bismuth-212 α-particle emitter. J. Chem. Soc. Perkin Trans. I 1173–1178 (1992).

  29. Milenic, D. E. et al. In vivo evaluation of bismuth-labeled monoclonal antibody comparing DTPA-derived bifunctional chelates. Cancer Biotherap. Radiopharm. 16, 133–146 (2001).

    CAS  Google Scholar 

  30. Jurcic, J. G. et al. Targeted α-particle immunotherapy for myeloid leukemia. Blood 100, 1233–1239 (2002). Describes the results of the first clinical trial using a monoclonal antibody targeted α-emitter, 213Bi, for the treatment of leukaemia at the Memorial Sloan-Kettering Cancer Center.

    CAS  PubMed  Google Scholar 

  31. Alvarez, R. D. et al. Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: a Phase I/II study. Gynecol. Oncol. 65, 94–101 (1997).

    CAS  PubMed  Google Scholar 

  32. Roselli, M. et al. In vivo comparison of CHX-DTPA ligand isomers in athymic mice bearing carcinoma xenografts. Cancer Biotherap. Radiopharm. 14, 209–220 (1999).

    CAS  Google Scholar 

  33. Milenic, D. E. et al. In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. Nucl. Med. Biol. 29, 431–442 (2002).

    CAS  PubMed  Google Scholar 

  34. Novak-Hofer, I. & Schubiger, P. A. Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur. J. Nucl. Med. 29, 821–830 (2002).

    CAS  Google Scholar 

  35. DeNardo, G. L. et al. Maximum tolerated dose of 67Cu-2IT-BAT-LYM-1 for fractionated radioimmunotherapy of non-Hodgkin's lymphoma: a pilot study. Anticancer Res. 18, 2779–2788 (1998).

    CAS  PubMed  Google Scholar 

  36. Bass, L. A., Wang, M., Welch, M. J. & Anderson, C. J. In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjugate Chem. 11, 527–532 (2000).

    CAS  Google Scholar 

  37. Rogers, B. E. et al. Comparison of four bifunctional chelates for radiolabeling monoclonal antibodies with copper radioisotopes: biodistribution and metabolism. Bioconjugate Chem. 7, 511–522 (1996).

    CAS  Google Scholar 

  38. Wu, A. M. et al. High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc. Natl Acad. Sci. USA 97, 8495–8500 (2000).

    CAS  PubMed  Google Scholar 

  39. Zalutsky, M. et al. Astatine-211 labeled human/mouse chimeric anti-tenascin monoclonal antibody via surgically created resection cavities for patients with recurrent glioma: Phase I study. Neurooncol. 4, S103 (2002).

    Google Scholar 

  40. Milenic, D. E. Monoclonal antibody-based therapy strategies: providing options for the cancer patient. Curr. Pharm. Design. 8, 1749–1764 (2002).

    CAS  Google Scholar 

  41. Cardarelli, P. M. et al. Binding of CD20 by anti-B1 antibody of F(ab')2 is sufficient for induction of apoptosis in B-cell lines. Cancer Immunol. Immunother. 51, 15–24 (2002).

    CAS  PubMed  Google Scholar 

  42. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nature Med. 6, 443–446 (2000).

    CAS  PubMed  Google Scholar 

  43. Johnson, P. & Glennie, M. The mechanisms of action of rituximab in the elimination of tumor cells. Semin. Oncol. 30, 3–8 (2003).

    CAS  PubMed  Google Scholar 

  44. Trauth, B. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301–305 (1989).

    CAS  PubMed  Google Scholar 

  45. Baselga, J. & Mendelsohn, J. Receptor blockade with monoclonal antibodies as anti-cancer therapy. Pharmacol. Ther. 64, 127–154 (1984).

    Google Scholar 

  46. Cragg, M. S., French, R. R. & Glennie, M. J. Signaling antibodies in cancer therapy. Curr. Opin. Immunol. 11, 541–547 (1999).

    CAS  PubMed  Google Scholar 

  47. Deans, J. P. et al. Association of tyrosine and serine kinases with the B cell surface antigen CD20. Induction via CD20 of tyrosine phosphorylation and activation of phospholipase C-γ 1 and PLC phospholipase C-γ 2. J. Immunol. 151, 4494–4504 (1993).

    CAS  PubMed  Google Scholar 

  48. Maloney, D. G. et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 90, 2188–2195 (1997).

    CAS  PubMed  Google Scholar 

  49. Sarup, J. C. et al. Characterization of an anti-p185HER2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth. Growth Regulat. 1, 72–82 (1991).

    CAS  Google Scholar 

  50. Goldenberg, D. M. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin. Ther. 21, 309–318 (1999).

    CAS  PubMed  Google Scholar 

  51. Uchiyama, T., Nelson, D. L., Fleisher, T. A. & Waldmann, T. A. A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. II. Expression of Tac antigen on activated cytotoxic killer T cells, suppressor cells, and on one of two types of helper T cells. J. Immunol. 126, 1398–1340 (1981).

    CAS  PubMed  Google Scholar 

  52. Pietras, R. J. et al. Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. Cancer Res. 59, 1347–1355 (1999).

    CAS  PubMed  Google Scholar 

  53. Hortobagyi, G. N. & Perez, E. A. Integration of trastuzumab into adjuvant systemic therapy of breast cancer: ongoing and planned clinical trials. Semin. Oncol. 28, 41–46 (2001).

    CAS  PubMed  Google Scholar 

  54. Meredith, R. F., LoBuglio, A. F. & Spencer, E. B. Recent progress in radioimmunotherapy for cancer. Oncology 11, 979–984 (1997).

    CAS  PubMed  Google Scholar 

  55. Yu, J., Yin, D. & Wang, Y. Advances in monoclonal antibodies for radioimmunotherapy. Hejishu 25, 393–400 (2002).

    CAS  Google Scholar 

  56. Hernandez, M. C. & Knox, S. J. Radiobiology of radioimmunotherapy with 90Y ibritumomab tiuxetan (Zevalin). Semin. Oncol. 30, 6–10 (2003). Discusses the radiobiological effects of low-dose radiation, which ranges from induction of apoptosis to cell-cycle redistribution.

    CAS  PubMed  Google Scholar 

  57. Hainsworth, J. D. Monoclonal antibody therapy in lymphoid malignancies. The Oncologist 5, 376–384 (2000).

    CAS  PubMed  Google Scholar 

  58. Mulford, D. A. & Jurcic, J. C. Antibody-based treatment of acute myeloid leukemia. Expert Opin. Biol. Ther. 4, 95–105 (2004).

    CAS  PubMed  Google Scholar 

  59. Waldmann, T. A. Immunotherapy: past, present and future. Nature Med. 9, 269–277 (2003).

    CAS  PubMed  Google Scholar 

  60. Pagel, J. M., Matthews, D. C., Applebaum, F. R., Berstein, I. D. & Press, O. W. The use of radioimmunoconjugates in stem cell transplantation. Bone Marrow Transplant. 29, 807–816 (2002). Provides a recent overview of the application of the targeted radiation in the context of bone-marrow transplantation.

    CAS  PubMed  Google Scholar 

  61. Knox, S. J. et al. Yttrium-90-labeled anti-CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin. Cancer Res. 2, 457–470 (1996).

    CAS  PubMed  Google Scholar 

  62. Witzig, T. E. et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J. Clin. Oncol. 20, 2453–2463 (2002).

    CAS  PubMed  Google Scholar 

  63. Vose, J. M. et al. Multicenter phase II study of iodine-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin's lymphoma. J. Clin. Oncol. 18, 1316–1323 (2000).

    CAS  PubMed  Google Scholar 

  64. Kaminski, M. S. et al. Pivotal study of iodine I-131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin's lymphomas. J. Clin. Oncol. 19, 3918–3928 (2001).

    CAS  PubMed  Google Scholar 

  65. Davis, T. et al. Long-term results of a randomized trial comparing tositumomab and iodine-131 Tositumomab (BEXXAR) with tositumomab alone in patients with relapsed or refractory low grade (LG) or transformed low grade (T-LG) non-Hodgkin's lymphoma (NHL). Blood 102, A405–A406 (2003).

    Google Scholar 

  66. Bennett, J. M. et al. Assessment of treatment-related myelodysplastic syndromes (tMDS) and acute myeloid leukemia (tAML) in patients with low-grade non-Hodgkin's lymphoma (LG-NHL) treated with tositumomab and iodine-131 tositumomab (the BEXXAR therapeutic regimen). Blood 102, A30 (2003).

    Google Scholar 

  67. Press, O. W. et al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N. Engl. J. Med. 329, 1219–1224 (1993).

    CAS  PubMed  Google Scholar 

  68. Press, O. W. et al. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet 346, 336–340 (1995).

    CAS  PubMed  Google Scholar 

  69. Gopal, A. K. et al. High-dose radioimmunotherapy versus conventional high-dose therapy and autologous hematopoietic stem cell transplantation for relapsed follicular non-Hodgkin lymphoma: a multivariable cohort analysis. Blood 102, 2351–2357 (2003).

    CAS  PubMed  Google Scholar 

  70. Press, O. W. et al. A phase I/II trial of iodine-131-tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood 96, 2934–2942 (2000).

    CAS  PubMed  Google Scholar 

  71. Press, O. W. et al. A phase 2 trial of CHOP chemotherapy followed by tositumomab/iodine I-131 tositumomab for previously untreated follicular non-Hodgkin lymphoma: Southwest Oncology Group Protocol S9911. Blood 102, 1606–1612 (2003).

    CAS  PubMed  Google Scholar 

  72. Matthews, D. C. et al. Phase I study of 131I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 94, 1237–1247 (1999).

    CAS  PubMed  Google Scholar 

  73. DeNardo, G. L. et al. Treatment of B-cell malignancies with I-131 Lym-1 monoclonal antibodies. Int. J. Cancer 3, 96–101 (1988).

    CAS  Google Scholar 

  74. DeNardo, G. L. et al. Maximum tolerated dose, toxicity and efficacy of 131I-LYM-1 antibody for fractionated radioimmunotherapy of non-Hodgkins lymphoma. J. Clin. Oncol. 16, 3246–3256 (1998).

    CAS  PubMed  Google Scholar 

  75. Durbin, P. W. Metabolic characteristics within a chemical family. Health Phys. 2, 225–238 (1960).

    CAS  PubMed  Google Scholar 

  76. DeNardo, G. L. et al. 67Cu-versus 131I-labeled Lym-1 antibody: comparative pharmacokinetics and dosimetry in patients with non-Hodgkin's lymphoma. Clin. Cancer Res. 5, 533–541 (1999).

    CAS  PubMed  Google Scholar 

  77. DeNardo, S. J. et al. Ytrrium-90/indium-111-DOTA-peptide-chimeric L6: pharmacokinetics, dosimetry and initial results in patients with incurable breast cancer. Anticancer Res. 17, 1735–1744 (1997).

    CAS  PubMed  Google Scholar 

  78. Li, M. & Meares, C. F. Synthesis, metal chelate stability studies, and enzyme digestion of a peptide-linked DOTA derivative and its corresponding radiolabeled immunoconjugates. Bioconjugate Chem. 4, 275–283 (1993).

    CAS  Google Scholar 

  79. DeNardo, S. J. et al. Enhanced therapeutic index of radioimmunotherapy (RIT) in prostate cancer patients: comparison of radiation dosimetry for 1,4,7,10-tetraazacyclododecane-N, N′,N′,N″-tetraacetic acid (DOTA)-peptide versus 2IT-DOTA monoclonal antibody linkage for RIT. Clin. Cancer Res. 9, S3938–S3944 (2003).

    Google Scholar 

  80. Waldmann, T. A. et al. Radioimmunotherapy of interleukin-2Rα-expressing adult T-cell leukemia with yttrium-90-labeled anti-Tac. Blood 86, 4063–4075 (1995).

    CAS  PubMed  Google Scholar 

  81. Jurcic, J. G. et al. Radiolabeled anti-CD33 monoclonal antibody for myeloid leukemias. Clin. Cancer Res. 55, S5908–S5910 (1995).

    Google Scholar 

  82. Jurcic, J. G. et al. Potential for myeloablation with yttrium-90-HuM195 (anti-CD33) in myeloid leukemia. Proc. Am. Soc. Clin. Oncol. 19, A7 (2000).

    Google Scholar 

  83. Paganelli, G. et al. Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin. Eur. J. Nucl. Med. 26, 348–357 (1999).

    CAS  PubMed  Google Scholar 

  84. Breitz, H. B. et al. Clinical optimization of pretargeted radioimmunotherapy with antibody-streptavidin conjugate and 90Y-DOTA-biotin. J. Nucl. Med. 41, 131–140 (2000).

    CAS  PubMed  Google Scholar 

  85. Knox, S. J. et al. Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin. Cancer Res. 6, 406–414 (2000).

    CAS  PubMed  Google Scholar 

  86. Weiden, P. L. et al. Pretargeted radioimmunotherapy (PRIT) for treatment of non-Hodgkin's lymphoma (NHL): initial phase I/II study results. Cancer Biother. Radiopharm. 15, 15–29 (2000).

    CAS  PubMed  Google Scholar 

  87. Forero, A. et al. Phase I trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin's lymphoma. Blood (in the press).

  88. Chatal, J. -F. et al. Bifunctional antibodies for radioimmunotherapy. Hybridoma 14, 125–128 (1995).

    CAS  PubMed  Google Scholar 

  89. Chmura, A. J., Orton, M. S. & Meares, C. F. Antibodies with infinite affinity. Proc. Natl Acad. Sci. USA 15, 8480–8484 (2001). Describes an innovative approach to the delivery of chelated radiometals via a bispecific monoclonal antibody that binds and then covalently binds to the complex while binding to the cell surface.

    Google Scholar 

  90. Meredith, R. F. et al. Intraperitoneal radioimmunochemotherapy of ovarian cancer: a phase I study. Cancer Biother. Radiopharm. 16, 305–315 (2001).

    CAS  PubMed  Google Scholar 

  91. Cardillo, T. M., Blumenthal, R., Ying, Z. & Gold, D. V. Combined gemcitabine and radioimmunotherapy for the treatment of pancreatic cancer. Int. J. Cancer 97, 386–392 (2002).

    CAS  PubMed  Google Scholar 

  92. Harari, P. M. & Huang, S. -H. Head and neck cancer as a clinical model for molecular targeting of therapy: combining EGFR blockade with radiation. Int. J. Radiat. Oncol. Biol. Phys. 49, 427–433 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin W. Brechbiel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

acute lymphocytic leukaemia

breast cancer

acute myeloid leukaemia

non-Hodgkin's lymphoma

LocusLink

CD20

CD25

CD33

HER2

IL-2

Glossary

SCINTIGRAPHY

Imaging of γ-emissions.

SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY IMAGING

An imaging technique using corrected photon emissions.

CHELATES

A ligand–metal complex.

COORDINATION NUMBER

The number of metal acceptor sites occupied by ligand donors.

METAL-BINDING CHARACTER

Acids (metals) and bases (ligands) can be categorized on the basis of polarizability: 'hard' (less polarizable) metals tend to form stronger complexes with 'hard' ligands than with 'soft' ligands; the converse is also applicable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milenic, D., Brady, E. & Brechbiel, M. Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov 3, 488–499 (2004). https://doi.org/10.1038/nrd1413

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1413

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing