Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

HIF-1 as a target for drug development

Key Points

  • The adaptation of mammalian cells to low oxygen conditions is mediated in large part by the transcriptional induction of gene expression. Hypoxia-inducible factor (HIF) is crucial in the transcriptional response of cells to hypoxia.

  • The HIF transcription factor is composed of an oxygen-labile α-subunit and a constitutively expressed β-subunit. HIF belongs to a family of heleix–loop–helix PER/SIM/ARNT (HLH-PAS) transcription factors.

  • HIF-1α stability and activity are regulated by post-translational modifications, chaperone function and alternative splicing. These pathways have generated new targets for high-throughput screening strategies.

  • In transformed cells, HIF is regulated by oncogenic and tumour-suppressor gene mutations that cause it to become stabilized under aerobic conditions.

  • HIF-1 is involved in the inflammatory response. Inhibition of HIF-1 in myeloid cells can ameliorate and even prevent inflammation, indicating a new role for HIF modulators.

  • Development of HIF-inducing compounds provides a new approach to the regulation of erythropoietin and erythropoiesis in cancer patients, of angiogenesis in cardiovascular disease and of ischaemic injury in renal patients. Small molecules that affect prolyl hydroxylation or ubiquitylation provide a prime target for such regulation.

Abstract

Sensing and responding to fluxes in oxygen tension is perhaps the single most important variable in physiology, and animal tissues have developed a number of essential mechanisms to cope with the stress of low physiological oxygen levels, or hypoxia. Among these coping mechanisms is the response mediated by the hypoxia-inducible transcription factor, or HIF-1. HIF-1 is an essential component in changing the transcriptional repertoire of tissues as oxygen levels drop, and could prove to be a very important target for drug development, as treatments evolve for diseases, such as cancer, heart disease and stroke, in which hypoxia is a central aspect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of HIF-1α regulation under aerobic and hypoxic conditions.
Figure 2: Signal transduction pathways implicated in HIF-1α regulation under aerobic and hypoxic conditions.
Figure 3: Examples of enzymatic steps that have been or could be targeted to inhibit HIF-1α stability or HIF-1 activity.
Figure 4: Cartoon depicting potential intracellular targets that could result in HIF-1-specific cytotoxicity.

Similar content being viewed by others

References

  1. Semenza, G. L., Roth, P. H., Fang, H. -M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23767 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Goldberg, M. A., Glass, G. A., Cunningham, J. M. & Bunn, H. F. The regulated expression of erythropoietin by two human hepatoma cell lines. Proc. Natl Acad. Sci. USA 84, 7972–7976 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldberg, M. A., Dunning, S. P. & Bunn, H. F. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412–1415 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Graham, C. H., Forsdike, J., Fitzgerald, C. J. & Macdonald-Goodfellow, S. Hypoxia-mediated stimulation of carcinoma cell invasiveness via upregulation of urokinase receptor expression. Int. J. Cancer 80, 617–623 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Bodi, I., Bishopric, N. H., Discher, D. J., Wu, X. & Webster, K. A. Cell-specificity and signaling pathway of endothelin-1 gene regulation by hypoxia. Cardiovas. Res. 30, 975–984 (1995).

    Article  CAS  Google Scholar 

  7. Semenza, G. L., Koury, S. T., Nejfelt, M. K., Gearhart, J. D. & Antonarakis, S. E. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc. Natl Acad. Sci. USA 88, 8725–8729 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Imagawa, S., Goldberg, M. A., Doweiko, J. & Bunn, H. F. Regulatory elements of the erythropoietin gene. Blood 77, 278–285 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, G. L. & Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270, 1230–1237 (1995). First biochemical purification of HIF-1, identified two subunits.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang, B. H., Rue, E., Wang, G. L., Roe, R. & Semenza, G. L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271, 17771–17778 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Wenger, R. H., Kvietikova, I., Rolfs, A., Gassmann, M. & Marti, H. H. Hypoxia-inducible factor-1α is regulated at the post-mRNA level. Kidney Int. 51, 560–563 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA 95, 7987–7992 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pugh, C. W., O'Rourke, J. F., Nagao, M., Gleadle, J. M. & Ratcliffe, P. J. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the α subunit. J. Biol. Chem. 272, 11205–11214 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Srinivas, V., Zhang, L. P., Zhu, X. H. & Caro, J. Characterization of an oxygen/redox-dependent degradation domain of hypoxia-inducible factor α (HIF-α) proteins. Biochem. Biophys. Res. Commun. 260, 557–561 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Jiang, B. H., Zheng, J. Z., Leung, S. W., Roe, R. & Semenza, G. L. Transactivation and inhibitory domains of hypoxia-inducible factor 1α. Modulation of transcriptional activity by oxygen tension. J. Biol. Chem. 272, 19253–19260 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Ema, M., Taya, S., Yokotani, N., Sogawa, K., Matsuda, Y. & Fujii-Kuriyama, Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl Acad. Sci. USA 94, 4273–4278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flamme, I., Frolich, T. & Risau, W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J. Cell. Physiol. 173, 206–210 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Hogenesch, J. B. et al. Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J. Biol. Chem. 272, 8581–8593 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Tian, H., McKnight, S. L. & Russell, D. W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Gu, Y. Z., Moran, S. M., Hogenesch, J. B., Wartman, L. & Bradfield, C. A. Molecular characterization and chromosomal localization of a third α-class hypoxia inducible factor subunit, HIF3α. Gene Expr. 7, 205–213 (1998).

    CAS  PubMed  Google Scholar 

  21. Salceda, S. & Caro, J. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272, 22642–22647 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999). This paper made the important finding that the VHL tumour-suppressor gene targets HIF-1α subunit for ubiquitin-mediated degradation under poxic conditions.

    Article  CAS  PubMed  Google Scholar 

  23. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nature Cell Biol. 2, 423–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Gassmann, M., Chilov, D. & Wenger, R. H. Regulation of the hypoxia-inducible factor-1α. ARNT is not necessary for hypoxic induction of HIF-1α in the nucleus. Adv. Exp. Med. Biol. 475, 87–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657–661 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Kibel, A., Iliopoulos, O., DeCaprio, J. A. & Kaelin, W. G. Jr. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269, 1444–1446 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Lonergan, K. M. et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell. Biol. 18, 732–741 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pause, A. et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl Acad. Sci. USA 94, 2156–2161 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pause, A., Peterson, B., Schaffar, G., Stearman, R. & Klausner, R. D. Studying interactions of four proteins in the yeast two-hybrid system: structural resemblance of the pVHL/elongin BC/hCUL-2 complex with the ubiquitin ligase complex SKP1/cullin/F-box protein. Proc. Natl Acad. Sci. USA 96, 9533–9538 (1999). Provides insight into how VHL targets HIF-1α for ubiquitin-mediated degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Koepp, D. M., Harper, J. W. & Elledge, S. J. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97, 431–434 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Tyers, M. & Jorgensen, P. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr. Opin. Genet. Dev. 10, 54–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Duan, D. R. et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269, 1402–1406 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Tanimoto, K., Makino, Y., Pereira, T. & Poellinger, L. Mechanism of regulation of the HIF-1α by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19, 4298–4309 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cockman, M. E. et al. Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 275, 25733–25741 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Kamura, T. et al. Activation of HIF1α ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl Acad. Sci. USA 97, 10430–10435 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ivan, M. et al. HIF-α targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001). One of two important papers that initially demonstrated that the oxygen sensor for HIF-1 degradation is hydroxylation of a crucial proline residue.

    Article  CAS  PubMed  Google Scholar 

  39. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001). The other important paper showing that proline hydroxylation regulates the oxygen lability of HIF-1α.

    Article  CAS  PubMed  Google Scholar 

  40. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Ema, M. et al. Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J. 18, 1905–1914 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gu, J., Milligan, J. & Huang, L. E. Molecular mechanism of hypoxia-inducible factor 1α–p300 interaction. A leucine-rich interface regulated by a single cysteine. J. Biol. Chem. 276, 3550–3554 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Kung, A. L., Wang, S., Klco, J. M., Kaelin, W. G. & Livingston, D. M. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nature Med. 6, 1335–1340 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J. & Whitelaw, M. L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858–861 (2002). Indicates that hydroxylation of different residues can regulate HIF-1 transactivation as well as stability.

    Article  CAS  PubMed  Google Scholar 

  45. McNeill, L. A. et al. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the β-carbon of asparagine-803. Biochem J. 367, 571–575 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hewitson, K. S. et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277, 26351–26355 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Mahon, P. C., Hirota, K. & Semenza, G. L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15, 2675–2686 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang, L. E., Arany, Z., Livingston, D. M. & Bunn, H. F. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α subunit. J. Biol. Chem. 271, 32253–32259 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Carrero, P. et al. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1α. Mol. Cell. Biol. 20, 402–415 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lando, D., Pongratz, I., Poellinger, L. & Whitelaw, M. L. A redox mechanism controls differential DNA binding activities of hypoxia-inducible factor (HIF) 1α and the HIF-like factor. J. Biol. Chem. 275, 4618–4627 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Jeong, J. W. et al. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell 111, 709–720 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Makino, Y., Kanopka, A., Wilson, W. J., Tanaka, H. & Poellinger, L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3α locus. J. Biol. Chem. 277, 32405–32408 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Chun, Y. S. et al. A new HIF-1α variant induced by zinc ion suppresses HIF-1-mediated hypoxic responses. J. Cell Sci. 114, 4051–4061 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Chun, Y. S., Choi, E., Kim, T. Y., Kim, M. S. & Park, J. W. A dominant-negative isoform lacking exons 11 and 12 of the human hypoxia-inducible factor-1α gene. Biochem J. 362, 71–79 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tanguay, R. L., Andreasen, E., Heideman, W. & Peterson, R. E. Identification and expression of alternatively spliced aryl hydrocarbon nuclear translocator 2 (ARNT2) cDNAs from zebrafish with distinct functions. Biochim. Biophys. Acta 1494, 117–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Semenza, G. L. Involvement of hypoxia-inducible factor 1 in human cancer. Intern. Med. 41, 79–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Karni, R., Dor, Y., Keshet, E., Meyuhas, O. & Levitzki, A. Activated pp60c-Src leads to elevated HIF-1α expression under normoxia. J. Biol. Chem. 277, 42919–42925 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Lu, H., Forbes, R. A. & Verma, A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J. Biol. Chem. 277, 23111–23115 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Semenza, G. Signal transduction to hypoxia-inducible factor 1. Biochem. Pharmacol. 64, 993 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C. & Semenza, G. L. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol. 21, 3995–4004 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer 2, 38–47 (2002). A thorough review on the roles of hypoxia in malignant progression and as a target for cancer therapy.

    Article  CAS  Google Scholar 

  64. Ryan, H. E., Lo, J. & Johnson, R. S. HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J. 17, 3005–3015 (1998). First demonstration that genetic deletion of HIF-1 can retard tumour growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Iyer, N. V. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12, 149–162 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A. & Simon, M. C. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407 (1997). First demonstration of the importance of HIF-1 in controlling angiogenesis and metabolism.

    Article  CAS  PubMed  Google Scholar 

  68. Sun, X. et al. Gene transfer of antisense hypoxia inducible factor-1α enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther. 8, 638–645 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Isaacs, J. S. et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J. Biol. Chem. 277, 29936–29944 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Mabjeesh, N. J. et al. Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteosome pathway in prostate cancer cells. Cancer Res. 62, 2478–2482 (2002).

    CAS  PubMed  Google Scholar 

  71. Blancher, C., Moore, J. W., Robertson, N. & Harris, A. L. Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1α, HIF-2α, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3'-kinase/Akt signaling pathway. Cancer Res. 61, 7349–7355 (2001).

    CAS  PubMed  Google Scholar 

  72. Mazure, N. M., Chen, E. Y., Yeh, P., Laderoute, K. R. & Giaccia, A. J. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res. 56, 3436–3440 (1996).

    CAS  PubMed  Google Scholar 

  73. Kurebayashi, J. et al. A radicicol derivative, KF58333, inhibits expression of hypoxia-inducible factor-1α and vascular endothelial growth factor, angiogenesis and growth of human breast cancer xenografts. Jpn J. Cancer Res. 92, 1342–1351 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Neckers, L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol. Med. 8, S55–S61 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Welsh, S. et al. The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1α and vascular endothelial growth factor formation. Mol. Cancer Ther. 2, 235–243 (2003).

    CAS  PubMed  Google Scholar 

  76. Jung, F. et al. Hypoxic induction of the hypoxia-inducible factor is mediated via the adaptor protein Shc in endothelial cells. Circ. Res. 91, 38–45 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Chan, D. A., Sutphin, P. D., Denko, N. C. & Giaccia, A. J. Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1α. J. Biol. Chem. 277, 40112–40117 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Jiang, B. H., Agani, F., Passaniti, A. & Semenza, G. L. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 57, 5328–5335 (1997).

    CAS  PubMed  Google Scholar 

  79. Cohen-Jonathan, E. et al. The farnesyltransferase inhibitor L744,832 reduces hypoxia in tumors expressing activated H-ras. Cancer Res. 61, 2289–2293 (2001).

    CAS  PubMed  Google Scholar 

  80. Maxwell, P. H., Pugh, C. W. & Ratcliffe, P. J. The pVHL-HIF-1 system. A key mediator of oxygen homeostasis. Adv. Exp. Med. Biol. 502, 365–376 (2001). A detailed review on VHL and HIF interaction.

    Article  CAS  PubMed  Google Scholar 

  81. Arbiser, J. L. et al. Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc. Natl Acad. Sci. USA 94, 861–866 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiang, B. H. et al. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ. 12, 363–369 (2001).

    CAS  PubMed  Google Scholar 

  83. Mazure, N. M., Chen, E. Y., Laderoute, K. R. & Giaccia, A. J. Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90, 3322–3331 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Zundel, W. et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 14, 391–396 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cantley, L. C. & Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA 96, 4240–4245 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alvarez-Tejado, M. et al. Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension. J. Biol. Chem. 277, 13508–13517 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. An, W. G. et al. Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392, 405–408 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Blagosklonny, M. V. et al. p53 inhibits hypoxia-inducible factor-stimulated transcription. J. Biol. Chem. 273, 11995–11998 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Thomas, G. & Hall, M. N. TOR signalling and control of cell growth. Curr. Opin. Cell Biol. 9, 782–787 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Hudson, C. C. et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7004–7014 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Berra, E., Pages, G. & Pouyssegur, J. MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev. 19, 139–145 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Sodhi, A., Montaner, S., Miyazaki, H. & Gutkind, J. S. MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1α in rasV12 upregulation of VEGF. Biochem. Biophys. Res. Commun. 287, 292–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Feldser, D. et al. Reciprocal positive regulation of hypoxia-inducible factor 1α and insulin-like growth factor 2. Cancer Res. 59, 3915–3918 (1999).

    CAS  PubMed  Google Scholar 

  94. Zelzer, E. et al. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1α/ARNT. EMBO J. 17, 5085–5094 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Treins, C., Giorgetti-Peraldi, S., Murdaca, J., Semenza, G. L. & Van Obberghen, E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J. Biol. Chem. 277, 27975–27981 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Zhong, H. et al. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60, 1541–1545 (2000).

    CAS  PubMed  Google Scholar 

  97. Neshat, M. S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA 98, 10314–10319 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Guba, M. et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nature Med. 8, 128–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Rapisarda, A. et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 62, 4316–4324 (2002). First published high-throughput screen for HIF-1 inhibitors.

    CAS  PubMed  Google Scholar 

  100. Plowman, J. et al. Efficacy of the quinocarmycins KW2152 and DX-52-1 against human melanoma lines growing in culture kand in mice. Cancer Res. 55, 862–867 (1995).

    CAS  PubMed  Google Scholar 

  101. Bunnell, C. A. et al. Phase I clinical trial of 7-cyanoquinocarcinol (DX-52-1) in adult patients with refractory solid malignancies. Cancer Chemother. Pharmacol. 48, 347–355 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Pribluda, V. S. et al. 2-Methoxyestradiol: an endogenous antiangiogenic and antiproliferative drug candidate. Cancer Metastasis Rev. 19, 173–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Mabjeesh, N. J. et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3, 363–375 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Jung, Y. J., Isaacs, J. S., Lee, S., Trepel, J. & Neckers, L. Microtubule disruption utilizes an NFκB-dependent pathway to stabilize HIF-1α protein. J. Biol. Chem. 278, 7445–7452 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Ko, F. N., Wu, C. C., Kuo, S. C., Lee, F. Y. & Teng, C. M. YC-1, a novel activator of platelet guanylate cyclase. Blood 84, 4226–4233 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Yeo, E. J. et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J. Natl Cancer Inst. 95, 516–525 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Li, M. et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Folkman, J. & Cotran, R. Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Pathol. 16, 207–248 (1976).

    CAS  PubMed  Google Scholar 

  109. Brown, J. M. & Giaccia, A. J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416 (1998).

    CAS  PubMed  Google Scholar 

  110. Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vincent, K. A., Feron, O. & Kelly, R. A. Harnessing the response to tissue hypoxia: HIF-1α and therapeutic angiogenesis. Trends Cardiovasc. Med. 12, 362–367 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Vincent, K. A. et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1α/VP16 hybrid transcription factor. Circulation 102, 2255–2261 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Belanger, A. J. et al. Hypoxia up-regulates expression of peroxisome proliferator-activated receptor-γ angiopoietin-related gene (PGAR) in cardiomyocytes: role of hypoxia inducible factor 1α. J. Mol. Cell. Cardiol. 34, 765–774 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Jiang, C. et al. Gene expression profiles in human cardiac cells subjected to hypoxia or expressing a hybrid form of HIF-1α. Physiol. Genomics 8, 23–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Nwogu, J. I. et al. Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation 104, 2216–2221 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Park, S. et al. Hypoxia-induced gene expression occurs solely through the action of HIF-1α: The role of cytoplasmic trapping of HIF-2α. Mol. Cell. Biol. 23, 4959–4971 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize for any references that have not been included that have contributed to our understanding of HIF. We would like to thank all the present and past members of our laboratories that contributed to the understanding of the role of hypoxia and HIF in normal tissue homeostasis and malignant progression. The work is supported by grants from the National Cancer Institute and the Auckland Cancer Research Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall S. Johnson.

Related links

Related links

DATABASE

LocusLink

ARD1

cullin 2

EPO

HIF-1α

HIF-1αN

HIF-1β

HIF-2α

HIF-3α

HSP90

p53

PTEN

RBX1

TCEB1

TCEB2

TOR

VEGF

VHL

FURTHER INFORMATION

Encyclopedia of Life Sciences

hypoxia

Glossary

HYPOXIA-RESPONSE ELEMENT

(HRE). Initially identified as a 50-base-pair sequence in the 3′ flanking region of the erythropoietin gene. Although the core DNA binding element is 5′-ACGTG-3′, flanking sequences are also important in HRE functionality. Approximately 30 genes have been found to possess HREs.

HLH–PAS DOMAIN

HLH is a helix–loop–helix motif that facilitates dimerization and DNA binding and is found in a substantial number of transcription factors. The PAS domain was named after PER, ARNT and SIM proteins that represent the first proteins in which this motif was identified. Functionally, the PAS domain facilitates protein–protein interactions between family members.

GAL4 DNA-BINDING PROTEIN

A transcriptional activator identified in yeast, which, because it is specific for yeast, is used to make fusion proteins to study mammalian transcriptional regulators.

OXYGEN-DEPENDENT DEGRADATION

(ODD). The ODD domain of HIF-1α binds to VHL under aerobic conditions. Deletion of this domain results in a HIF-1α protein that is oxygen insensitive and constitutively expressed under aerobic conditions.

UBIQUITIN-MEDIATED DEGRADATION

The energy-requiring process of covalently linking ubiquitin to lysine residues of a substrate protein to signal protein degradation.

VON HIPPEL-LINDAU

(VHL). A tumour-suppressor gene that possesses two substrate-binding domains, -α and -β. The α-domain binds to elongin C and CUL2, proteins that possess sequence similarity with proteins known to be involved in ubiquitin-mediated degradation. The β-domain of VHL binds HIF-1α.

PROLYL HYDROXYLATION

A protein modification mediated by an evolutionarily conserved group of iron-dependent enzymes termed prolyl hydroxylases (PhDs). As they require oxygen for their activity, they have been implicated as the oxygen sensor that regulates HIF-1α stabilization. Loss of PhD activity in Caenorhabditis elegans and, more recently, in mammalian cells, has resulted in stabilization of HIF-1α under aerobic conditions.

ASPARAGINE HYDROXYLATION

This modification of HIF-1α on asparagine 803 has been implicated in the control of HIF-1 transactivation potential. The gene identified that controls this modification is termed FIH.

ACETYLATION

Acetylation has previously been implicated in promoting transcriptional activation. By contrast, acetylation of HIF-1α on lysine 532 by ARD1 has been shown to be involved in its degradation by the proteasome.

DEHYDROXYLASE

An enzyme that can remove the hydroxyl group from proline 564 and promote HIF-1α stabilization.

DEUBIQUITINASE

An enzyme that promotes the removal of ubiquitin from a substrate protein such as HIF-1α through the cleavage of isopeptide bonds. The enzymatic activity of a HIF-1α deubiquitinase should increase HIF-1α stabilization.

HYPOXIA-SPECIFIC CYTOTOXIN

A molecule whose cytotoxic activity is inhibited under aerobic conditions and increased under hypoxic conditions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giaccia, A., Siim, B. & Johnson, R. HIF-1 as a target for drug development. Nat Rev Drug Discov 2, 803–811 (2003). https://doi.org/10.1038/nrd1199

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing