Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNA therapeutics: towards a new era for the management of cancer and other diseases

Key Points

  • MicroRNAs (miRNAs) belong to class of small non-coding RNAs that are involved in development and diseases. miRNAs control gene expression by targeting mRNAs based on sequence complementarity.

  • miRNAs can serve as oncomiRs by targeting tumour suppressor mRNAs and as tumour suppressor miRNAs by targeting mRNAs that encode oncoproteins.

  • The deregulation of miRNAs in disease conditions can be harnessed as potential therapeutics by either miRNA replacement therapy using miRNA mimics or inhibition of miRNA function by antimiRs.

  • Two of the major focus areas in the development of miRNA therapeutics are enhancing the in vivo stability of therapeutic RNA molecules and designing optimal delivery systems for disease-specific release with minimal toxicity.

  • Numerous preclinical studies utilizing various disease models have tested the use of these new-generation therapeutics, and several miRNA-based therapeutics have advanced into clinical testing.

Abstract

In just over two decades since the discovery of the first microRNA (miRNA), the field of miRNA biology has expanded considerably. Insights into the roles of miRNAs in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches. Functional studies have confirmed that miRNA dysregulation is causal in many cases of cancer, with miRNAs acting as tumour suppressors or oncogenes (oncomiRs), and miRNA mimics and molecules targeted at miRNAs (antimiRs) have shown promise in preclinical development. Several miRNA-targeted therapeutics have reached clinical development, including a mimic of the tumour suppressor miRNA miR-34, which reached phase I clinical trials for treating cancer, and antimiRs targeted at miR-122, which reached phase II trials for treating hepatitis. In this article, we describe recent advances in our understanding of miRNAs in cancer and in other diseases and provide an overview of current miRNA therapeutics in the clinic. We also discuss the challenge of identifying the most efficacious therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miRNA biogenesis.
Figure 2: Summary of the key steps in the development of miRNA therapeutics.

Similar content being viewed by others

References

  1. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  2. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993). Discovery of the first miRNA, lin-4, and elucidation of its function in development.

    CAS  PubMed  Google Scholar 

  3. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000). Discovery of the second miRNA, let-7, and description of its role of in the development of C. elegans.

    CAS  PubMed  Google Scholar 

  4. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    CAS  PubMed  Google Scholar 

  5. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).

    CAS  PubMed  Google Scholar 

  6. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Roush, S. & Slack, F. J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Iorio, M. V. & Croce, C. M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 4, 143–159 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tili, E., Michaille, J. J. & Croce, C. M. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol. Rev. 253, 167–184 (2013).

    PubMed  Google Scholar 

  10. Rupaimoole, R., Calin, G. A., Lopez-Berestein, G. & Sood, A. K. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 6, 235–246 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gurha, P. MicroRNAs in cardiovascular disease. Curr. Opin. Cardiol. 31, 249–254 (2016).

    PubMed  Google Scholar 

  12. Worringer, K. A. et al. The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell 14, 40–52 (2014).

    CAS  PubMed  Google Scholar 

  13. Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524 (2014).

    CAS  PubMed  Google Scholar 

  14. Lin, S. & Gregory, R. I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 15, 321–333 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hill, D. A. et al. DICER1 mutations in familial pleuropulmonary blastoma. Science 325, 965 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Heravi-Moussavi, A. et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N. Engl. J. Med. 366, 234–242 (2012). Evaluates mutations in the miRNA biogenesis enzyme Dicer in cancers using patient tumour samples.

    CAS  PubMed  Google Scholar 

  17. Rakheja, D. et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat. Commun. 2, 4802 (2014).

    CAS  PubMed  Google Scholar 

  18. Melo, S. A. et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18, 303–315 (2010). Identifies mutations in the exportin 5 enzyme in cancer cells.

    CAS  PubMed  Google Scholar 

  19. Bader, A. G. miR-34 — a microRNA replacement therapy is headed to the clinic. Front. Genet. 3, 120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Z. & Rana, T. M. Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Discov. 13, 622–638 (2014).

    CAS  PubMed  Google Scholar 

  21. van Rooij, E. & Olson, E. N. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov. 11, 860–872 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. van Rooij, E. & Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 6, 851–864 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Karube, Y. et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 96, 111–115 (2005).

    CAS  PubMed  Google Scholar 

  24. Merritt, W. M. et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N. Engl. J. Med. 359, 2641–2650 (2008). A large study utilizing tumour samples to evaluate miRNA biogenesis enzyme Dicer and Drosha deregulations in cancer and the relationship to patient outcomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, X., Zhao, X., Gao, P. & Wu, M. c-Myc modulates microRNA processing via the transcriptional regulation of Drosha. Sci. Rep. 3, 1942 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Allegra, D. et al. Defective DROSHA processing contributes to downregulation of MiR-15/-16 in chronic lymphocytic leukemia. Leukemia 28, 98–107 (2014).

    CAS  PubMed  Google Scholar 

  27. Torres, A. et al. Major regulators of microRNAs biogenesis Dicer and Drosha are down-regulated in endometrial cancer. Tumour Biol. 32, 769–776 (2011).

    CAS  PubMed  Google Scholar 

  28. Dedes, K. J. et al. Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. Eur. J. Cancer 47, 138–150 (2011).

    CAS  PubMed  Google Scholar 

  29. Guo, X. et al. The microRNA-processing enzymes: Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J. Cancer Res. Clin. Oncol. 138, 49–56 (2012).

    CAS  PubMed  Google Scholar 

  30. Su, X. et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467, 986–990 (2010). Documents the transcriptional regulation of Dicer in cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Martello, G. et al. A microRNA targeting dicer for metastasis control. Cell 141, 1195–1207 (2010).

    CAS  PubMed  Google Scholar 

  32. Tokumaru, S., Suzuki, M., Yamada, H., Nagino, M. & Takahashi, T. let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 29, 2073–2077 (2008).

    CAS  PubMed  Google Scholar 

  33. Rupaimoole, R. et al. Hypoxia-upregulated microRNA-630 targets Dicer, leading to increased tumor progression. Oncogene 35, 4312–4320 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. van den Beucken, T. et al. Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat. Commun. 5, 5203 (2014).

    CAS  PubMed  Google Scholar 

  35. Shen, J. et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497, 383–387 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, X., Wan, G., Berger, F. G., He, X. & Lu, X. The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol. Cell 41, 371–383 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, C. et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med. 17, 211–215 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rokavec, M. et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Invest. 124, 1853–1867 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Okada, N. et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 28, 438–450 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, L. et al. MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin. Exp. Med. 13, 109–117 (2013).

    PubMed  Google Scholar 

  41. Tarasov, V. et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6, 1586–1593 (2007).

    CAS  PubMed  Google Scholar 

  42. Chang, T. C. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Raver-Shapira, N. et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell 26, 731–743 (2007).

    CAS  PubMed  Google Scholar 

  44. Misso, G. et al. Mir-34: a new weapon against cancer? Mol. Ther. Nucleic Acids 3, e194 (2014).

    CAS  PubMed  Google Scholar 

  45. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, X. et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell. Signal. 27, 443–452 (2015).

    CAS  PubMed  Google Scholar 

  47. Cortez, M. A. et al. PDL1 regulation by p53 via miR-34. J. Natl Cancer Inst. 108, djv303 (2016).

    PubMed  Google Scholar 

  48. Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    CAS  PubMed  Google Scholar 

  49. Johnson, C. D. et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67, 7713–7722 (2007).

    CAS  PubMed  Google Scholar 

  50. Brueckner, B. et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res. 67, 1419–1423 (2007).

    CAS  PubMed  Google Scholar 

  51. Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sung, S. Y. et al. Loss of let-7 microRNA upregulates IL-6 in bone marrow-derived mesenchymal stem cells triggering a reactive stromal response to prostate cancer. PLoS ONE 8, e71637 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    CAS  PubMed  Google Scholar 

  54. Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    CAS  PubMed  Google Scholar 

  56. De Craene, B. & Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97–110 (2013).

    CAS  PubMed  Google Scholar 

  57. Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Park, S. M., Gaur, A. B., Lengyel, E. & Peter, M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gregory, P. A. et al. An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial–mesenchymal transition. Mol. Biol. Cell 22, 1686–1698 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pecot, C. V. et al. Tumour angiogenesis regulation by the miR-200 family. Nat. Commun. 4, 2427 (2013).

    PubMed  Google Scholar 

  62. Pekarsky, Y. & Croce, C. M. Role of miR-15/16 in CLL. Cell Death Differ. 22, 6–11 (2015).

    CAS  PubMed  Google Scholar 

  63. Klein, U. et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17, 28–40 (2010).

    CAS  PubMed  Google Scholar 

  64. Yang, D. et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 23, 186–199 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, G. et al. Augmentation of response to chemotherapy by microRNA-506 through regulation of RAD51 in serous ovarian cancers. J. Natl Cancer Inst. 107, djv108 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Liu, G. et al. MiR-506 suppresses proliferation and induces senescence by directly targeting the CDK4/6–FOXM1 axis in ovarian cancer. J. Pathol. 233, 308–318 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Keklikoglou, I. et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene 31, 4150–4163 (2012).

    CAS  PubMed  Google Scholar 

  68. Nishimura, M. et al. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov. 3, 1302–1315 (2013).

    CAS  PubMed  Google Scholar 

  69. Landen, C. N. Jr et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65, 6910–6918 (2005). First report of using neutral liposome DOPC for the delivery of small interfering RNAs (siRNAs) to tumours.

    CAS  PubMed  Google Scholar 

  70. Asangani, I. A. et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008).

    CAS  PubMed  Google Scholar 

  71. Frankel, L. B. et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283, 1026–1033 (2008).

    CAS  PubMed  Google Scholar 

  72. Yan, L. X. et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14, 2348–2360 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, Q. et al. MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation. Sci. Rep. 3, 2038 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. Medina, P. P., Nolde, M. & Slack, F. J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467, 86–90 (2010). Reports the concept of oncomiR addiction, whereby cancers tend to have a dependence on oncogenic miRNA expression.

    CAS  PubMed  Google Scholar 

  75. Hatley, M. E. et al. Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell 18, 282–293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Krichevsky, A. M. & Gabriely, G. miR-21: a small multi-faceted RNA. J. Cell. Mol. Med. 13, 39–53 (2009).

    CAS  PubMed  Google Scholar 

  77. Campbell, J. D. et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 48, 607–616 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fujita, S. et al. miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J. Mol. Biol. 378, 492–504 (2008).

    CAS  PubMed  Google Scholar 

  79. Iliopoulos, D., Jaeger, S. A., Hirsch, H. A., Bulyk, M. L. & Struhl, K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol. Cell 39, 493–506 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gironella, M. et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl Acad. Sci. USA 104, 16170–16175 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. O'Connell, R. M., Chaudhuri, A. A., Rao, D. S. & Baltimore, D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl Acad. Sci. USA 106, 7113–7118 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Faraoni, I., Antonetti, F. R., Cardone, J. & Bonmassar, E. miR-155 gene: a typical multifunctional microRNA. Biochim. Biophys. Acta 1792, 497–505 (2009).

    CAS  PubMed  Google Scholar 

  83. Tili, E., Croce, C. M. & Michaille, J. J. miR-155: on the crosstalk between inflammation and cancer. Int. Rev. Immunol. 28, 264–284 (2009).

    CAS  PubMed  Google Scholar 

  84. Tili, E. et al. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc. Natl Acad. Sci. USA 108, 4908–4913 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Babar, I. A. et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc. Natl Acad. Sci. USA 109, E1695–E1704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kong, W. et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 33, 679–689 (2014).

    CAS  PubMed  Google Scholar 

  87. Kulshreshtha, R. et al. A microRNA signature of hypoxia. Mol. Cell. Biol. 27, 1859–1867 (2007). Reports that miR-210, a hypoxia marker miRNA, is significantly upregulated during hypoxia exposure.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Puissegur, M. P. et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 18, 465–478 (2011).

    CAS  PubMed  Google Scholar 

  89. Yang, W. et al. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro. Exp. Cell Res. 318, 944–954 (2012).

    CAS  PubMed  Google Scholar 

  90. Fasanaro, P. et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J. Biol. Chem. 283, 15878–15883 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Crosby, M. E., Kulshreshtha, R., Ivan, M. & Glazer, P. M. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 69, 1221–1229 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mogilyansky, E. & Rigoutsos, I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 20, 1603–1614 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    CAS  PubMed  Google Scholar 

  94. Koralov, S. B. et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132, 860–874 (2008).

    CAS  PubMed  Google Scholar 

  95. Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet. 38, 1060–1065 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. de Pontual, L. et al. Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat. Genet. 43, 1026–1030 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Marcelis, C. L. et al. Genotype–phenotype correlations in MYCN-related Feingold syndrome. Hum. Mutat. 29, 1125–1132 (2008).

    CAS  PubMed  Google Scholar 

  98. Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    CAS  PubMed  Google Scholar 

  99. Bloomston, M. et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007).

    CAS  PubMed  Google Scholar 

  100. Saldanha, G. et al. microRNA-10b is a prognostic biomarker for melanoma. Mod. Pathol. 29, 112–121 (2016).

    CAS  PubMed  Google Scholar 

  101. Ma, L. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat. Biotechnol. 28, 341–347 (2010). A study that uses antimiR against miR-10b to suppress miR-10b function and demonstrates significant reduction in breast cancer metastasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Nakayama, I. et al. Loss of HOXD10 expression induced by upregulation of miR-10b accelerates the migration and invasion activities of ovarian cancer cells. Int. J. Oncol. 43, 63–71 (2013).

    CAS  PubMed  Google Scholar 

  103. Garofalo, M. et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16, 498–509 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. le Sage, C. et al. Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 26, 3699–3708 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pineau, P. et al. miR-221 overexpression contributes to liver tumorigenesis. Proc. Natl Acad. Sci. USA 107, 264–269 (2010).

    CAS  PubMed  Google Scholar 

  106. Wiggins, J. F. et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 70, 5923–5930 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Trang, P. et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther. 19, 1116–1122 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pramanik, D. et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer Ther. 10, 1470–1480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kasinski, A. L. & Slack, F. J. miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res. 72, 5576–5587 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Stahlhut, C. & Slack, F. J. Combinatorial action of microRNAs let-7 and miR-34 effectively synergizes with erlotinib to suppress non-small cell lung cancer cell proliferation. Cell Cycle 14, 2171–2180 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Cortez, M. A. et al. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol. Ther. 22, 1494–1503 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ji, J. et al. MicroRNA expression, survival, and response to interferon in liver cancer. N. Engl. J. Med. 361, 1437–1447 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Calin, G. A. et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl Acad. Sci. USA 105, 5166–5171 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Reid, G. et al. Abstract 3976: targeted delivery of a synthetic microRNA-based mimic as an approach to cancer therapy. Cancer Res. 75, abstr. 3976 (2015).

    Google Scholar 

  116. Gabriely, G. et al. Human glioma growth is controlled by microRNA-10b. Cancer Res. 71, 3563–3572 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Yoo, B. et al. Combining miR-10b-targeted nanotherapy with low-dose doxorubicin elicits durable regressions of metastatic breast cancer. Cancer Res. 75, 4407–4415 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Park, J. K. et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res. 71, 7608–7616 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cheng, C. J. et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518, 107–110 (2015).

    CAS  PubMed  Google Scholar 

  120. Reshetnyak, Y. K., Andreev, O. A., Lehnert, U. & Engelman, D. M. Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix. Proc. Natl Acad. Sci. USA 103, 6460–6465 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    CAS  PubMed  Google Scholar 

  122. Thibault, P. A. et al. Regulation of hepatitis C virus genome replication by Xrn1 and microRNA-122 binding to individual sites in the 5′ untranslated region. J. Virol. 89, 6294–6311 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Luna, J. M. et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell 160, 1099–1110 (2015). A study that records the functional role of HCV RNA sequestration of miR-122 and relevance to therapy (read along with references 124 and 125).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Elmen, J. et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 36, 1153–1162 (2008).

    CAS  PubMed  Google Scholar 

  125. Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    CAS  PubMed  Google Scholar 

  126. Hsu, S. H. et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. Invest. 122, 2871–2883 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tsai, W. C. et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest. 122, 2884–2897 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    PubMed  Google Scholar 

  129. Cheng, Y. & Zhang, C. MicroRNA-21 in cardiovascular disease. J. Cardiovasc. Transl. Res. 3, 251–255 (2010).

    PubMed  PubMed Central  Google Scholar 

  130. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    CAS  PubMed  Google Scholar 

  131. Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 4, 121ra18 (2012).

    PubMed  PubMed Central  Google Scholar 

  132. Xin, M. et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 23, 2166–2178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Boettger, T. et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest. 119, 2634–2647 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Davis-Dusenbery, B. N. et al. Down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-β and bone morphogenetic protein 4. J. Biol. Chem. 286, 28097–28110 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Cordes, K. R. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460, 705–710 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ikeda, S. et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell. Biol. 29, 2193–2204 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Shan, Z. X. et al. Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem. Biophys. Res. Commun. 381, 597–601 (2009).

    CAS  PubMed  Google Scholar 

  138. Grueter, C. E. et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149, 671–683 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Montgomery, R. L. et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124, 1537–1547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Montgomery, R. L. et al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol. Med. 6, 1347–1356 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Rayner, K. J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Davalos, A. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl Acad. Sci. USA 108, 9232–9237 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Rayner, K. J. et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478, 404–407 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Goedeke, L. et al. Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Mol. Med. 6, 1133–1141 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Belgardt, B. F. et al. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat. Med. 21, 619–627 (2015).

    CAS  PubMed  Google Scholar 

  146. McArthur, K., Feng, B., Wu, Y., Chen, S. & Chakrabarti, S. MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes 60, 1314–1323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, B. et al. E-Cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-β. Diabetes 59, 1794–1802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Slusarz, A. & Pulakat, L. The two faces of miR-29. J. Cardiovasc. Med. (Hagerstown) 16, 480–490 (2015).

    CAS  Google Scholar 

  149. Roggli, E. et al. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 61, 1742–1751 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Maurer, B. et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 62, 1733–1743 (2010).

    CAS  PubMed  Google Scholar 

  151. Janssen, H. L. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013).

    CAS  PubMed  Google Scholar 

  152. Ottosen, S. et al. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob. Agents Chemother. 59, 599–608 (2015).

    PubMed  Google Scholar 

  153. Hong. D. S. et al. MRX34, a liposomal miR-34 mimic, in patients with advanced solid tumors: Final dose-escalation results from a first-in-human phase I trial of microRNA therapy. J. Clin. Oncol. 34, (Suppl), abstr. 2508 (2015).

    Google Scholar 

  154. Beg, M. S. et al. Abstract C43: safety, tolerability, and clinical activity of MRX34, the first-in-class liposomal miR-34 mimic, in patients with advanced solid tumors. Mol. Cancer Ther. 14, abstr. C43 (2015). Highlights the clinical safety and activity data of MRX34, a miR-34 mimic-based therapy against cancers.

    Google Scholar 

  155. van Zandwijk, N. et al. P1.02: MesomiR 1: a phase I study of TargomiRs in patients with refractory malignant pleural mesothelioma (MPM) and lung cancer (NSCLC). Ann. Oncol. 26 (Suppl. 2), ii16 (2015).

    Google Scholar 

  156. Trajkovski, M. et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474, 649–653 (2011).

    CAS  PubMed  Google Scholar 

  157. Cheng, C. J. & Slack, F. J. The duality of oncomiR addiction in the maintenance and treatment of cancer. Cancer J. 18, 232–237 (2012).

    PubMed  PubMed Central  Google Scholar 

  158. Rupaimoole, R., Han, H. D., Lopez-Berestein, G. & Sood, A. K. MicroRNA therapeutics: principles, expectations, and challenges. Chin. J. Cancer 30, 368–370 (2011).

    PubMed  PubMed Central  Google Scholar 

  159. Vaupel, P. & Mayer, A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 26, 225–239 (2007).

    CAS  PubMed  Google Scholar 

  160. Rupaimoole, R. et al. Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression. Nat. Commun. 5, 5202 (2014).

    CAS  PubMed  Google Scholar 

  161. Imig, J. et al. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19–miR-106a interaction. Nat. Chem. Biol. 11, 107–114 (2015).

    CAS  PubMed  Google Scholar 

  162. Chou, C. H. et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 44, D239–D247 (2016).

    CAS  PubMed  Google Scholar 

  163. Li, J. H., Liu, S., Zhou, H., Qu, L. H. & Yang, J. H. starBase v2.0: decoding miRNA–ceRNA, miRNA–ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014).

    CAS  PubMed  Google Scholar 

  164. Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).

    PubMed Central  Google Scholar 

  165. Eulalio, A. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376–381 (2012).

    CAS  PubMed  Google Scholar 

  166. Kovalchuk, O. et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther. 7, 2152–2159 (2008).

    CAS  PubMed  Google Scholar 

  167. Sun, L. et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial–mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 31, 432–445 (2012).

    CAS  PubMed  Google Scholar 

  168. Geary, R. S. et al. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J. Pharmacol. Exp. Ther. 296, 890–897 (2001).

    CAS  PubMed  Google Scholar 

  169. Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell. Metab. 3, 87–98 (2006).

    CAS  PubMed  Google Scholar 

  170. Reshetnyak, Y. K., Andreev, O. A., Segala, M., Markin, V. S. & Engelman, D. M. Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane. Proc. Natl Acad. Sci. USA 105, 15340–15345 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Kulkarni, R. K., Moore, E. G., Hegyeli, A. F. & Leonard, F. Biodegradable poly(lactic acid) polymers. J. Biomed. Mater. Res. 5, 169–181 (1971).

    CAS  PubMed  Google Scholar 

  172. Blum, J. S. & Saltzman, W. M. High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine. J. Control. Release 129, 66–72 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Yang, X. Z. et al. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J. Control. Release 156, 203–211 (2011).

    CAS  PubMed  Google Scholar 

  174. Ozpolat, B., Sood, A. K. & Lopez-Berestein, G. Nanomedicine based approaches for the delivery of siRNA in cancer. J. Intern. Med. 267, 44–53 (2010).

    CAS  PubMed  Google Scholar 

  175. Joshi, H. P. et al. Dynamin 2 along with microRNA-199a reciprocally regulate hypoxia-inducible factors and ovarian cancer metastasis. Proc. Natl Acad. Sci. USA 111, 5331–5336 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. MacDiarmid, J. A. et al. Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell 11, 431–445 (2007).

    CAS  PubMed  Google Scholar 

  177. Taylor, K. et al. Nanocell targeting using engineered bispecific antibodies. MAbs 7, 53–65 (2015).

    CAS  PubMed  Google Scholar 

  178. Akhtar, S. & Benter, I. F. Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 117, 3623–3632 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Duncan, R. & Izzo, L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev. 57, 2215–2237 (2005).

    CAS  PubMed  Google Scholar 

  180. Gonzalez, H., Hwang, S. J. & Davis, M. E. New class of polymers for the delivery of macromolecular therapeutics. Bioconjug. Chem. 10, 1068–1074 (1999).

    CAS  PubMed  Google Scholar 

  181. Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010). Study reports data on first in-human clinical trial involving siRNA-based therapeutics against cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Kim, S. H., Jeong, J. H., Lee, S. H., Kim, S. W. & Park, T. G. PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J. Control. Release 116, 123–129 (2006).

    CAS  PubMed  Google Scholar 

  183. Ragelle, H., Vandermeulen, G. & Preat, V. Chitosan-based siRNA delivery systems. J. Control. Release 172, 207–218 (2013).

    CAS  PubMed  Google Scholar 

  184. Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    CAS  PubMed  Google Scholar 

  185. Dimitrova, N. et al. Stromal expression of miR-143/145 promotes neoangiogenesis in lung cancer development. Cancer Discov. 6, 188–201 (2016).

    CAS  PubMed  Google Scholar 

  186. Suzuki, H. I., Katsura, A., Matsuyama, H. & Miyazono, K. MicroRNA regulons in tumor microenvironment. Oncogene 34, 3085–3094 (2015).

    CAS  PubMed  Google Scholar 

  187. Frediani, J. N. & Fabbri, M. Essential role of miRNAs in orchestrating the biology of the tumor microenvironment. Mol. Cancer 15, 42 (2016).

    PubMed  PubMed Central  Google Scholar 

  188. Bronisz, A. et al. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat. Cell Biol. 14, 159–167 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Mitra, A. K. et al. MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov. 2, 1100–1108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Ibrahim, A. F. et al. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 71, 5214–5224 (2011).

    CAS  PubMed  Google Scholar 

  191. Pramanik, D. et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer Ther. 10, 1470–1480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Putta, S. et al. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J. Am. Soc. Nephrol. 23, 458–469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Long, J., Wang, Y., Wang, W., Chang, B. H. & Danesh, F. R. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J. Biol. Chem. 286, 11837–11848 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Hullinger, T. G. et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res. 110, 71–81 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Jacob and A. Jiao for helpful comments on this manuscript. The authors acknowledge support from the Ludwig Center at Harvard, Boston, Massachusetts, USA, and grants from the US National Institutes of Health (R01 CA157749; P50 CA177444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Slack.

Ethics declarations

Competing interests

F.J.S is an adviser to Mirna Therapeutics and miRagen Therapeutics. R.R. declares no competing interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Selected list of siRNA therapeutics in clinical trials (PDF 174 kb)

Glossary

Non-coding RNA

Naturally transcribed RNA molecule that does not encode any protein. Family members include microRNAs and long non-coding RNAs.

miRNA mimics

(MicroRNA mimics). Synthetically derived small RNA molecule duplexes, which, upon introduction into the cells, behave similarly to endogenous miRNAs.

AntimiRs

Also called microRNA (miRNA) inhibitors, antimiRs are small, synthetically derived molecules, which have sequence complementary to target mature miRNAs. They are known to sequester target miRNAs and are used to suppress miRNA function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rupaimoole, R., Slack, F. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16, 203–222 (2017). https://doi.org/10.1038/nrd.2016.246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.246

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer