Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Medulloblastoma—translating discoveries from the bench to the bedside

Key Points

  • Medulloblastoma is a malignant brain tumour that occurs predominantly in childhood, but is also seen in infancy and throughout adulthood

  • Although the prognosis of medulloblastoma is favourable with current therapeutic regimens, the heterogeneous nature of this cancer has confounded efforts to substantially improve survival and reduce therapy-related toxicity

  • Advancements in technology and its accessibility have led, through molecular interrogation, to the recognition that medulloblastoma heterogeneity is broadly explained by the existence of four main molecular tumour subtypes

  • Each molecular medulloblastoma subtype, termed Wnt, SHH, group 3, and group 4 medulloblastoma, has unique clinical and molecular characteristics, which influence nearly every facet of the disease, including survival

  • Armed with this knowledge, paediatric oncologists find themselves at an opportune moment to capitalize on these newly elucidated characteristics to improve survival and reduce morbidity by tailoring therapy towards the individual subtypes

Abstract

Medulloblastoma is a form of brain cancer that mainly arises during infancy and childhood. Our understanding of this disease has transitioned rapidly; what was once thought of as a single disease entity is now known to be a compendium comprising at least four distinct subtypes of tumour (Wnt, sonic hedgehog [SHH], group 3, and group 4 medulloblastomas) that have characteristic molecular signatures, distinctive clinical features, and are associated with different outcomes. Importantly, medulloblastomas occurring in infants (aged up to 3 years) and adults have unique characteristics, which distinguish the disease from that seen in children aged >3 years. Accordingly, modern treatment approaches in medulloblastoma integrate the molecular and clinical features of the disease to enable provision of the most-effective therapies for each patient, and to reduce long-term sequelae. This Review discusses our current knowledge of medulloblastoma. In particular, we present the genetic and histological features, patient demographics, prognosis, and therapeutic options for each the four molecular tumour subtypes that comprise this disease entity. In addition, the unique features of medulloblastoma in infants and in adults, as compared with childhood and/or adolescent forms, are described.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histological variants of medulloblastoma.
Figure 2: Schematic distribution of the prevalence of the molecular medulloblastoma subtypes among different age groups.

Similar content being viewed by others

Filippo Spreafico, Conrad V. Fernandez, … Kathy Pritchard-Jones

References

  1. Pui, C. H., Gajjar, A. J., Kane, J. R., Qaddoumi, I. A. & Pappo, A. S. Challenging issues in pediatric oncology. Nat. Rev. Clin. Oncol. 8, 540–549 (2011).

    Article  Google Scholar 

  2. Packer, R. J. et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J. Clin. Oncol. 24, 4202–4208 (2006).

    Article  CAS  Google Scholar 

  3. Gajjar, A. et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 7, 813–820 (2006).

    Article  Google Scholar 

  4. Rutkowski, S. et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med. 352, 978–986 (2005).

    Article  CAS  Google Scholar 

  5. Ellison, D. W. et al. β-catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. J. Clin. Oncol. 23, 7951–7957 (2005).

    Article  CAS  Google Scholar 

  6. Packer, R. J. et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children's Cancer Group Study. J. Clin. Oncol. 17, 2127–2136 (1999).

    Article  CAS  Google Scholar 

  7. Silber, J. H. et al. Whole-brain irradiation and decline in intelligence: the influence of dose and age on IQ score. J. Clin. Oncol. 10, 1390–1396 (1992).

    Article  CAS  Google Scholar 

  8. Mulhern, R. K., Merchant, T. E., Gajjar, A. Reddick, W. E. & Kun, L. E. Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol. 5, 399–408 (2004).

    Article  Google Scholar 

  9. Hoppe-Hirsch, E. et al. Medulloblastoma in childhood: progressive intellectual deterioration. Childs Nerv. Syst. 6, 60–65 (1990).

    Article  CAS  Google Scholar 

  10. Laughton, S. J. et al. Endocrine outcomes for children with embryonal brain tumors after risk-adapted craniospinal and conformal primary-site irradiation and high-dose chemotherapy with stem-cell rescue on the SJMB-96 trial. J. Clin. Oncol. 26, 1112–1118 (2008).

    Article  CAS  Google Scholar 

  11. Wolfe, K. R. et al. Cardiorespiratory fitness in survivors of pediatric posterior fossa tumor. J. Pediatr. Hematol. Oncol. 34, e222–e227 (2012).

    Article  Google Scholar 

  12. Ness, K. K., Wall, M. M., Oakes, J. M., Robison, L. L. & Gurney, J. G. Physical performance limitations and participation restrictions among cancer survivors: a population-based study. Ann. Epidemiol. 16, 197–205 (2006).

    Article  Google Scholar 

  13. Armstrong, G. T. et al. Long-term outcomes among adult survivors of childhood central nervous system malignancies in the Childhood Cancer Survivor Study. J. Natl Cancer Inst. 101, 946–958 (2009).

    Article  Google Scholar 

  14. Mabbott, D. J. et al. Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. J. Clin. Oncol. 23, 2256–2263 (2005).

    Article  Google Scholar 

  15. Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002).

    Article  CAS  Google Scholar 

  16. Cho, Y. J. et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 29, 1424–1430 (2011).

    Article  Google Scholar 

  17. Kool, M. et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of, WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 123, 473–484 (2012).

    Article  CAS  Google Scholar 

  18. Louis, D. N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007).

    Article  Google Scholar 

  19. Eberhart, C. G. et al. Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer 94, 552–560 (2002).

    Article  Google Scholar 

  20. Ellison, D. W. Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease. Acta Neuropathol. 120, 305–316 (2010).

    Article  Google Scholar 

  21. Ellison, D. W. et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J. Clin. Oncol. 29, 1400–1407 (2011).

    Article  Google Scholar 

  22. McManamy, C. S. et al. Morphophenotypic variation predicts clinical behavior in childhood non-desmoplastic medulloblastomas. J. Neuropathol. Exp. Neurol. 62, 627–632 (2003).

    Article  Google Scholar 

  23. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  24. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  25. Thompson, M. C. et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24, 1924–1931 (2006).

    Article  CAS  Google Scholar 

  26. Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

    Article  Google Scholar 

  27. Kool, M. et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3, e3088 (2008).

    Article  Google Scholar 

  28. Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012).

    Article  CAS  Google Scholar 

  29. Clifford, S. C. et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5, 2666–2670 (2006).

    Article  CAS  Google Scholar 

  30. Ellison, D. W. et al. Medulloblastoma: clinicopathological correlates of, SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 121, 381–396 (2011).

    Article  CAS  Google Scholar 

  31. Northcott, P. A. et al. Medulloblastomics: the end of the beginning. Nat. Rev. Cancer 12, 818–834 (2012).

    Article  CAS  Google Scholar 

  32. Northcott, P. A., Korshunov, A., Pfister, S. M. & Taylor, M. D. The clinical implications of medulloblastoma subgroups. Nat. Rev. Neurol. 8, 340–351 (2012).

    Article  CAS  Google Scholar 

  33. Mosimann, C., Hausmann, G. & Basler, K. β-catenin hits chromatin: regulation of Wnt target gene activation. Nat. Rev. Mol. Cell Biol. 10, 276–286 (2009).

    Article  CAS  Google Scholar 

  34. Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012).

    Article  CAS  Google Scholar 

  35. Jones, D. T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).

    Article  CAS  Google Scholar 

  36. Pugh, T. J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

    Article  CAS  Google Scholar 

  37. Gilbertson, R. J. Medulloblastoma: signalling a change in treatment. Lancet Oncol. 5, 209–218 (2004).

    Article  Google Scholar 

  38. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    Article  CAS  Google Scholar 

  39. Fujii, K. & Miyashita, T. Gorlin syndrome (nevoid basal cell carcinoma syndrome)—an update and literature review. Pediatr. Int. http://dx.doi.org/10.1111/ped.12461.

  40. Huangfu, D. & Anderson, K. V. Signaling from Smo to Ci/Gli: conservation and diveregence of Hedgehog pathways from Drosophilia to vertebrates. Development 133, 3–14 (2006).

    Article  CAS  Google Scholar 

  41. Goodrich, L. V., Milenkovic´, L. Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  Google Scholar 

  42. Kool, M. et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25, 393–405 (2014).

    Article  CAS  Google Scholar 

  43. Taylor, M. D. et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet. 31, 306–310 (2002).

    Article  CAS  Google Scholar 

  44. Northcott, P. A. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488, 49–56 (2012).

    Article  CAS  Google Scholar 

  45. Shih, D. J. et al. Cytogenetic prognostication within medulloblastoma subgroups. J. Clin. Oncol. 32, 886–896 (2014).

    Article  Google Scholar 

  46. Grammel, D. et al. Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathol. 123, 601–614 (2012).

    Article  CAS  Google Scholar 

  47. Northcott, P. A. et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 122, 231–240 (2011).

    Article  Google Scholar 

  48. Rudin, C. M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    Article  CAS  Google Scholar 

  49. Metcalfe, C. & de Sauvage, F. J. Hedgehog fights back: mechanisms of acquired resistance against Smoothened antagonists. Cancer Res. 71, 5057–5061 (2011).

    Article  CAS  Google Scholar 

  50. Yauch, R. L. et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326, 572–574 (2009).

    Article  CAS  Google Scholar 

  51. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  52. Northcott, P. A. et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428–434 (2014).

    Article  CAS  Google Scholar 

  53. Kawauchi, D. et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21, 168–180 (2012).

    Article  CAS  Google Scholar 

  54. Pei, Y. et al. An animal model of MYC-driven medulloblastoma. Cancer Cell 21, 155–167 (2012).

    Article  CAS  Google Scholar 

  55. Morfouace, M. et al. Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma. Cancer Cell 25, 516–529 (2014).

    Article  CAS  Google Scholar 

  56. Bandopadhayay, P. et al. BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin. Cancer Res. 20, 912–925 (2014).

    Article  CAS  Google Scholar 

  57. Rutkowski. S. et al. Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J. Clin. Oncol. 28, 4961–4968 (2010).

    Article  Google Scholar 

  58. Ashley, D. M. et al. Induction chemotherapy and conformal radiation therapy for very young children with nonmetastatic medulloblastoma: Children's Oncology Group study P9934. J. Clin. Oncol. 30, 3181–3186 (2012).

    Article  CAS  Google Scholar 

  59. Chi, S. N. et al. Feasibility and response to induction chemotherapy intensified with high-dose methotrexate for young children with newly diagnosed high-risk disseminated medulloblastoma. J. Clin. Oncol. 22, 4881–4887 (2004).

    Article  CAS  Google Scholar 

  60. Kool, M., Korshunov, A. & Pfister, S. M. Update on molecular and genetic alterations in adult medulloblastoma. Memo 5, 228–232 (2012).

    Article  Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  62. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  63. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  64. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

Download references

Acknowledgements

The work of the authors is supported, in part, by Cancer Centre CORE Grant CA 21765, the Noyes Brain Tumour Foundation, Musicians Against Childhood Cancer (MACC), and the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data, contributed to discussions of content, wrote the article, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Amar J. Gajjar.

Ethics declarations

Competing interests

A.J.G. and G.W.R. are investigators on a clinical protocol that is funded, in part, by Genentech.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajjar, A., Robinson, G. Medulloblastoma—translating discoveries from the bench to the bedside. Nat Rev Clin Oncol 11, 714–722 (2014). https://doi.org/10.1038/nrclinonc.2014.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.181

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer