Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Mitosis is not a key target of microtubule agents in patient tumors

This article has been updated

Abstract

Mitosis-specific agents have, to date, not been clinically successful. By contrast, microtubule-targeting agents (MTAs) have a long record of success, usually attributed to the induction of mitotic arrest. Indeed, it was this success that led to the search for mitosis-specific inhibitors. We believe the clinical disappointment of mitosis-specific inhibitors stands as evidence that MTAs have been successful not only by interfering with mitosis but, more importantly, by disrupting essential interphase cellular mechanisms. In this Perspective we will review literature that supports a paradigm shift in how we think about one of our most widely used classes of chemotherapeutics—MTAs. We believe that the steady presence and constant physiological role of microtubules are responsible for the overall success of MTAs. While mitosis-specific inhibitors are effective on only a small fraction of the tumor mass (dividing cells), MTAs target tubulin, a protein that has crucial roles in both mitotic and non-mitotic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular organization depicting structures and proteins involved in cell division.
Figure 2: The localization of aurora kinase A (red), aurora kinase B (orange), and polo-like kinases (green) during the different stages of mitosis.
Figure 3: Microtubule-targeting agents induce mitotic arrest and abnormal spindle in preclinical models.
Figure 4: Biopsies obtained from four patients with metastatic breast cancer after treatment with the microtubule-stabilizing agent, ixabepilone (6 mg/m2 per day for 5 days).

Similar content being viewed by others

Change history

  • 04 March 2011

    In the version of this article initially published online, the legend for Figure 3 should have contained the sentence 'Permission for parts c and d obtained from Elsevier © Mabjeesh, N. J. et al. Cancer Cell 3, 363–375 (2003)'. This has now been corrected for the print, HTML and PDF versions of the article.

References

  1. Jordan, M. A. & Kamath, K. How do microtubule-targeted drugs work? An overview. Curr. Cancer Drug Targets 7, 730–742 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Brinkley, B. R. Microtubule organizing centers. Annu. Rev. Cell Biol. 1, 145–172 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Terada, S. & Hirokawa, N. Moving on to the cargo problem of microtubule-dependent motors in neurons. Curr. Opin. Neurobiol. 10, 566–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Marshall, W. F. Basal bodies platforms for building cilia. Curr. Top. Dev. Biol. 85, 1–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Bergen, L. G. & Borisy, G. G. Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J. Cell Biol. 84, 141–150 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Bergen, L. G., Kuriyama, R. & Borisy, G. G. Polarity of microtubules nucleated by centrosomes and chromosomes of Chinese hamster ovary cells in vitro. J. Cell Biol. 84, 151–159 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell. Biol. 10, 682–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Kardon, J. R. & Vale, R. D. Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell. Biol. 10, 854–865 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ito, D. & Matsumoto, T. Molecular mechanisms and function of the spindle checkpoint, a guardian of the chromosome stability. Adv. Exp. Med. Biol. 676, 15–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Schmit, T. L. & Ahmad, N. Regulation of mitosis via mitotic kinases: new opportunities for cancer management. Mol. Cancer Ther. 6, 1920–1931 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Colombo, R. & Moll, J. Target validation and biomarker identification in oncology: the example of aurora kinases. Mol. Diagn. Ther. 12, 71–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Chopra, P., Sethi, G., Dastidar, S. G. & Ray, A. Polo-like kinase inhibitors: an emerging opportunity for cancer therapeutics. Expert Opin. Investig. Drugs 19, 27–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Taylor, S. & Peters, J. M. Polo and Aurora kinases: lessons derived from chemical biology. Curr. Opin. Cell Biol. 20, 77–84 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Nakai, R. et al. K858, a novel inhibitor of mitotic kinesin Eg5 and antitumor agent, induces cell death in cancer cells. Cancer Res. 69, 3901–3909 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Harrison, M. R., Holen, K. D. & Liu, G. Beyond taxanes: a review of novel agents that target mitotic tubulin and microtubules, kinases, and kinesins. Clin. Adv. Hematol. Oncol. 7, 54–64 (2009).

    PubMed  PubMed Central  Google Scholar 

  16. Jackson, J. R., Patrick, D. R., Dar, M. M. & Huang, P. S. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat. Rev. Cancer 7, 107–117 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Dutertre, S., Descamps, S. & Prigent, C. On the role of aurora-A in centrosome function. Oncogene 21, 6175–6183 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Sasai, K. et al. Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil. Cytoskeleton 59, 249–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. van de Weerdt, B. C. & Medema, R. H. Polo-like kinases: a team in control of the division. Cell Cycle 5, 853–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Kishi, K., van Vugt, M. A., Okamoto, K., Hayashi, Y. & Yaffe, M. B. Functional dynamics of Polo-like kinase 1 at the centrosome. Mol. Cell. Biol. 29, 3134–3150 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huszar, D., Theoclitou, M. E., Skolnik, J. & Herbst, R. Kinesin motor proteins as targets for cancer therapy. Cancer Metastasis Rev. 28, 197–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Sarli, V. & Giannis, A. Targeting the kinesin spindle protein: basic principles and clinical implications. Clin. Cancer Res. 14, 7583–7587 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Y. & Xu, W. Progress on kinesin spindle protein inhibitors as anti-cancer agents. Anticancer Agents Med. Chem. 8, 698–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Milas, L. et al. Kinetics of mitotic arrest and apoptosis in murine mammary and ovarian tumors treated with taxol. Cancer Chemother. Pharmacol. 35, 297–303 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Horton, J. K., Houghton, P. J. & Houghton, J. A. Relationships between tumor responsiveness, vincristine pharmacokinetics and arrest of mitosis in human tumor xenografts. Biochem. Pharmacol. 37, 3995–4000 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. NCI Developmental Therapeutics Program Discovery Services[online], (2010).

  27. Bekier, M. E., Fischbach, R., Lee, J. & Taylor, W. R. Length of mitotic arrest induced by microtubule-stabilizing drugs determines cell death after mitotic exit. Mol. Cancer Ther. 8, 1646–1654 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Corbett, T. et al. in Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval (eds Teicher, B. A. & Andrews, P. A) 99–125 (Humana Press, New Jersey, 2004). [Series Ed. Teicher, B. A. Cancer Drug Discovery and Development].

    Book  Google Scholar 

  29. Tubiana, M. & Malaise, E. in Scientific Foundations of Oncology (eds Symington, T. & Carter, R. L.) 126–136 (William Heinemann Medical Books, London, 1976).

    Google Scholar 

  30. Livingston, R. B., Ambus, U., George, S. L., Freireich, E. J. & Hart, J. S. In vitro determination of thymidine-3H labeling index in human solid tumors. Cancer Res. 34, 1376–1380 (1974).

    CAS  PubMed  Google Scholar 

  31. Baserga, R. The relationship of the cell cycle to tumor growth and control of cell division: a review. Cancer Res. 25, 581–595 (1965).

    CAS  PubMed  Google Scholar 

  32. Smith, J. A. & Martin, L. Do cells cycle? Proc. Natl Acad. Sci. USA 70, 1263–1267 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rixe, O. & Fojo, T. Is cell death a critical end point for anticancer therapies or is cytostasis sufficient? Clin. Cancer Res. 13, 7280–7287 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Denduluri, N. et al. Phase II trial of ixabepilone, an epothilone B analog, in patients with metastatic breast cancer previously untreated with taxanes. J. Clin. Oncol. 25, 3421–3427 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Dancey, J. T., Deubelbeiss, K. A., Harker, L. A. & Finch, C. A. Neutrophil kinetics in man. J. Clin. Invest. 58, 705–715 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Steeghs, N. et al. Phase I pharmacokinetic and pharmacodynamic study of the aurora kinase inhibitor danusertib in patients with advanced or metastatic solid tumors. J. Clin. Oncol. 27, 5094–5101 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Mross, K. et al. Phase I dose escalation and pharmacokinetic study of BI 2536, a novel Polo-like kinase 1 inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 2 6, 5511–5517 (2008).

    Article  Google Scholar 

  38. Crosio, C. et al. Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol. Cell. Biol. 22, 874–885 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steegmaier, M. et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 17, 316–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Giannakakou, P. et al. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat. Cell. Biol. 2, 709–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Hsu, L. C. & White, R. L. BRCA1 is associated with the centrosome during mitosis. Proc. Natl Acad. Sci. USA 95, 12983–12988 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lotti, L. V. et al. Subcellular localization of the BRCA1 gene product in mitotic cells. Genes Chromosomes Cancer 35, 193–203 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Roth, D. M., Moseley, G. W., Glover, D., Pouton, C. W. & Jans, D. A. A microtubule-facilitated nuclear import pathway for cancer regulatory proteins. Traffic 8, 673–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Zhu, M. L. et al. Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res. 70, 7992–8002 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gundersen, G. G. & Cook, T. A. Microtubules and signal transduction. Curr. Opin. Cell Biol. 11, 81–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Ganansia-Leymarie, V., Bischoff, P., Bergerat, J. P. & Holl, V. Signal transduction pathways of taxanes-induced apoptosis. Curr. Med. Chem. Anticancer Agents 3, 291–306 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Herbst, R. S. & Khuri, F. R. Mode of action of docetaxel—a basis for combination with novel anticancer agents. Cancer Treat. Rev. 29, 407–415 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Etienne-Manneville, S. From signaling pathways to microtubule dynamics: the key players. Curr. Opin. Cell Biol. 22, 104–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Jang, H. J. et al. Taxol induces oxidative neuronal cell death by enhancing the activity of NADPH oxidase in mouse cortical cultures. Neurosci. Lett. 443, 17–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Pasquier, E. et al. Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway. Mol. Cancer Ther. 3, 1301–1310 (2004).

    CAS  PubMed  Google Scholar 

  51. Tran, T. A. et al. Non-anti-mitotic concentrations of taxol reduce breast cancer cell invasiveness. Biochem. Biophys. Res. Commun. 379, 304–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Kanthou, C. & Tozer, G. M. Tumour targeting by microtubule-depolymerizing vascular disrupting agents. Expert Opin. Ther. Targets 11, 1443–1457 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Pasquier, E., André, N. & Braguer, D. Targeting microtubules to inhibit angiogenesis and disrupt tumour vasculature: implications for cancer treatment. Curr. Cancer Drug Targets 7, 566–581 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Dark, G. G. et al. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 57, 1829–1834 (1997).

    CAS  PubMed  Google Scholar 

  55. Forsyth, P. A. et al. Prospective study of paclitaxel-induced peripheral neuropathy with quantitative sensory testing. J. Neurooncol. 35, 47–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Postma, T. J., Vermorken, J. B., Liefting, A. J., Pinedo, H. M. & Heimans, J. J. Paclitaxel-induced neuropathy. Ann. Oncol. 6, 489–494 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. DeAngelis, L. M., Gnecco, C., Taylor, L. & Warrell, R. P. Jr. Evolution of neuropathy and myopathy during intensive vincristine/corticosteroid chemotherapy for non-Hodgkin's lymphoma. Cancer 67, 2241–2246 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Mielke, S., Sparreboom, A. & Mross, K. Peripheral neuropathy: a persisting challenge in paclitaxel-based regimes. Eur. J. Cancer 42, 24–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Sahenk, Z., Barohn, R., New, P. & Mendell, J. R. Taxol neuropathy. Electrodiagnostic and sural nerve biopsy findings. Arch. Neurol. 51, 726–729 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Argyriou, A. A., Koltzenburg, M., Polychronopoulos, P., Papapetropoulos, S. & Kalofonos, H. P. Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit. Rev. Oncol. Hematol. 66, 218–228 (2008).

    Article  PubMed  Google Scholar 

  61. Giles, F. J. et al. MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 109, 500–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Smith, D. C. et al. A phase I study of XL228, a multitargeted protein kinase inhibitor, in patients (pts) with solid tumors or multiple myeloma [abstract]. J. Clin. Oncol. 28 (15 Suppl.) a3105 (2010).

    Article  Google Scholar 

  63. Andersson, K., Mahr, R., Björkroth, B. & Daneholt, B. Rapid reformation of the thick chromosome fiber upon completion of RNA synthesis at the Balbiani ring genes in Chironomus tentans. Chromosoma 87, 33–48 (1982).

    Article  CAS  PubMed  Google Scholar 

  64. Carvalho, C. et al. Doxorubicin: the good, the bad and the ugly effect. Curr. Med. Chem. 16, 3267–3285 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Pommier, Y. Camptothecins and topoisomerase I: a foot in the door. Targeting the genome beyond topoisomerase I with camptothecins and novel anticancer drugs: importance of DNA replication, repair and cell cycle checkpoints. Curr. Med. Chem. Anticancer Agents 4, 429–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Noordhuis, P., Holwerda, U., Van Laar, J. A., Van der Wilt, C. L. & Peters, G. J. A non-radioactive sensitive assay to measure 5-fluorouracil incorporation into DNA of solid tumors. Nucleosides Nucleotides Nucleic Acids 23, 1481–1484 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ. 22, 151–185 (2003).

    Article  PubMed  Google Scholar 

  68. Adams, C. P. & Brantner, V. V. Estimating the cost of new drug development: is it really 802 million dollars? Health Aff. (Millwood) 25, 420–428 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. X.Yung for immunohistochemical staining of breast cancer samples. This work was supported in part by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the data for the article. E. Komlodi-Pasztor, D. Sackett and T. Fojo made a substantial contribution to discussion of the content, writing the article and preparing it for submission.

Corresponding author

Correspondence to Edina Komlodi-Pasztor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Targets of mitotic-kinase inhibitors (DOC 82 kb)

Supplementary Table 2

Lung cancer: tumor doubling times (DOC 66 kb)

Supplementary Table 3

Colon cancer: doubling time of serum CEA (DOC 49 kb)

Supplementary Table 4

Colon cancer: tumor doubling times (DOC 41 kb)

Supplementary Table 5

Hepatocellular carcinoma: tumor doubling times (DOC 65 kb)

Supplementary Table 6

Breast cancer: tumor doubling times (DOC 61 kb)

Supplementary Table 7

Prostate cancer: doubling time of serum PSA (DOC 68 kb)

Supplementary Table 8

Prostate cancer: tumor doubling times (DOC 37 kb)

Supplementary Table 9

Melanoma: tumor doubling times (DOC 45 kb)

Supplementary Table 10

Neutrophil cellularity and kinetics in humans (DOC 39 kb)

Supplementary Table 11

Partial list of proteins that traffic on or associate with microtubules (DOC 80 kb)

Supplementary Table 12

Agents that disrupt mitosis: limited activity to date (DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komlodi-Pasztor, E., Sackett, D., Wilkerson, J. et al. Mitosis is not a key target of microtubule agents in patient tumors. Nat Rev Clin Oncol 8, 244–250 (2011). https://doi.org/10.1038/nrclinonc.2010.228

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing