Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune parameters affecting the efficacy of chemotherapeutic regimens

Abstract

The outcome of chemotherapy can be influenced by the host immune system at multiple levels. Chemotherapy can kill cancer cells by causing them to elicit an immune response or alternatively, by increasing their susceptibility to immune attack. In addition, chemotherapy can stimulate anticancer immune effectors either in a direct fashion or by subverting immunosuppressive mechanisms. Beyond cancer-cell-intrinsic factors that determine the cytotoxic or cytostatic response, as well as the potential immunogenicity of tumor cells, the functional state of the host immune system has a major prognostic and predictive impact on the fate of cancer patients treated with conventional or targeted chemotherapies. In this Review, we surmise that immune-relevant biomarkers may guide personalized therapeutic interventions including compensatory measures to restore or improve anticancer immune responses.

Key Points

  • It is assumed that chemotherapy acts solely on tumor cells or has immunosuppressive side effects, thus excluding that the immune system may contribute to its therapeutic success

  • Signs of immune activation, and in particular specific anticancer immune response, after chemotherapy may predict therapeutic outcome in patients

  • The composition, function, architecture and gene-expression profile of the immune infiltrate of innate and cognate immune cells in tumors has a major impact on prognosis of most major cancers

  • The presence of CD45RO+ CD8+ memory effector T cells deep in the tumor parenchyma, as well as the local production and/or action of interferon-γ, has a positive prognostic impact

  • Loss-of-function alleles of the Toll-like receptor 4 and purinergic receptor P2RX7 are negative predictors of the response to adjuvant chemotherapy with anthracyclines or oxaliplatin

  • Optimal, personalized cancer therapy will rely on the evaluation of immunological biomarkers—both from the tumor and the immune system—and on compensatory measures that correct defects in the anticancer immune response

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible scenarios of chemotherapeutic action on the cancer–host relationship.
Figure 2: Dialog between dendritic cells and cancer cells that succumb to immunogenic cell death.
Figure 3: A hypothetical pathway involving the immune system in successful chemotherapy.

Similar content being viewed by others

References

  1. Disis, M. L. Immune regulation of cancer. J. Clin. Oncol. 28, 4531–4538 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Finn, O. J. Cancer immunology. N. Engl. J. Med. 358, 2704–2715 (2008).

    CAS  PubMed  Google Scholar 

  3. Kantoff, P. W. et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28, 1099–1105 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kenter, G. G. et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 361, 1838–1847 (2009).

    CAS  PubMed  Google Scholar 

  5. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosenberg, S. A. & Dudley, M. E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 21, 233–240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Petersen, S. L. Alloreactivity as therapeutic principle in the treatment of hematologic malignancies. Studies of clinical and immunologic aspects of allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning. Dan. Med. Bull. 54, 112–139 (2007).

    CAS  PubMed  Google Scholar 

  8. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  9. Leary, R. J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2, 20ra14 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. Segal, N. H. et al. Epitope landscape in breast and colorectal cancer. Cancer Res. 68, 889–892 (2008).

    CAS  PubMed  Google Scholar 

  11. Van Der Bruggen, P. et al. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol. Rev. 188, 51–64 (2002).

    CAS  PubMed  Google Scholar 

  12. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    CAS  PubMed  Google Scholar 

  13. Bartek, J., Hodny, Z. & Lukas, J. Cytokine loops driving senescence. Nat. Cell Biol. 10, 887–889 (2008).

    CAS  PubMed  Google Scholar 

  14. Raulet, D. H. & Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat. Rev. Immunol. 9, 568–580 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Smyth, M. J., Dunn, G. P. & Schreiber, R. D. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol. 90, 1–50 (2006).

    CAS  PubMed  Google Scholar 

  16. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    CAS  PubMed  Google Scholar 

  17. Algarra, I., Garcia-Lora, A., Cabrera, T., Ruiz-Cabello, F. & Garrido, F. The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol. Immunother. 53, 904–910 (2004).

    CAS  PubMed  Google Scholar 

  18. Zitvogel, L., Tesniere, A. & Kroemer, G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol. 6, 715–727 (2006).

    CAS  PubMed  Google Scholar 

  19. Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73 (2008).

    CAS  PubMed  Google Scholar 

  20. Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. van der Most, R. G. et al. Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth. PLoS ONE 4, e6982 (2009).

    PubMed  PubMed Central  Google Scholar 

  22. Ramakrishnan, R. et al. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J. Clin. Invest. 120, 1111–1124 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Boni, A. et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 70, 5213–5219 (2010).

    CAS  PubMed  Google Scholar 

  24. Chiappori, A. A., Soliman, H., Janssen, W. E., Antonia, S. J. & Gabrilovich, D. I. INGN-225: a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect. Expert Opin. Biol. Ther. 10, 983–991 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Obeid, M. et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14, 1848–1850 (2007).

    CAS  PubMed  Google Scholar 

  27. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007).

    CAS  PubMed  Google Scholar 

  28. Carson, W. E. 3rd, Shapiro, C. L., Crespin, T. R., Thornton, L. M. & Andersen, B. L. Cellular immunity in breast cancer patients completing taxane treatment. Clin. Cancer Res. 10, 3401–3409 (2004).

    CAS  PubMed  Google Scholar 

  29. Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R. & Albelda, S. M. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713–6721 (2005).

    CAS  PubMed  Google Scholar 

  30. Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

    CAS  PubMed  Google Scholar 

  31. Borg, C. et al. Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J. Clin. Invest. 114, 379–388 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Menard, C. et al. Natural killer cell IFN-gamma levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res. 69, 3563–3569 (2009).

    CAS  PubMed  Google Scholar 

  33. Formenti, S. C. & Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 10, 718–726 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. Tsai, M. H. et al. Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation. Cancer Res. 67, 3845–3852 (2007).

    CAS  PubMed  Google Scholar 

  35. Pages, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005).

    CAS  PubMed  Google Scholar 

  36. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    CAS  PubMed  Google Scholar 

  37. Pages, F. et al. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29, 1093–1102 (2010).

    CAS  PubMed  Google Scholar 

  38. Martin, F., Ladoire, S., Mignot, G., Apetoh, L. & Ghiringhelli, F. Human FOXP3 and cancer. Oncogene 29, 4121–4129 (2010).

    CAS  PubMed  Google Scholar 

  39. Pages, F. et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 27, 5944–5951 (2009).

    CAS  PubMed  Google Scholar 

  40. Mlecnik, B. et al. Biomolecular network reconstruction identifies T cell homing factors associated with survival in colorectal cancer. Gastroenterology 138, 1429–1440 (2010).

    CAS  PubMed  Google Scholar 

  41. Ogino, S. et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin. Cancer Res. 15, 6412–6420 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rody, A. et al. T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res. 11, R15 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Hiraoka, K. et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br. J. Cancer 94, 275–280 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dieu-Nosjean, M. C. et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J. Clin. Oncol. 26, 4410–4417 (2008).

    CAS  PubMed  Google Scholar 

  45. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    CAS  PubMed  Google Scholar 

  46. Sato, E. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 18538–18543 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Clemente, C. G. et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77, 1303–1310 (1996).

    CAS  PubMed  Google Scholar 

  48. Gao, Q. et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J. Clin. Oncol. 25, 2586–2593 (2007).

    PubMed  Google Scholar 

  49. Sharma, P. et al. CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc. Natl Acad. Sci. USA 104, 3967–3972 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bamias, A. et al. Correlation of NK T-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNFalpha in ascites from advanced ovarian cancer: Association with platinum resistance and prognosis in patients receiving first-line, platinum-based chemotherapy. Gynecol Oncol. 108, 421–427 (2008).

    CAS  PubMed  Google Scholar 

  51. Hornychova, H. et al. Tumor-infiltrating lymphocytes predict response to neoadjuvant chemotherapy in patients with breast carcinoma. Cancer Invest. 26, 1024–1031 (2008).

    CAS  PubMed  Google Scholar 

  52. Denkert, C. et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 28, 105–113 (2010).

    CAS  PubMed  Google Scholar 

  53. Ray-Coquard, I. et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 69, 5383–5391 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Apetoh, L. et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol. Rev. 220, 47–59 (2007).

    CAS  PubMed  Google Scholar 

  55. Zitvogel, L. et al. The anticancer immune response: indispensable for therapeutic success? J. Clin. Invest. 118, 1991–2001 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tesniere, A. et al. Immunogenic cancer cell death: a key-lock paradigm. Curr. Opin. Immunol. 20, 504–511 (2008).

    CAS  PubMed  Google Scholar 

  57. Panaretakis, T. et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 28, 578–590 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tesniere, A. et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29, 482–491 (2010).

    CAS  PubMed  Google Scholar 

  59. Panaretakis, T. et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ. 15, 1499–1509 (2008).

    CAS  PubMed  Google Scholar 

  60. Peng, R. Q. et al. Expression of calreticulin is associated with infiltration of T-cells in stage IIIB colon cancer. World J. Gastroenterol. 16, 2428–2434 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wemeau, M. et al. Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis. 1, e104 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    CAS  PubMed  Google Scholar 

  64. Martins, I. et al. Chemotherapy induces ATP release from tumor cells. Cell Cycle 8, 3723–3728 (2009).

    CAS  PubMed  Google Scholar 

  65. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    CAS  PubMed  Google Scholar 

  66. Bianchi, M. E. HMGB1 loves company. J. Leukoc. Biol. 86, 573–576 (2009).

    CAS  PubMed  Google Scholar 

  67. Sluyter, R., Shemon, A. N. & Wiley, J. S. Glu496 to Ala polymorphism in the P2X7 receptor impairs ATP-induced IL-1 beta release from human monocytes. J. Immunol. 172, 3399–3405 (2004).

    CAS  PubMed  Google Scholar 

  68. Arbour, N. C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25, 187–191 (2000).

    CAS  PubMed  Google Scholar 

  69. Martins, I. et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene doi:10.1038/onc.2010.500

    PubMed  Google Scholar 

  70. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007).

    CAS  PubMed  Google Scholar 

  71. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dhodapkar, K. M. et al. Natural immunity to pluripotency antigen OCT4 in humans. Proc. Natl Acad. Sci. USA 107, 8718–8723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Battaglia, A. et al. Selective changes in the immune profile of tumor-draining lymph nodes after different neoadjuvant chemoradiation regimens for locally advanced cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 76, 1546–1553 (2010).

    CAS  PubMed  Google Scholar 

  74. Zalcman, G. et al. Monitoring of p53 autoantibodies in lung cancer during therapy: relationship to response to treatment. Clin. Cancer Res. 4, 1359–1366 (1998).

    CAS  PubMed  Google Scholar 

  75. Nesslinger, N. J. et al. Standard treatments induce antigen-specific immune responses in prostate cancer. Clin. Cancer Res. 13, 1493–1502 (2007).

    CAS  PubMed  Google Scholar 

  76. Tsavaris, N., Kosmas, C., Vadiaka, M., Kanelopoulos, P. & Boulamatsis, D. Immune changes in patients with advanced breast cancer undergoing chemotherapy with taxanes. Br. J. Cancer 87, 21–27 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ladoire, S. et al. Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin. Cancer Res. 14, 2413–2420 (2008).

    CAS  PubMed  Google Scholar 

  78. de Kruijf, E. M. et al. The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin. Cancer Res. 16, 1272–1280 (2010).

    CAS  PubMed  Google Scholar 

  79. Ashida, A. et al. Expression profiling of esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy: clinical implications. Int. J. Oncol. 28, 1345–1352 (2006).

    CAS  PubMed  Google Scholar 

  80. Taylor, C. et al. Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clin. Cancer Res. 13, 5133–5143 (2007).

    CAS  PubMed  Google Scholar 

  81. Perez, S. A. et al. CD4+CD25+ regulatory T-cell frequency in HER-2/neu (HER)-positive and HER-negative advanced-stage breast cancer patients. Clin. Cancer Res. 13, 2714–2721 (2007).

    CAS  PubMed  Google Scholar 

  82. Horlock, C. et al. The effects of trastuzumab on the CD4+CD25+FoxP3+ and CD4+IL17A+ T-cell axis in patients with breast cancer. Br. J. Cancer 100, 1061–1067 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Reyal, F. et al. A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer. Breast Cancer Res. 10, R93 (2008).

    PubMed  PubMed Central  Google Scholar 

  84. Hsu, D. S. et al. Immune signatures predict prognosis in localized cancer. Cancer Invest. 28, 765–773 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Staaf, J. et al. Identification of subtypes in human epidermal growth factor receptor 2--positive breast cancer reveals a gene signature prognostic of outcome. J. Clin. Oncol. 28, 1813–1820 (2010).

    PubMed  Google Scholar 

  86. Desmedt, C. et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin. Cancer Res. 14, 5158–5165 (2008).

    CAS  PubMed  Google Scholar 

  87. Naito, Y. et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 58, 3491–3494 (1998).

    CAS  PubMed  Google Scholar 

  88. Gianni, L. et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J. Clin. Oncol. 23, 7265–7277 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G. Kroemer is supported by the Ligue Nationale contre le Cancer (Equipes labelisée), Agence Nationale pour la Recherche, European Commission (Active p53, Apo-Sys, ChemoRes, ApopTrain), Fondation pour la Recherche Médicale, Institut National du Cancer and Cancéropôle Ile-de-France.

Author information

Authors and Affiliations

Authors

Contributions

L. Zitvogel, O. Kepp and G. Kroemer contributed equally to researching the data for the article, writing the article and to reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Guido Kroemer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zitvogel, L., Kepp, O. & Kroemer, G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8, 151–160 (2011). https://doi.org/10.1038/nrclinonc.2010.223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.223

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer