Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Taxanes: optimizing adjuvant chemotherapy for early-stage breast cancer

Abstract

Taxanes are among the most widely used chemotherapy agents for advanced breast cancer. Results are now available from 21 trials that randomly allocated nearly 36,000 women with early-stage breast cancer to receive first-generation taxane-based adjuvant chemotherapy versus non-taxane-based adjuvant regimens. Three recent meta-analyses suggest that taxanes are beneficial in the adjuvant setting, irrespective of the patient's age, lymph-node involvement, hormone-receptor expression, and HER2 status. Nevertheless, the optimal role for taxanes in the adjuvant management of early-stage breast cancer remains controversial. We review the results of the first-generation taxane trials and discuss possible explanations for the differences observed in these studies, including variation in the 'strength' of anthracycline therapy in the control arms; suboptimal timing, dosing, or schedule of the taxane regimen; a masking effect of trials that included patients with relatively chemotherapy-insensitive luminal A disease; and decreased representation of the putative taxane-sensitive disease subset. Inclusion criteria for future clinical trials must be revised to account for the molecular heterogeneity of breast cancer and further optimize the role of adjuvant taxane therapy in early-stage disease.

Key Points

  • Recent advances in genomic profiling have highlighted the molecular heterogeneity of breast cancer and the differential responsiveness to chemotherapy according to molecular subtype

  • Cumulative anthracycline administration is associated with rare but serious long-term toxic effects

  • The activity of taxanes in metastatic disease, partial non-cross resistance with anthracyclines, and unique mechanism of action of these agents provide a rationale for evaluating taxanes in the adjuvant setting

  • Existing meta-analyses are limited and no clear conclusions regarding the efficacy of taxanes in various patients subgroups can be drawn

  • Determination of ER or HER2 status alone is unlikely to reveal which patients are likely to benefit from the inclusion of a taxane as adjuvant therapy

  • Incorporation of novel biomarkers into clinical trial designs combined with improved classification of molecular subtypes may help to predict which patients are likely to benefit from taxane treatment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of possible mechanisms of taxane resistance.

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts & Figures 2006, [online] (2009).

  2. Ferlay, J. et al. Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol. 18, 581–592 (2007).

    CAS  PubMed  Google Scholar 

  3. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  4. Goldhirsch, A. et al. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann. Oncol. 18, 1133–1144 (2007).

    CAS  PubMed  Google Scholar 

  5. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    CAS  PubMed  Google Scholar 

  6. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    PubMed  PubMed Central  Google Scholar 

  7. Sledge, G. W. et al. Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an Intergroup trial (E1193). J. Clin. Oncol. 21, 588–592 (2003).

    PubMed  Google Scholar 

  8. Chan, S. et al. Prospective randomized trial of docetaxel versus doxorubicin in patients with metastatic breast cancer. J. Clin. Oncol. 17, 2341–2354 (1999).

    CAS  PubMed  Google Scholar 

  9. Bria, E. et al. Benefit of taxanes as adjuvant chemotherapy for early breast cancer: pooled analysis of 15,500 patients. Cancer 106, 2337–2344 (2006).

    CAS  PubMed  Google Scholar 

  10. De Laurentiis, M. et al. Taxane-based combinations as adjuvant chemotherapy of early breast cancer: a meta-analysis of randomized trials. J. Clin. Oncol. 26, 44–53 (2008).

    CAS  PubMed  Google Scholar 

  11. Ferguson, T., Wilcken, N., Vagg, R., Ghersi, D. & Nowak, A. K. Taxanes for adjuvant treatment of early breast cancer. Cochrane Database of Systematic Reviews, Issue 4. Art. No.:CD004421. doi:10.1002/14651858.CD004421.pub2 (2007).

  12. Desmedt, C. et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin. Cancer Res. 14, 5158–5165 (2008).

    CAS  PubMed  Google Scholar 

  13. Wirapati, P. et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 10, R65 (2008).

    PubMed  PubMed Central  Google Scholar 

  14. Sotiriou, C. & Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 360, 790–800 (2009).

    CAS  PubMed  Google Scholar 

  15. Sotiriou, C. et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA 100, 10393–10398 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Paik, S. et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734 (2006).

    CAS  PubMed  Google Scholar 

  17. Albain, K. et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal, node-positive, ER-positive breast cancer (S8814, INT0100). Abstract #10 presented at the San Antonio Breast Cancer Symposium (2007).

  18. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    CAS  PubMed  Google Scholar 

  19. Ravdin, P. M. in Advances in Breast Cancer Management 2nd edn (eds Gradishar, W. J. & Wood, W. C.) 55–62 (Springer, New York, 2008).

    Google Scholar 

  20. Berry, D. A. et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295, 1658–1667 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. [No authors listed] Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group. Lancet 352, 930–942 (1998).

  22. Bonadonna, G. & Valagussa, P. Dose–response effect of adjuvant chemotherapy in breast cancer. N. Engl. J. Med. 304, 10–15 (1981).

    CAS  PubMed  Google Scholar 

  23. Bonadonna, G., Valagussa, P., Moliterni, A., Zambetti, M. & Brambilla, C. Adjuvant cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer: the results of 20 years of follow-up. N. Engl. J. Med. 332, 901–906 (1995).

    CAS  PubMed  Google Scholar 

  24. Goldhirsch, A., Colleoni, M., Coates, A. S., Castiglione-Gertsch, M. & Gelber, R. D. Adding adjuvant CMF chemotherapy to either radiotherapy or tamoxifen: are all CMFs alike? The International Breast Cancer Study Group (IBCSG). Ann. Oncol. 9, 489–493 (1998).

    CAS  PubMed  Google Scholar 

  25. Engelsman, E. et al. “Classical” CMF versus a 3-weekly intravenous CMF schedule in postmenopausal patients with advanced breast cancer. An EORTC Breast Cancer Co-operative Group phase III trial (10808). Eur. J. Cancer 27, 966–970 (1991).

    CAS  PubMed  Google Scholar 

  26. Levine, M. N. et al. Randomized trial comparing cyclophosphamide, epirubicin, and fluorouracil with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer: update of National Cancer Institute of Canada Clinical Trials Group Trial MA5. J. Clin. Oncol. 23, 5166–5170 (2005).

    CAS  PubMed  Google Scholar 

  27. Poole, C. J. et al. Epirubicin and cyclophosphamide, methotrexate, and fluorouracil as adjuvant therapy for early breast cancer. N. Engl. J. Med. 355, 1851–1862 (2006).

    CAS  PubMed  Google Scholar 

  28. Hutchins, L. F. et al. Randomized, controlled trial of cyclophosphamide, methotrexate, and fluorouracil versus cyclophosphamide, doxorubicin, and fluorouracil with and without tamoxifen for high-risk, node-negative breast cancer: treatment results of Intergroup protocol INT-0102. J. Clin. Oncol. 23, 8313–8321 (2005).

    CAS  PubMed  Google Scholar 

  29. Fumoleau, P. et al. Randomized trial comparing six versus three cycles of epirubicin-based adjuvant chemotherapy in premenopausal, node-positive breast cancer patients: 10-year follow-up results of the French Adjuvant Study Group 01 trial. J. Clin. Oncol. 21, 298–305 (2003).

    CAS  PubMed  Google Scholar 

  30. Bonneterre, J. et al. Epirubicin increases long-term survival in adjuvant chemotherapy of patients with poor-prognosis, node-positive, early breast cancer: 10-year follow-up results of the French Adjuvant Study Group 05 randomized trial. J. Clin. Oncol. 23, 2686–2693 (2005).

    CAS  PubMed  Google Scholar 

  31. Bastholt, L. et al. Dose-response relationship of epirubicin in the treatment of postmenopausal patients with metastatic breast cancer: a randomized study of epirubicin at four different dose levels performed by the Danish Breast Cancer Cooperative Group. J. Clin. Oncol. 14, 1146–1155 (1996).

    CAS  PubMed  Google Scholar 

  32. Fisher, B. et al. Two months of doxorubicin–cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J. Clin. Oncol. 8, 1483–1496 (1990).

    CAS  PubMed  Google Scholar 

  33. Levine, M. N. et al. Randomized trial of intensive cyclophosphamide, epirubicin, and fluorouracil chemotherapy compared with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer. National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 16, 2651–2658 (1998).

    CAS  PubMed  Google Scholar 

  34. [No authors listed] Phase III randomized study of fluorouracil, epirubicin, and cyclophosphamide v fluorouracil, doxorubicin, and cyclophosphamide in advanced breast cancer: an Italian multicenter trial. Italian Multicenter Breast Study with Epirubicin. J. Clin. Oncol. 6, 976–982 (1988).

  35. [No authors listed] A prospective randomized phase III trial comparing combination chemotherapy with cyclophosphamide, fluorouracil, and either doxorubicin or epirubicin. French Epirubicin Study Group. J. Clin. Oncol. 6, 679–688 (1988).

  36. Henderson, I. C. et al. Improved outcomes from adding sequential paclitaxel but not from escalating doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J. Clin. Oncol. 21, 976–983 (2003).

    CAS  PubMed  Google Scholar 

  37. Buzdar, A. U. et al. Evaluation of paclitaxel in adjuvant chemotherapy for patients with operable breast cancer: preliminary data of a prospective randomized trial. Clin. Cancer Res. 8, 1073–1079 (2002).

    CAS  PubMed  Google Scholar 

  38. Joensuu, H. et al. adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N. Engl. J. Med. 354, 809–820 (2006).

    CAS  PubMed  Google Scholar 

  39. Jones, S. E. et al. Phase III trial comparing doxorubicin plus cyclophosphamide with docetaxel plus cyclophosphamide as adjuvant therapy for operable breast cancer. J. Clin. Oncol. 24, 5381–5387 (2006).

    CAS  PubMed  Google Scholar 

  40. Mamounas, E. P. et al. Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J. Clin. Oncol. 23, 3686–3696 (2005).

    CAS  PubMed  Google Scholar 

  41. Martin, M. et al. Adjuvant docetaxel for node-positive breast cancer. N. Engl. J. Med. 352, 2302–2313 (2005).

    CAS  PubMed  Google Scholar 

  42. Evans, T. R. et al. 5-year outcome for women randomised in a phase III trial comparing doxorubicin (A) and cyclophosphamide (C) with doxorubicin and docetaxel (D) as primary medical therapy of breast cancer: an Anglo-Celtic Cooperative Oncology Group Study [abstract]. J. Clin. Oncol. 26 (Suppl.), a540 (2008).

    Google Scholar 

  43. Mavroudis, D. et al. Randomized phase III trial comparing the sequential administration of docetaxel followed by epirubicin plus cyclophosphamide versus FE75C as adjuvant chemotherapy in axillary lymph node-positive breast cancer [abstract]. J. Clin. Oncol. 26 (Suppl.), a521 (2008).

    Google Scholar 

  44. Roché, H. et al. Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC PACS 01 Trial. J. Clin. Oncol. 24, 5664–5671 (2006).

    PubMed  Google Scholar 

  45. Gianni, L. et al. Phase III trial evaluating the addition of paclitaxel to doxorubicin followed by cyclophosphamide, methotrexate, and fluorouracil, as adjuvant or primary systemic therapy: European Cooperative Trial in Operable Breast Cancer. J. Clin. Oncol. 27, 2474–2481 (2009).

    CAS  PubMed  Google Scholar 

  46. Bianco, A. R. et al. Sequential epirubicin–docetaxel–CMF as adjuvant therapy of early breast cancer: results of the Taxit216 multicenter phase III trial [abstract]. J. Clin. Oncol. 24 (Suppl.), aLBA520 (2006).

    Google Scholar 

  47. Francis, P. et al. Adjuvant chemotherapy with sequential or concurrent anthracycline and docetaxel: Breast International Group 02–98 randomized trial. J. Natl Cancer Inst. 100, 121–133 (2008).

    CAS  PubMed  Google Scholar 

  48. Nitz, U. et al. Interim results of Intergroup EC-Doc Trial: a randomized multicenter phase III trial comparing adjuvant CEF/CMF to EC-docetaxel in patients with 1–3 positive lymph nodes [abstract]. J. Clin. Oncol. 26 (Suppl.), a515 (2008).

    Google Scholar 

  49. Fountzilas, G. et al. Postoperative dose-dense sequential chemotherapy with epirubicin, followed by CMF with or without paclitaxel, in patients with high-risk operable breast cancer: a randomized phase III study conducted by the Hellenic Cooperative Oncology Group. Ann. Oncol. 16, 1762–1771 (2005).

    CAS  PubMed  Google Scholar 

  50. Burnell, M. J. et al. Cyclophosphamide, epirubicin and fluorouracil versus dose-dense epirubicin and cyclophosphamide followed by paclitaxel versus doxorubicin and cyclophosphamide followed by paclitaxel in node-positive or high-risk node-negative breast cancer. J. Clin. Oncol. doi:10.1200/JCO.2009.22.1077 (2009).

  51. Ellis, P. et al. Preliminary results of the UK Taxotere as Adjuvant Chemotherapy (TACT) Trial. Abstract #78 presented at the San Antonio Breast Cancer Symposium (2007).

  52. Citron, M. L. et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J. Clin. Oncol. 21, 1431–1439 (2003).

    CAS  PubMed  Google Scholar 

  53. Hudis, C. et al. Five year follow-up of INT C9741: dose-dense (DD) chemotherapy (CRx) is safe and effective. Abstract #41 presented at the San Antonio Breast Cancer Symposium (2005).

  54. Winer, E. P. et al. Failure of higher-dose paclitaxel to improve outcome in patients with metastatic breast cancer: Cancer and Leukemia Group B trial 9342. J. Clin. Oncol. 22, 2061–2068 (2004).

    CAS  PubMed  Google Scholar 

  55. Verrill, M. W. et al. Anglo-Celtic IV: first results of a UK national cancer research network randomised phase 3 pharmacogenetic trial of weekly versus 3 weekly paclitaxel in patients with locally advanced or metastatic breast cancer (ABC) [abstract]. J. Clin. Oncol. 25 (Suppl.), aLBA1005 (2007).

    Google Scholar 

  56. Seidman, A. D. et al. CALGB 9840: phase III study of weekly (W) paclitaxel (P) via 1-hour (h) infusion versus standard (S) 3 h infusion every third week in the treatment of metastatic breast cancer (MBC), with trastuzumab (T) for HER2-positive MBC and randomized for T in HER2-normal MBC [abstract]. J. Clin. Oncol. 22 (Suppl.), a512 (2004).

    Google Scholar 

  57. Harvey, V. et al. Phase III trial comparing three doses of docetaxel for second-line treatment of advanced breast cancer. J. Clin. Oncol. 24, 4963–4970 (2006).

    CAS  PubMed  Google Scholar 

  58. Jones, S. E. et al. Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J. Clin. Oncol. 23, 5542–5551 (2005).

    CAS  PubMed  Google Scholar 

  59. Sparano, J. A. et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N. Engl. J. Med. 358, 1663–1671 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Green, M. C. et al. Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J. Clin. Oncol. 23, 5983–5992 (2005).

    CAS  PubMed  Google Scholar 

  61. Bear, H. D. et al. Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: National Surgical Adjuvant Breast and Bowel Project protocol B-27. J. Clin. Oncol. 24, 2019–2027 (2006).

    CAS  PubMed  Google Scholar 

  62. Loesch, D. M. et al. A randomized, multicenter phase III trial comparing doxorubicin + cyclophosphamide followed by paclitaxel or doxorubicin + paclitaxel followed by weekly paclitaxel as adjuvant therapy for high-risk breast cancer [abstract]. J. Clin. Oncol. 25 (Suppl.), a517 (2007).

    Google Scholar 

  63. Sørlie, T. Molecular classification of breast tumors: toward improved diagnostics and treatments. Methods Mol. Biol. 360, 91–114 (2007).

    PubMed  Google Scholar 

  64. Carey, L. A. et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 13, 2329–2334 (2007).

    CAS  PubMed  Google Scholar 

  65. Fan, C. et al. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 355, 560–569 (2006).

    CAS  PubMed  Google Scholar 

  66. Pusztai, L. et al. Effect of molecular disease subsets on disease-free survival in randomized adjuvant chemotherapy trials for estrogen-receptor positive breast cancer. J. Clin. Oncol. 26, 4679–4683 (2008).

    PubMed  Google Scholar 

  67. Loi, S. et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J. Clin. Oncol. 25, 1239–1246 (2007).

    CAS  PubMed  Google Scholar 

  68. Stewart, L. A. & Parmar, M. K. Meta-analysis of the literature or of individual patient data: is there a difference? Lancet 341, 418–422 (1993).

    CAS  PubMed  Google Scholar 

  69. Duchateau, L. et al. Individual patient- versus literature-based meta-analysis of survival data: time to event and event rate at a particular time can make a difference, an example based on head and neck cancer. Control. Clin. Trials 22, 538–547 (2001).

    CAS  PubMed  Google Scholar 

  70. Andre, F. et al. Estrogen receptor expression and efficacy of docetaxel-containing adjuvant chemotherapy in patients with node-positive breast cancer: results from a pooled analysis. J. Clin. Oncol. 26, 2636–2643 (2008).

    CAS  PubMed  Google Scholar 

  71. Hayes, D. F. et al. HER2 and response to paclitaxel in node-positive breast cancer. N. Engl. J. Med. 357, 1496–1506 (2007).

    CAS  PubMed  Google Scholar 

  72. Rodríguez-Lescure, A. et al. Subgroup analysis of GEICAM 9906 trial comparing six cycles of FE90C (FEC) to four cycles of FE90C followed by 8 weekly paclitaxel administrations (FECP): relevance of HER2 and hormonal status (HR) [abstract]. J. Clin. Oncol. 25 (Suppl.), a10598 (2007).

    Google Scholar 

  73. Jones, S. et al. Docetaxel with cyclophosphamide is associated with an overall survival benefit compared with doxorubicin and cyclophosphamide: 7-year follow-up of US oncology research trial 9735. J. Clin. Oncol. 27, 1177–1183 (2009).

    CAS  PubMed  Google Scholar 

  74. Kostopoulos, I. et al. Evaluation of the prognostic value of HER-2 and VEGF in breast cancer patients participating in a randomized study with dose-dense sequential adjuvant chemotherapy. Breast Cancer Res. Treat. 96, 251–261 (2006).

    CAS  PubMed  Google Scholar 

  75. Harris, L. et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol. 25, 5287–5312 (2007).

    CAS  PubMed  Google Scholar 

  76. Jacquemier, J. et al. Identification of a basal-like subtype and comparative effect of epirubicin-based chemotherapy and sequential epirubicin followed by docetaxel chemotherapy in the PACS 01 breast cancer trial: 33 markers studied on tissue-microarrays (TMA) [abstract]. J. Clin. Oncol. 24 (Suppl.), a509 (2006).

    Google Scholar 

  77. Pusztai, L. Markers predicting clinical benefit in breast cancer from microtubule-targeting agents. Ann. Oncol. 18 (Suppl. 12), xii15–xii20 (2007).

    PubMed  Google Scholar 

  78. Mechetner, E. et al. Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin. Cancer Res. 4, 389–398 (1998).

    CAS  PubMed  Google Scholar 

  79. Trock, B. J., Leonessa, F. & Clarke, R. Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J. Natl Cancer Inst. 89, 917–931 (1997).

    CAS  PubMed  Google Scholar 

  80. Carlson, R. W. et al. A pilot phase II trial of valspodar modulation of multidrug resistance to paclitaxel in the treatment of metastatic carcinoma of the breast (E1195): a trial of the Eastern Cooperative Oncology Group. Cancer Invest. 24, 677–681 (2006).

    CAS  PubMed  Google Scholar 

  81. Hasegawa, S. et al. Mutational analysis of the class I β-tubulin gene in human breast cancer. Int. J. Cancer 101, 46–51 (2002).

    CAS  PubMed  Google Scholar 

  82. Maeno, K. et al. Mutation of the class I β-tubulin gene does not predict response to paclitaxel for breast cancer. Cancer Lett. 198, 89–97 (2003).

    CAS  PubMed  Google Scholar 

  83. Monzo, M. et al. Paclitaxel resistance in non-small-cell lung cancer associated with β-tubulin gene mutations. J. Clin. Oncol. 17, 1786–1793 (1999).

    CAS  PubMed  Google Scholar 

  84. Noguchi, S. Predictive factors for response to docetaxel in human breast cancers. Cancer Sci. 97, 813–820 (2006).

    CAS  PubMed  Google Scholar 

  85. Bernard-Marty, C. et al. Microtubule-associated parameters as predictive markers of docetaxel activity in advanced breast cancer patients: results of a pilot study. Clin. Breast Cancer 3, 341–345 (2002).

    CAS  PubMed  Google Scholar 

  86. Paradiso, A. et al. Biomarkers predictive for clinical efficacy of taxol-based chemotherapy in advanced breast cancer. Ann. Oncol. 16 (Suppl. 4), iv14–iv19 (2005).

    PubMed  Google Scholar 

  87. Hamilton, A. et al. A study of the value of p53, HER2, and Bcl-2 in the prediction of response to doxorubicin and paclitaxel as single agents in metastatic breast cancer: a companion study to EORTC 10923. Clin. Breast Cancer 1, 233–240 (2000).

    CAS  PubMed  Google Scholar 

  88. Kim, S. J. et al. High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin. Cancer Res. 11, 8425–8430 (2005).

    CAS  PubMed  Google Scholar 

  89. Sjöström, J. et al. Predictive value of p53, mdm-2, p21, and mib-1 for chemotherapy response in advanced breast cancer. Clin. Cancer Res. 6, 3103–3110 (2000).

    PubMed  Google Scholar 

  90. Rutgers, E. J., Meijnen, P., Bonnefoi, H. & European Organization for Research and Treatment of Cancer Breast Cancer Group. Clinical trials update of the European Organization for Research and Treatment of Cancer Breast Cancer Group. Breast Cancer Res. 6, 165–169 (2004).

    PubMed  PubMed Central  Google Scholar 

  91. Anand, S., Penrhyn-Lowe, S. & Venkitaraman, A. R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to taxol. Cancer Cell 3, 51–62 (2003).

    CAS  PubMed  Google Scholar 

  92. Herbst, R. S. et al. Multicenter, randomized study of docetaxel versus docetaxel plus oblimersen in patients previously treated for non-small cell lung cancer (NSCLC): B1–06 [abstract B1–06]. J. Thorac. Oncol. 2 (Suppl. 4), s335 (2007).

    Google Scholar 

  93. Rouzier, R. et al. Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc. Natl Acad. Sci. USA 102, 8315–8320 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Andre, F. et al. Microtubule-associated protein-tau is a bifunctional predictor of endocrine sensitivity and chemotherapy resistance in estrogen receptor-positive breast cancer. Clin. Cancer Res. 13, 2061–2067 (2007).

    CAS  PubMed  Google Scholar 

  95. Pusztai, L. et al. Evaluation of microtubule associated protein tau expression as prognostic and predictive marker in the NSABP-B 28 randomized clinical trial [abstract]. J. Clin. Oncol. 27, 4287–4292 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gianni, L. et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J. Clin. Oncol. 23, 7265–7277 (2005).

    CAS  PubMed  Google Scholar 

  97. Dressman, H. K. et al. Gene expression profiles of multiple breast cancer phenotypes and response to neoadjuvant chemotherapy. Clin. Cancer Res. 12, 819–826 (2006).

    CAS  PubMed  Google Scholar 

  98. Chang, J. C. et al. Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients. J. Clin. Oncol. 23, 1169–1177 (2005).

    CAS  PubMed  Google Scholar 

  99. Ayers, M. et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J. Clin. Oncol. 22, 2284–2293 (2004).

    CAS  PubMed  Google Scholar 

  100. Chang, J. C. et al. Gene expression patterns in formalin-fixed, paraffin-embedded core biopsies predict docetaxel chemosensitivity in breast cancer patients. Breast Cancer Res. Treat. 108, 233–240 (2008).

    CAS  PubMed  Google Scholar 

  101. Slamon, D. et al. Role of anthracycline-based therapy in the adjuvant treatment of breast cancer: efficacy analyses determined by molecular subtypes of the disease. Abstract #13 presented at San Antonio Breast Cancer Symposium (2007).

  102. Freedman, O. C., Zimmermann, C. & Clemons, M. J. Interpreting the results of clinical trials of cancer chemotherapy: the importance of reporting concurrent supportive care [abstract]. Cancer Res. 69 (Suppl. 2), a6138 (2009).

    Google Scholar 

  103. Martín, M. et al. Toxicity and health-related quality of life in breast cancer patients receiving adjuvant docetaxel, doxorubicin, cyclophosphamide (TAC) or 5-fluorouracil, doxorubicin and cyclophosphamide (FAC): impact of adding primary prophylactic granulocyte-colony stimulating factor to the TAC regimen. Ann. Oncol. 17, 1205–1212 (2006).

    PubMed  Google Scholar 

  104. Martín, M. et al. Toxicity and health-related quality of life (HRQoL) in node-negative breast cancer (BC) patients (pts) receiving adjuvant treatment with TAC (docetaxel, doxorubicin, cyclophosphamide) or FAC (5-fluorouracil, doxorubicin, cyclophosphamide): impact of adding prophylactic growth factors (GF) to TAC. GEICAM Study 9805 [abstract]. J. Clin. Oncol. 23 (Suppl.), a604 (2005).

    Google Scholar 

  105. Hopwood, P. et al. Impact on quality of life (QoL) of FEC-T compared with FEC or E-CMF: UK Taxotere as Adjuvant Chemotherapy Trial (TACT) 2-year follow-up [abstract]. J. Clin. Oncol. 26 (Suppl.) a548 (2008).

    Google Scholar 

  106. Hopwood, P. et al. Impact on quality of life (QL) during chemotherapy (CT) of FEC-T compared to FEC or E-CMF: results from the UK NCRI Taxotere as Adjuvant Chemotherapy Trial (TACT) [abstract]. J. Clin. Oncol. 23 (Suppl.), a661 (2005).

    Google Scholar 

  107. Ahles, T. A. et al. Quality of life of long-term survivors of breast cancer and lymphoma treated with standard-dose chemotherapy or local therapy. J. Clin. Oncol. 23, 4399–4405 (2005).

    CAS  PubMed  Google Scholar 

  108. Vardy, J., Rourke, S. & Tannock, I. F. Evaluation of cognitive function associated with chemotherapy: a review of published studies and recommendations for future research. J. Clin. Oncol. 25, 2455–2463 (2007).

    PubMed  Google Scholar 

  109. Thornton, L. M., Carson, W. E. 3rd, Shapiro, C. L., Farrar, W. B. & Andersen, B. L. Delayed emotional recovery after taxane-based chemotherapy. Cancer 113, 638–647 (2008).

    CAS  PubMed  Google Scholar 

  110. Evans, T. R. et al. Phase III randomized trial of doxorubicin and docetaxel versus doxorubicin and cyclophosphamide as primary medical therapy in women with breast cancer: an Anglo-Celtic Cooperative Oncology Group study. J. Clin. Oncol. 23, 2988–2995 (2005).

    CAS  PubMed  Google Scholar 

  111. Bear, H. D. et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project protocol B-27. J. Clin. Oncol. 21, 4165–4174 (2003).

    CAS  PubMed  Google Scholar 

  112. Goldstein, L. J. et al. Concurrent doxorubicin plus docetaxel is not more effective than concurrent doxorubicin plus cyclophosphamide in operable breast cancer with 0 to 3 positive axillary nodes: North American Breast Cancer Intergroup Trial E 2197. J. Clin. Oncol. 26, 4092–4099 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Del Mastro, L. et al. Cyclophosphamide, epirubicin, and 5-fluorouracil versus epirubicin plus paclitaxel in node-positive early breast cancer patients: a randomized, phase III study of Gruppo Oncologico Nord Ovest-Mammella Intergruppo Group [abstract]. J. Clin. Oncol. 26 (Suppl.), a516 (2008).

    Google Scholar 

  114. Martin, M. et al. Multicenter, randomized phase III study of adjuvant chemotherapy for high-risk, node-negative breast cancer comparing TAC with FAC: 5-year efficacy analysis of the GEICAM 9805 trial [abstract]. J. Clin. Oncol. 26 (Suppl.), a542 (2008).

    Google Scholar 

  115. Martín, M. et al. Randomized phase 3 trial of fluorouracil, epirubicin, and cyclophosphamide alone or followed by paclitaxel for early breast cancer. J. Natl Cancer Inst. 100, 805–814 (2008).

    PubMed  Google Scholar 

  116. Cognetti, F. et al. Sequential epirubicin–docetaxel–CMF as adjuvant therapy for node-positive early stage breast cancer: updated results of the TAXit216 randomized trial [abstract]. Ann. Oncol. 19 (Suppl.), a1820 (2008).

    Google Scholar 

  117. Rastogi, P. et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project protocols B-18 and B-27. J. Clin. Oncol. 26, 778–785 (2008).

    PubMed  Google Scholar 

  118. Roche, H. H. et al. Prognostic and predictive value of HER2, PR, ER, and Ki67 in the PACS01 trial comparing epirubicin-based chemotherapy to sequential epirubicin followed by docetaxel [abstract]. J. Clin. Oncol. 23 (Suppl.), a605 (2005).

    Google Scholar 

  119. Martín, M. et al. Randomized phase 3 trial of fluorouracil, epirubicin, and cyclophosphamide alone or followed by paclitaxel for early breast cancer. J. Natl Cancer Inst. 100, 805–814 (2008).

    PubMed  Google Scholar 

  120. Möbus, V. J. et al. Dose-dense sequential chemotherapy with epirubicin (E), paclitaxel (T) and cyclophosphamide (C) (ETC) is superior to conventional dosed chemotherapy in high-risk breast cancer patients (≥4 + LN). First results of an AGO trial [abstract]. J. Clin. Oncol. 22 (Suppl.), a513 (2004).

    Google Scholar 

  121. Poole, C. J. et al. tAnGo: a randomized phase III trial of gemcitabine (gem) in paclitaxel-containing, epirubicin/cyclophosphamide-based, adjuvant chemotherapy (CT) for women with early-stage breast cancer (EBC) [abstract]. J. Clin. Oncol. 26 (Suppl.), a506 (2008).

    Google Scholar 

  122. Eiermann, W. et al. BCIRG 005 main efficacy analysis: a phase III randomized trial comparing docetaxel in combination with doxorubicin and cyclophosphamide (TAC) versus doxorubicin and cyclophosphamide followed by docetaxel (AC→T) in women with Her-2/neu negative axillary lymph node positive early breast cancer. Abstract #77 presented at the San Antonio Breast Cancer Symposium (2009).

  123. Swain, S. M. et al. NSABP B-30: definitive analysis of patient outcome from a randomized trial evaluating different schedules and combinations of adjuvant therapy containing doxorubicin, docetaxel and cyclophosphamide in women with operable, node-positive breast cancer. Abstract #75 presented at the San Antonio Breast Cancer Symposium (2009).

  124. Joensuu, H. et al. Significant improvement in recurrence-free survival (RFS) when capecitabine (X) is integrated into docetaxel (T)→5-FU + epirubicin + cyclophosphamide (CEF) adjuvant therapy for high-risk early breast cancer (BC): interim analysis of the FinXX trial. Abstract #82 presented at the San Antonio Breast Cancer Symposium (2009).

  125. Lambert-Falls, R., Deutsch, M. A., Desch, C., Zhou, K. & Perez, E. Phase III adjuvant trial of concurrent epirubicin/taxane vs sequential epirubicin/cyclophosphamide followed by taxane for node positive breast cancer [abstract]. J. Clin. Oncol. 24 (Suppl.), a573 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine J. Piccart-Gebhart.

Ethics declarations

Competing interests

Angelo Di Leo declares he receives grant/research support, and is a consultant for and receives honoraria from Sanofi–Aventis. Martine J. Piccart–Gebhart declares she is a consultant for Abraxis BioScience, Bristol–Myers Squibb and Sanofi–Aventis. L. Bedard declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedard, P., Di Leo, A. & Piccart-Gebhart, M. Taxanes: optimizing adjuvant chemotherapy for early-stage breast cancer. Nat Rev Clin Oncol 7, 22–36 (2010). https://doi.org/10.1038/nrclinonc.2009.186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing