Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular imaging of cancer with positron emission tomography

Key Points

  • Positron emission tomography (PET) is a method by which cellular and molecular events can be followed. Injected radiolabelled molecular probes (tracers) are used to map out the underlying biochemistry.

  • Both small-animal and clinical PET are being used to study cancer in living subjects.

  • 2-18F-fluoro-2-deoxy-D-glucose (FDG) is actively taken up and accumulates in cancer cells. It is useful for diagnosis, staging and monitoring the recurrence of various cancers, including lung, colorectal, melanoma, lymphoma, head and neck, as well as other malignancies.

  • Many tracers already exist for PET that measure cell proliferation, bone remodelling, perfusion, oxygen metabolism, tumour-receptor density and reporter-gene expression. A new generation of tracers is being developed that should help to form libraries of molecular probes for 'customized' imaging approaches.

  • Clinical PET/CT (computed tomography) scanners are now rapidly being installed, and form the basis for merging anatomical information (CT) with functional molecular information (PET) to further advance cancer management with FDG and, eventually, new-generation tracers.

  • Drug and tracer research and development are rapidly evolving and should help to accelerate both the pharmaceutical and imaging industries.

Abstract

The imaging of specific molecular targets that are associated with cancer should allow earlier diagnosis and better management of oncology patients. Positron emission tomography (PET) is a highly sensitive non-invasive technology that is ideally suited for pre-clinical and clinical imaging of cancer biology, in contrast to anatomical approaches. By using radiolabelled tracers, which are injected in non-pharmacological doses, three-dimensional images can be reconstructed by a computer to show the concentration and location(s) of the tracer of interest. PET should become increasingly important in cancer imaging in the next decade.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of positron emission tomography (PET).
Figure 2: FDG, FLT, fluoride ion and FHBG PET images.
Figure 3: FDG PET imaging for monitoring therapy.
Figure 4: Small-animal FDG/124I minibody imaging.
Figure 5: Bi-directional inducible therapeutic and reporter-gene expression.
Figure 6: MicroPET imaging of bi-directional inducible therapeutic and reporter-gene expression.
Figure 7: FDG PET/CT imaging for improved patient management.

Similar content being viewed by others

References

  1. Phelps, M. E., Hoffman, E. J., Mullani, N. A. & Ter-Pogossian, M. M. Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med. 16, 210–224 (1975).

    CAS  PubMed  Google Scholar 

  2. Strijckmans, K. The isochronous cyclotron: principles and recent developments. Comput. Med. Imaging Graph. 25, 69–78 (2001).

    CAS  PubMed  Google Scholar 

  3. Rosenthal, M. S. et al. Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J. Nucl. Med. 36, 1489–1513 (1995).

    CAS  PubMed  Google Scholar 

  4. Cherry, S. R. & Gambhir, S. S. Use of positron emission tomography in animal research. Ilar J. 42, 219–232 (2001).Describes the use of animal PET technology and its many applications.

    CAS  PubMed  Google Scholar 

  5. Chatziioannou, A., Tai, Y. C., Doshi, N. & Cherry, S. R. Detector development for microPET II: a 1 micron resolution PET scanner for small animal imaging. Phys. Med. Biol. 46, 2899–2910 (2001).

    CAS  PubMed  Google Scholar 

  6. Chatziioannou, A. F. Molecular imaging of small animals with dedicated PET tomographs. Eur. J. Nucl. Med. Mol. Imaging 29, 98–114 (2002).

    PubMed  Google Scholar 

  7. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nature Rev. Cancer 2, 11–18 (2002).

    CAS  Google Scholar 

  8. Cutler, C. S., Lewis, J. S. & Anderson, C. J. Utilization of metabolic, transport and receptor-mediated processes to deliver agents for cancer diagnosis. Adv. Drug Deliv. Rev. 37, 189–211 (1999).

    CAS  PubMed  Google Scholar 

  9. Woodward, G. E. & Hudson, M. T. Cancer Res. 14, 599–605 (1954).

    CAS  PubMed  Google Scholar 

  10. Sokoloff, L. et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916 (1977).Describes the use of [14C]deoxyglucose to measure glucose utilization, which is the basis for the eventual development of a PET-compatible tracer (FDG).

    CAS  PubMed  Google Scholar 

  11. Ido, T. et al. Labeled 2-deoxy-d-glucose analogs: 18F labeled 2-deoxy-2-fluoro-d-glucose, 2-deoxy-2-fluoro-d-mannose and 14C-2- deoxy-2-fluoro-d-glucose. J. Labeled Compounds Radiopharmacol. 14, 175–183 (1978).

    CAS  Google Scholar 

  12. Di Chiro, G. et al. in Positron Emission Tomography (eds Greitz, T., Ingvar, D. H. & Widen, L.) 351–361 (Raven, New York, 1985).

    Google Scholar 

  13. Di Chiro, G. Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest. Radiol. 22, 360–371 (1987).

    CAS  PubMed  Google Scholar 

  14. Kubota, K. et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study. J. Nucl. Med. 31, 1927–1932 (1990).

    CAS  PubMed  Google Scholar 

  15. Gupta, N. C. et al. Solitary pulmonary nodules: detection of malignancy with PET with 2-[F-18]-fluoro-2-deoxy-d-glucose. Radiology 184, 441–444 (1992).

    CAS  PubMed  Google Scholar 

  16. Hoh, C. K. et al. Cancer detection with whole-body PET using 2-[18F]fluoro-2-deoxy-d-glucose. J. Comput. Assist. Tomogr. 17, 582–589 (1993).

    CAS  PubMed  Google Scholar 

  17. Smith, T. A. Mammalian hexokinases and their abnormal expression in cancer. Br. J. Biomed. Sci. 57, 170–178 (2000).

    CAS  PubMed  Google Scholar 

  18. Smith, T. A. FDG uptake, tumour characteristics and response to therapy: a review. Nucl. Med. Commun. 19, 97–105 (1998).

    CAS  PubMed  Google Scholar 

  19. Nelson, C. A., Wang, J. Q., Leav, I. & Crane, P. D. The interaction among glucose transport, hexokinase, and glucose-6-phosphatase with respect to 3H-2-deoxyglucose retention in murine tumor models. Nucl. Med. Biol. 23, 533–541 (1996).

    CAS  PubMed  Google Scholar 

  20. Smith, T. A. The rate-limiting step for tumor [18F]fluoro-2-deoxy-d-glucose (FDG) incorporation. Nucl. Med. Biol. 28, 1–4 (2001).

    CAS  PubMed  Google Scholar 

  21. Gambhir, S. S. et al. A tabulated summary of the FDG PET literature. J. Nucl. Med. 42, 1S–93S (2001).Describes in detail the accuracy of FDG PET in many different applications, including all major cancers.

    CAS  PubMed  Google Scholar 

  22. Gambhir, S. S. et al. Analytical decision model for the cost-effective management of solitary pulmonary nodules. J. Clin. Oncol. 16, 2113–2125 (1998).

    CAS  PubMed  Google Scholar 

  23. Scott, W. J., Shepherd, J. & Gambhir, S. S. Cost-effectiveness of FDG-PET for staging non-small cell lung cancer: a decision analysis. Ann. Thorac. Surg. 66, 1876–1883; discussion 1883–1885 (1998).

    CAS  PubMed  Google Scholar 

  24. Huebner, R. H. et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J. Nucl. Med. 41, 1177–1189 (2000).

    CAS  PubMed  Google Scholar 

  25. Park, K. C. et al. Decision analysis for the cost-effective management of recurrent colorectal cancer. Ann. Surg. 233, 310–319 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwimmer, J. et al. A review of the literature for whole-body FDG PET in the management of patients with melanoma. Q. J. Nucl. Med. 44, 153–167 (2000).

    CAS  PubMed  Google Scholar 

  27. Delbeke, D. Oncological applications of FDG PET imaging: brain tumors, colorectal cancer, lymphoma and melanoma. J. Nucl. Med. 40, 591–603 (1999).

    CAS  PubMed  Google Scholar 

  28. Lapela, M. et al. Experience in qualitative and quantitative FDG PET in follow-up of patients with suspected recurrence from head and neck cancer. Eur. J. Cancer 36, 858–867 (2000).

    CAS  PubMed  Google Scholar 

  29. Akhurst, T. et al. An initial experience with FDG-PET in the imaging of residual disease after induction therapy for lung cancer. Ann. Thoracic Surg. 73, 259–264 (2002).

    Google Scholar 

  30. Seltzer, M. A. et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J. Urol. 162, 1322–1328 (1999).

    CAS  PubMed  Google Scholar 

  31. Schroder, W., Zimny, M., Rudlowski, C., Bull, U. & Rath, W. The role of F-18-fluoro-deoxyglucose positron emission tomography (F-18-FDG PET) in diagnosis of ovarian cancer. Int. J. Gynecol. Cancer 9, 117–122 (1999).

    PubMed  Google Scholar 

  32. Shields, A. F., Grierson, J. R., Kozawa, S. M. & Zheng, M. Development of labeled thymidine analogues for imaging tumor proliferation. Nucl. Med. Biol. 23, 17–22 (1996).Describes tracer approaches to the imaging of DNA synthetic rates.

    CAS  PubMed  Google Scholar 

  33. Krohn, K. A., Mankoff, D. A. & Eary, J. F. Imaging cellular proliferation as a measure of response to therapy. J. Clin. Pharmacol. Suppl. 96S–103S (2001).

  34. Shields, A. F. et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nature Med. 4, 1334–1336 (1998).

    CAS  PubMed  Google Scholar 

  35. Blake, G. M., Park-Holohan, S. J., Cook, G. J. & Fogelman, I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin. Nucl. Med. 31, 28–49 (2001).

    CAS  PubMed  Google Scholar 

  36. Ohta, M. et al. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with Tc-99(m)-MDP bone scintigraphy. Nucl. Med. Commun. 22, 875–879 (2001).

    CAS  PubMed  Google Scholar 

  37. Piert, M. et al. Assessment of porcine bone metabolism by dynamic [18F]fluoride ion PET. J. Nucl. Med. 42, 1091–1100 (2001).

    CAS  PubMed  Google Scholar 

  38. Narita, N. et al. Distribution of fluoride concentration in the rat's bone. Calcif. Tissue Int. 46, 200–204 (1990).

    CAS  PubMed  Google Scholar 

  39. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    CAS  PubMed  Google Scholar 

  40. Bacharach, S. L., Libutti, S. K. & Carrasquillo, J. A. Measuring tumor blood flow with H215O: practical considerations. Nucl. Med. Biol. 27, 671–676 (2000).

    CAS  PubMed  Google Scholar 

  41. Weber, W. A. et al. Tumor angiogenesis targeting using imaging agents. Q. J. Nucl. Med. 45, 179–182 (2001).

    CAS  PubMed  Google Scholar 

  42. Koh, W. J. et al. Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int. J. Radiat. Oncol. Biol. Phys. 33, 391–398 (1995).

    CAS  PubMed  Google Scholar 

  43. Nunn, A., Linder, K. & Strauss, H. W. Nitroimidazoles and imaging hypoxia. Eur. J. Nucl. Med. 22, 265–280 (1995).

    CAS  PubMed  Google Scholar 

  44. Fujibayashi, Y. et al. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J. Nucl. Med. 38, 1155–1160 (1997).

    CAS  PubMed  Google Scholar 

  45. Muhr, C. et al. Dopamine receptors in pituitary adenomas: PET visualization with 11C-N-methylspiperone. J. Comput. Assist. Tomogr. 10, 175–180 (1986).

    CAS  PubMed  Google Scholar 

  46. Lucignani, G. et al. Differentiation of clinically non-functioning pituitary adenomas from meningiomas and craniopharyngiomas by positron emission tomography with [18F]fluoro-ethyl-spiperone. Eur. J. Nucl. Med. 24, 1149–1155 (1997).

    CAS  PubMed  Google Scholar 

  47. Anderson, C. J. et al. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J. Nucl. Med. 42, 213–221 (2001).

    CAS  PubMed  Google Scholar 

  48. Henze, M. et al. PET imaging of somatostatin receptors using [68Ga]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J. Nucl. Med. 42, 1053–1056 (2001).

    CAS  PubMed  Google Scholar 

  49. Mach, R. H. et al. [18F]N-(4′-fluorobenzyl)-4-(3-bromophenyl) acetamide for imaging the sigma receptor status of tumors: comparison with [18F]FDG, and [125I]IUDR. Nucl. Med. Biol. 28, 451–458 (2001).

    CAS  PubMed  Google Scholar 

  50. Waterhouse, R. N. & Collier, T. L. In vivo evaluation of [18F]1-(3-fluoropropyl)-4-(4-cyanophenoxymethyl)piperidine: a selective sigma-1 receptor radioligand for PET. Nucl. Med. Biol. 24, 127–134 (1997).

    CAS  PubMed  Google Scholar 

  51. Kortt, A. A., Dolezal, O., Power, B. E. & Hudson, P. J. Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting. Biomol. Eng. 18, 95–108 (2001).

    CAS  PubMed  Google Scholar 

  52. Wu, A. M. et al. High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc. Natl Acad. Sci. USA 97, 8495–8500 (2000). Describes the use of minibodies and diabodies for imaging in small-animal models.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, A. M. & Yazaki, P. J. Designer genes: recombinant antibody fragments for biological imaging. Q. J. Nucl. Med. 44, 268–283 (2000).

    CAS  PubMed  Google Scholar 

  54. Katzenellenbogen, J. A. Designing steriod receptor-based radiotracers to image breast and prostate cancer. J. Nucl. Med. 36 (Suppl.), 8–13 (1995).

    Google Scholar 

  55. Dehdashti, F. et al. Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J. Nucl. Med. 36, 1766–1774 (1995).

    CAS  PubMed  Google Scholar 

  56. Mortimer, J. E. et al. Positron emission tomography with 2-[18F]Fluoro-2-deoxy-d-glucose and 16α-[18F]fluoro-17β-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin. Cancer Res. 2, 933–939 (1996).

    CAS  PubMed  Google Scholar 

  57. Flanagan, F. L. et al. PET assessment of response to tamoxifen therapy in patients with metastatic breast cancer. J. Nucl. Med. 37, 99P (1996).

    Google Scholar 

  58. Bonasera, T. A. et al. Preclinical evaluation of fluorine-18-labeled androgen receptor ligands in baboons. J. Nucl. Med. 37, 1009–1015 (1996).

    CAS  PubMed  Google Scholar 

  59. Downer, J. B. et al. Comparison of animal models for the evaluation of radiolabeled androgens. Nucl. Med. Biol. 28, 613–626 (2001).

    CAS  PubMed  Google Scholar 

  60. Ray, P. et al. Monitoring gene therapy with reporter gene imaging. Semin. Nucl. Med. 31, 312–320 (2001).

    CAS  PubMed  Google Scholar 

  61. Yu, Y. et al. Quantification of target gene expression by imaging reporter gene expression in living animals. Nature Med. 6, 933–937 (2000). Describes the imaging of a reporter gene linked to a therapeutic gene in order to quantify therapeutic gene expression indirectly.

    CAS  PubMed  Google Scholar 

  62. Liang, Q. et al. Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol. Ther. 6, 73–82 (2002).

    CAS  PubMed  Google Scholar 

  63. Sun, X. et al. Quantitative imaging of gene induction in living animals. Gene Ther. 8, 1572–1579 (2001).

    CAS  PubMed  Google Scholar 

  64. Yaghoubi, S. S. et al. Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther. 8, 1072–1080 (2001).

    CAS  PubMed  Google Scholar 

  65. Jacobs, A. et al. Functional coexpression of HSV-1 thymidine kinase and green fluorescent protein: implications for noninvasive imaging of transgene expression. Neoplasia 1, 154–161 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tjuvajev, J. G. et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res. 58, 4333–4341 (1998).

    CAS  PubMed  Google Scholar 

  67. Gambhir, S. S. et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J. Nucl. Med. 39, 2003–2011 (1998).

    CAS  PubMed  Google Scholar 

  68. Gambhir, S. S. et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl Acad. Sci. USA 96, 2333–2338 (1999).Describes the use of a PET reporter gene carried in an adenovirus to image virus-mediated gene delivery and expression in living mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. MacLaren, D. C. et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 6, 785–791 (1999).

    CAS  PubMed  Google Scholar 

  70. Gambhir, S. S. et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc. Natl Acad. Sci. USA 97, 2785–2790 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liang, Q. et al. Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther. 8, 1490–1498 (2001).

    CAS  PubMed  Google Scholar 

  72. Gambhir, S. S. et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2, 118–138 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Moolten, F. L. Suicide genes for cancer therapy. Sci. Med. 4, 16–25 (1997).

    CAS  Google Scholar 

  74. Yaghoubi, S. et al. Human pharmacokinetic and dosimetry studies of [18F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J. Nucl. Med. 42, 1225–1234 (2001).

    CAS  PubMed  Google Scholar 

  75. Jacobs, A. et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358, 727–729 (2001).

    CAS  PubMed  Google Scholar 

  76. Hara, T., Kosaka, N. & Kishi, H. PET imaging of prostate cancer using carbon-11-choline. J. Nucl. Med. 39, 990–995 (1998).

    CAS  PubMed  Google Scholar 

  77. Kotzerke, J. et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur. J. Nucl. Med. 27, 1415–1419 (2000).

    CAS  PubMed  Google Scholar 

  78. Price, D. T. et al. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J. Urol. 168, 273–280 (2002).

    PubMed  Google Scholar 

  79. Jager, P. L. et al. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J. Nucl. Med. 42, 432–445 (2001).

    CAS  PubMed  Google Scholar 

  80. Tavitian, B. et al. In vivo imaging of oligonucleotides with positron emission tomography. Nature Med. 4, 467–471 (1998).

    CAS  PubMed  Google Scholar 

  81. Tavitian, B. In vivo antisense imaging. Q. J. Nucl. Med. 44, 236–255 (2000).

    CAS  PubMed  Google Scholar 

  82. Hnatowich, D. J. Antisense imaging: where are we now? Cancer Biother. Radiopharm. 15, 447–457 2000).

    CAS  PubMed  Google Scholar 

  83. Paulmurugan, R., Umezawa, Y. & Gambhir, S. S. Imaging protein–protein interactions in living subjects by a reporter protein reconstitution and complementation strategies. Mol. Imaging Biol. (in the press).

  84. Liu, X. et al. Partial correction of endogenous ΔF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nature Biotechnol. 20, 47–52 (2002).

    CAS  Google Scholar 

  85. Puttaraju, M., DiPasquale, J., Baker, C. C., Mitchell, L. G. & Garcia-Blanco, M. A. Messenger RNA repair and restoration of protein function by spliceosome-mediated RNA trans-splicing. Mol. Ther. 4, 105–114 (2001).

    CAS  PubMed  Google Scholar 

  86. Bhaumik, S., Lewis, X., Puttaraju, M., Mitchell, L. G. & Gambhir, S. S. Imaging mRNA levels in living animals through a novel RNA trans-splicing signal amplification approach. Mol. Imaging Biol. (in the press).

  87. Becker-Hapak, M., McAllister, S. S. & Dowdy, S. F. TAT-mediated protein transduction into mammalian cells. Methods 24, 247–256 (2001).

    CAS  PubMed  Google Scholar 

  88. Lewis, J. S. et al. Copper bis(diphosphine) complexes: radiopharmaceuticals for the detection of multi-drug resistance in tumours by PET. Eur. J. Nucl. Med. 27, 638–646 (2000).

    CAS  PubMed  Google Scholar 

  89. Zervos, E. E., Desai, D. C., DePalatis, L. R., Soble, D. & Martin, E. W. 18F-labeled fluorodeoxyglucose positron emission tomography-guided surgery for recurrent colorectal cancer: a feasibility study. J. Surg. Res. 97, 9–13 (2001).

    CAS  PubMed  Google Scholar 

  90. Silverman, D. H. et al. Evaluating tumor biology and oncological disease with positron-emission tomography. Semin. Radiat. Oncol. 8, 183–196 (1998).

    CAS  PubMed  Google Scholar 

  91. Krohn, K. A. Evaluation of alternative approaches for imaging cellular growth. Q. J. Nucl. Med. 45, 174–178 (2001).

    CAS  PubMed  Google Scholar 

  92. Townsend, D. W. & Cherry, S. R. Combining anatomy and function: the path to true image fusion. Eur. Radiol. 11, 1968–1974 (2001).

    CAS  PubMed  Google Scholar 

  93. Townsend, D. W. A combined PET/CT scanner: the choices. J. Nucl. Med. 42, 533–534 (2001).Describes the PET/CT technology to perform simultaneous functional and anatomical imaging in patients.

    CAS  PubMed  Google Scholar 

  94. Ell, P. J. & Von Schulthess, G. K. PET/CT: a new road map. Eur. J. Nucl. Med. Mol. Imaging 29, 719–720 (2002).

    PubMed  Google Scholar 

  95. Kluetz, P. G. et al. Combined PET/CT imaging in oncology. Impact on patient management. Clin. Positron Imaging 3, 223–230 (2000).

    PubMed  Google Scholar 

  96. Paulus, M. J., Gleason, S. S., Kennel, S. J., Hunsicker, P. R. & Johnson, D. K. High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2, 62–70 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Paulus, M. J., Gleason, S. S., Easterly, M. E. & Foltz, C. J. A review of high-resolution X-ray computed tomography and other imaging modalities for small animal research. Lab. Anim. 30, 36–45 (2001).

    CAS  Google Scholar 

  98. Berger, F. et al. Whole body skeletal imaging in mice using MicroPET and MicroCAT: new tools for small animal bone imaging. Eur. J. Nucl. Med. (in the press).

  99. Shao, Y. et al. Simultaneous PET and MR imaging. Phys. Med. Biol. 42, 1965–1970 (1997).

    CAS  PubMed  Google Scholar 

  100. Vaalburg, W., Hendrikse, N. H. & de Vries, E. F. Drug development, radiolabelled drugs and PET. Ann. Med. 31, 432–437 (1999).

    CAS  PubMed  Google Scholar 

  101. Cherry, S. R. Fundamentals of positron emission tomography and applications in preclinical drug development. J. Clin. Pharmacol. 41, 482–491 (2001).

    CAS  PubMed  Google Scholar 

  102. Price, P. Monitoring response to treatment in the development of anticancer drugs using PET. Nucl. Med. Biol. 27, 691 (2000).

    CAS  PubMed  Google Scholar 

  103. Katz, R., Wagner, H. N., Fauntleroy, M., Kuwert, T. & Frank, R. The use of imaging as biomarkers in drug development: regulatory issues worldwide. J. Clin. Pharmacol. Suppl. 118S (2001).

  104. Paans, A. M. & Vaalburg, W. Positron emission tomography in drug development and drug evaluation. Curr. Pharm. Des. 6, 1583–1591 (2000).

    CAS  PubMed  Google Scholar 

  105. Fowler, J. S., Volkow, N. D., Wang, G. J., Ding, Y. S. & Dewey, S. L. PET and drug research and development. J. Nucl. Med. 40, 1154–1163 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank M.E. Phelps, H.R. Herschman and J.R. Barrio for their strong mentorship over the last decade. I also thank N. Satyamurthy, M. Namavari, T. Toyokuni, J. Rao, A.Wu, L. Wu, H. Wu, M. Carey, A. Berk, O. Witte, C. Sawyers, R. Reiter, A. Beldegrun, J. Czernin, M. Seltzer, D. Silverman, C. Hoh, H.R. Schelbert, H. Kornblum, D. Smith, D. Agus, S.C. Huang, J. Braun, S. Chow, D.L. Kaufman, S.R. Cherry, A. Chatziioannou, M. Dahlbom and E. Hoffman for their enormous help over the years. Finally, I thank all the postdoctoral fellows, graduate and undergraduate students in my laboratory who have given and continue to enthusiastically give their full efforts towards building a new field of molecular imaging.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

bone cancer

brain cancer

breast cancer

colorectal cancer

lymphoma

melanoma

non-small-cell lung cancer

ovarian cancer

prostate cancer

GenBank

HSV1-tk

LocusLink

D2R

ERBB2

somatostatin receptor

Medscape DrugInfo

ganciclovir

penciclovir

tamoxifen

FURTHER INFORMATION

Academy of Molecular Imaging

FDG PET whole-body imaging atlas with over 100 oncology cases)

General resource for the molecular imaging field

Society for Molecular Imaging

Society of Nuclear Medicine

Glossary

TRACER

Also known as molecular probe or reporter probe. This molecule has a radioisotope attached to it and is injected in non-pharmacological amounts to provide imaging signal related to target(s) of interest. For PET tracers, the radioisotope is a positron emitter (e.g. 18F).

POSITRON

A particle that has the same mass as an electron, but that carries a positive charge.

CYCLOTRON

A device that is used to accelerate charged particles to create a collision between the charged particle and a target, so that a radioactive isotope can be produced for further incorporation into a molecule of interest.

GENERATOR

A device that is used to separate and extract a radioisotope through the use of a 'parent' isotope that constantly leads to a 'daughter' isotope.

PHARMACOKINETICS

The study of the time course of absorption, distribution, metabolism and excretion of drugs and their metabolites in body tissues and fluids.

SMART PROBES

Probes that are used in optical and magnetic resonance imaging that can be kept relatively silent until they interact with the target. After interaction, they become activated and produce a detectable signal.

MRI

(Magnetic resonance imaging). A technique to image subjects through the use of a magnetic field that aligns endogenous (for example, proton) or exogenous (for example, gadolinium) magnetic moments. Provides both anatomical imaging and functional imaging.

CHEMISORPTION

A chemical adsorption process in which weak chemical bonds are formed between gas or liquid molecules and a solid surface.

LIPOPHILICITY

The degree of affinity for fat.

MINIBODIES

An engineered antibody construct that consists of the variable-heavy- and variable-light-chain domains of a native antibody that is fused to the hinge region and to the CH3 domain of the immunogloblin molecule. Minibodies are small versions of whole antibodies, encoded in a single protein chain, that retain the antigen-binding region, the CH3 domain (to allow assembly into a bivalent molecule), and the antibody hinge (to accommodate dimerization by disulphide linkages).

DIABODIES

Engineered antibody fragments that are bivalent or bispecific molecules generated by dimerization of two variable-heavy–variable-light fragments. These molecules clear much more rapidly from the blood than do full antibodies.

Na/I SYMPORTER

A transporter that is found primarily in thyroid epithelial tissue that co-transports both iodide and sodium from extracellular fluid into cells.

SUICIDE GENE

A gene that can be introduced into target cells that will, under the appropriate conditions, lead to destruction of that cell. The herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) is an example of a suicide gene. It encodes a protein that, in the presence of pro-drugs such as ganciclovir, leads to cell death. Suicide-gene-therapy approaches have been attempted as a way to destroy cancer cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gambhir, S. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2, 683–693 (2002). https://doi.org/10.1038/nrc882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing