Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Scatter-factor and semaphorin receptors: cell signalling for invasive growth

Key Points

  • Invasive growth is a complex genetic programme in which cell proliferation combines with cell–cell dissociation and movement, matrix degradation and survival. It occurs under physiological conditions — during organ development and regeneration, axon guidance or wound healing — and in carcinoma progression, in which it is instrumental in tumour invasion and metastasis.

  • Scatter factors (mainly hepatocyte growth factor, HGF) and their receptors (the MET tyrosine kinase receptor) are the main mediators of normal and neoplastic invasive growth. Data are emerging that two other families of molecules that are structurally related to MET — semaphorins (acting as ligands) and plexins (acting as receptors) — are involved in the control of invasive growth.

  • MET activity is deregulated in many human cancers owing to genetic mutations, gene amplification, protein overexpression or production of HGF-dependent autocrine circuits. Some semaphorins are overexpressed in clinically aggressive and metastatic tumours.

  • Scatter factors induce invasive growth by affecting the expression, topographical localization or activity of cadherins, integrins and matrix metalloproteinases. This results in disruption of intercellular junctions, dissolution of the epithelial basement membrane and integrin-dependent interaction with extracellular matrix components that are not commonly recognized by quiescent cells, which in turn supports cell survival and invasion through stromal surroundings.

  • MET signals are channelled by an unconventional multi-docking site that consists of two tyrosines that, when phosphorylated, recruit a wide spectrum of transducers and adaptors (phosphatidylinositol 3-kinase (PI3K), SRC, GRB2, SHC, GAB1 and STAT3), as well as by the α6β4 integrin, which forms a complex with MET and whose cytoplasmic domain provides additional docking sites for PI3K and SHC. Enhanced activation of the SHC–GRB2–SOS–RAS pathway results in stimulation of cell proliferation and transformation, whereas selective recruitment of PI3K promotes cell migration and survival.

  • Plexins do not display an intrinsic catalytic activity, but can be phosphorylated by means of associated tyrosine kinases. They crucially control the dynamics of actin microfilaments by impinging on the RHO and RAC small GTPases.

  • The specificity of the biological response that is evoked by scatter factors is likely to result from the integration of quantitative and qualitative regulation of signalling outputs. To elicit invasive growth, activation of 'public' downstream effectors must be sustained over time, and this can be achieved by combinatorial association of MET with 'private' partners that tune MET signalling potential by functioning as scaffolds for controlled recruitment of specific subsets of transducers.

  • Some variants of scatter factors can behave, both in vitro and in vivo, as partial agonists, thereby retaining some of the biological properties of the parental ligands, while being deprived of others, or as pure antagonists, completely inhibiting the function of the parental ligands. These activities might be exploited therapeutically to promote cell survival and organ regeneration without inducing cell invasion, or to hamper metastases during progression of cancers in which the HGF–MET system is deregulated.

Abstract

Malignant disease occurs when neoplastic cells abandon their primary site of accretion, cross tissue boundaries and penetrate the vasculature to colonize distant sites. This process —metastasis — is the aberrant counterpart of a physiological programme for organ regeneration and maintenance. Scatter factors and semaphorins, together with their receptors, help to orchestrate this programme. What are the differences between physiological and pathological activation of these signalling molecules, and can we exploit them therapeutically to prevent metastasis?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrins, cadherins and matrix metalloproteinases as effectors of scatter-factor-dependent invasive growth and angiogenesis.
Figure 2: The signalling pathways responsible for MET-dependent invasive growth.
Figure 3: Control of MET downregulation.
Figure 4: Plexin-B-dependent control of cell repulsion.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  2. Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Bissell, M. J. & Radisky, D. Outting tumours in context. Nature Rev. Cancer 1, 46–54 (2001).

    CAS  Google Scholar 

  4. Stoker, M. Gherardi, E., Perryman, M. & Gray, J. Scatter factor is a fibroblast-derived modulator of epithelial cell motility. Nature 327, 239–242 (1987).

    CAS  PubMed  Google Scholar 

  5. Nakamura, T. et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 342, 440–443 (1989).

    CAS  PubMed  Google Scholar 

  6. Montesano, R., Matsumoto, K., Nakamura, T. & Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901–908 (1991).

    CAS  PubMed  Google Scholar 

  7. Naldini, L. et al. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the Met receptor. EMBO J. 10, 2867–2878 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Skeel, A. et al. Macrophage stimulating protein: purification, partial amino acid sequence, and cellular activity. J. Exp. Med. 173, 1227–1234 (1991).

    CAS  PubMed  Google Scholar 

  9. Giordano, S., Ponzetto, C., Di Renzo, M. F., Cooper, C. S. & Comoglio, P. M. Tyrosine kinase receptor indistinguishable from the c-Met protein. Nature 339, 155–156 (1989).

    CAS  PubMed  Google Scholar 

  10. Gaudino, G. et al. RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J. 13, 3524–3532 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, M. H. et al. Identification of the RON gene product as the receptor for the human macrophage stimulating protein. Science 266, 117–119 (1994).

    CAS  PubMed  Google Scholar 

  12. Kolodkin, A. L., Matthes, D. J. & Goodman, C. S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75, 1389–1399 (1993).

    CAS  PubMed  Google Scholar 

  13. Winberg, M. L. et al. Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell 95, 903–916 (1998).

    CAS  PubMed  Google Scholar 

  14. Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99, 71–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Tamagnone, L. & Comoglio, P. M. Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell Biol. 10, 377–383 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Montesano, R., Schaller, G. & Orci, L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66, 697–711 (1991).

    CAS  PubMed  Google Scholar 

  17. Berdichevsky, F., Alford, D., Souza B. & Taylor-Papadimitriou, J. Branching morphogenesis of human mammary epithelial cells in collagen gels. J. Cell Sci. 107, 3557–3568 (1994).

    CAS  PubMed  Google Scholar 

  18. Soriano, J. V., Pepper, M. S., Nakamura, T., Orci, L. & Montesano, R. Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J. Cell Sci. 108, 413–430 (1995).

    CAS  PubMed  Google Scholar 

  19. Niemann, C. et al. Reconstitution of mammary gland development in vitro: requirement of c-Met and c-ErbB2 signaling for branching and alveolar morphogenesis. J. Cell Biol. 143, 533–545 (1998).Shows that HGF promotes the formation of branched tubules in mouse mammary epithelial cells that are cultured in matrigel, as well as in human mammary carcinoma tissue, in explant culture. The same morphogenetic response can be observed following transfection of GAB1, MET's main intracellular substrate.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brinkmann, V., Foroutan, H., Sachs, H., Weidner, K. M. & Birchmeier, W. Hepatocyte growth factor/scatter factor induces a variety of tissue specific morphogenic programs in epithelial cells. J. Cell Biol. 131, 1573–1586 (1995).

    CAS  PubMed  Google Scholar 

  21. Bussolino, F. et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119, 629–640 (1992).

    CAS  PubMed  Google Scholar 

  22. Schmidt, C. et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699–702 (1995).

    CAS  PubMed  Google Scholar 

  23. Uehara, Y. et al. Placental defect and embryonal lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373, 702–705 (1995).

    CAS  PubMed  Google Scholar 

  24. Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A. & Birchmeier, C. Essential role for the c-Met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376, 768–771 (1995).

    CAS  PubMed  Google Scholar 

  25. Yu, T. W. & Bargmann, C. I. Dynamic regulation of axon guidance. Nature Neurosci. 4, 1169–1176 (2001).

    CAS  PubMed  Google Scholar 

  26. Ebens, A. et al. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17, 1157–1172 (1996).

    CAS  PubMed  Google Scholar 

  27. Wong, V. et al. Hepatocyte growth factor promotes motor neuron survival and synergizes with ciliary neurotrophic factor. J. Biol. Chem. 272, 5187–5191 (1997).

    CAS  PubMed  Google Scholar 

  28. Yamamoto, Y. et al. Hepatocyte growth factor (HGF/SF) is a muscle-derived survival factor for a subpopulation of embryonic motoneurons. Development 124, 2903–2913 (1997).

    CAS  PubMed  Google Scholar 

  29. Maina, F., Hilton, M. C., Ponzetto, C., Davies, A. M. & Klein, R. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev. 11, 3341–3350 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Maina, F. et al. Multiple roles for hepatocyte growth factor in sympathetic neuron development. Neuron 20, 835–846 (1998).

    CAS  PubMed  Google Scholar 

  31. Luo, Y., Raible, D. & Raper, J. A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75, 217–227 (1993).

    CAS  PubMed  Google Scholar 

  32. Wong, J. T., Wong, S. T. & O'Connor, T. P. Ectopic semaphorin-1a functions as an attractive guidance cue for developing peripheral neurons. Nature Neurosci. 2, 798–803 (1999).

    CAS  PubMed  Google Scholar 

  33. de Castro, F., Hu, L., Drabkin, H., Sotelo, C. & Chedotal, A. Chemoattraction and chemorepulsion of olfactory bulb axons by different secreted semaphorins. J. Neurosci. 19, 4428–4436 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Polleux, F., Morrow, T. & Ghosh, A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567–573 (2000).

    CAS  PubMed  Google Scholar 

  35. Miao, H. Q. et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J. Cell Biol. 146, 233–242 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cooper, C. S. et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311, 29–33 (1984).

    CAS  PubMed  Google Scholar 

  37. Rong, S., Segal, S., Anver, M., Resau, J. H. & Vande Woude, G. F. Invasiveness and metastasis of NIH3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc. Natl Acad. Sci. USA 91, 4731–4735 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bellusci, S. et al. Creation of an hepatocyte growth factor/scatter factor autocrine loop in carcinoma cells induces invasive properties associated with increased tumorigenicity. Oncogene 9, 1091–1099 (1994).

    CAS  PubMed  Google Scholar 

  39. Jeffers, M., Rong, S., Anver, M. & Vande Woude, G. F. Autocrine hepatocyte growth factor/scatter factor signalling induces transformation and the invasive/metastatic phenotype in C127 cells. Oncogene 13, 853–861 (1996).

    CAS  PubMed  Google Scholar 

  40. Meiners, S., Brinkmann, V., Naundorf, H. & Birchmeier, W. Role of morphogenetic factors in metastasis of mammary carcinoma cells. Oncogene 16, 9–20 (1998).

    CAS  PubMed  Google Scholar 

  41. Liang, T. J., Reid, A. E., Xavier, R., Cardiff, R. D. & Wang, T. C. Transgenic expression of Tpr–Met oncogene leads to development of mammary hyperplasia and tumors. J. Clin. Invest. 97, 2872–2877 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeffers, M. et al. The mutationally activated Met receptor mediates motility and metastasis. Proc. Natl Acad. Sci. USA 95, 14417–14422 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, R., Ferrell, L. D., Faouzi, S., Maher, J. J. & Bishop, M. J. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J. Cell Biol. 153, 1023–1034 (2001).The first in vivo demonstration that transgenic overexpression of wild-type Met in hepatocytes of mice allows HGF-independent activation of the receptor, leading to development of hepatocellular carcinomas. Inactivation of the transgene results in regression of even highly advanced tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Takayama, H. et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc. Natl Acad. Sci. USA 94, 701–706 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Otsuka, T. et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res. 58, 5157–5167 (1998).

    CAS  PubMed  Google Scholar 

  46. Ferracini, R. et al. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 10, 739–749 (1995).

    CAS  PubMed  Google Scholar 

  47. Ferracini, R. et al. Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas. Oncogene 12, 1697–1705 (1996).

    CAS  PubMed  Google Scholar 

  48. Scotlandi, K. et al. Expression of Met/hepatocyte growth factor receptor gene and malignant behavior of musculoskeletal tumors. Am. J. Pathol. 149, 1209–1219 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Di Renzo, M. F. et al. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene 7, 2549–2553 (1992).

    CAS  PubMed  Google Scholar 

  50. Di Renzo, M. F. et al. Overexpression of the MET/HGF receptor in ovarian cancer. Int. J. Cancer 58, 658–662 (1994).

    CAS  PubMed  Google Scholar 

  51. Di Renzo, M. F., Poulsom, R., Olivero, M., Comoglio, P. M. & Lemoine, N. R. Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res. 55, 1129–1138 (1995).

    CAS  PubMed  Google Scholar 

  52. Humphrey, P. A. et al. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol. 147, 386–396 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Natali, P. G. et al. Overexpression of the MET/HGF receptor in renal cell carcinomas. Int. J. Cancer 69, 212–217 (1996).

    CAS  PubMed  Google Scholar 

  54. Ruco, L. et al. Expression of Met protein in thyroid tumours. J. Pathol. 180, 266–270 (1996).

    CAS  PubMed  Google Scholar 

  55. Tuck, A. B., Park, M., Sterns, E. E., Boag, A. & Elliott, B. E. Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am. J. Pathol. 148, 225–232 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ueki, T., Fujimoto, J., Suzuki, T., Yamamoto, H. & Okamoto, E. Expression of hepatocyte growth factor and its receptor, the c-Met proto-oncogene, in hepatocellular carcinoma. Hepatology 25, 619–623 (1997).

    CAS  PubMed  Google Scholar 

  57. Jin, L. et al. Expression of scatter factor and c-met receptor in benign and malignant breast tissue. Cancer 79, 749–760 (1997).

    CAS  PubMed  Google Scholar 

  58. Toniguchi, K. et al. The relation between the growth patterns of gastric carcinoma and the expression of hepatocyte growth factor receptor (c-Met), autocrine motility factor receptor, and urokinase-type plasminogen activator receptor. Cancer 82, 2112–2122 (1998).

    Google Scholar 

  59. Porte, H. et al. Overexpression of stromelysin-3, BM-40/SPARC, and MET genes in human esophageal carcinoma: implications for prognosis. Clin. Cancer Res. 4, 1375–1382 (1998).

    CAS  PubMed  Google Scholar 

  60. Zanetti, A. et al. Expression of Met protein and urokinase-type plasminogen activator receptor (uPA-R) in papillary carcinoma of the thyroid. J. Pathol. 186, 287–291 (1998).

    CAS  PubMed  Google Scholar 

  61. Camp, R. L., Rimm, E. B. & Rimm, D. L. Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma. Cancer 86, 2259–2265 (1999).

    CAS  PubMed  Google Scholar 

  62. Chen, B. K. et al. Overexpression of c-Met protein in human thyroid tumors correlated with lymph node metastasis and clinicopathologic state. Pathol. Res. Pract. 195, 427–433 (1999).

    CAS  PubMed  Google Scholar 

  63. Tavian, D. et al. U-PA and c-MET mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocellular carcinoma. Int. J. Cancer 87, 644–649 (2000).

    CAS  PubMed  Google Scholar 

  64. Wielenga, V. J. et al. Expression of c-MET and heparan-sulfate proteoglycan forms of CD44 in colorectal cancer. Am. J. Pathol. 157, 1563–1573 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ramirez, R. et al. Over-expression of hepatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (c-MET) are associated with a high risk of metastasis and recurrence for children and young adults with papillary thyroid carcinoma. Clin. Endocrinol. 53, 635–644 (2000).

    CAS  Google Scholar 

  66. Edakuni, G., Sasatomi, E., Satoh, T., Tokunaga, O. & Miyazaki, K. Expression of the hepatocyte growth factor/ c-Met pathway is increased at the cancer front in breast carcinoma. Pathol. Int. 51, 172–178 (2001).

    CAS  PubMed  Google Scholar 

  67. Tapper, J. et al. Changes in gene expression during progression of ovarian carcinoma. Cancer Genet. Cytogenet. 128, 1–6 (2001).

    CAS  PubMed  Google Scholar 

  68. Huang, T. J., Wang, J. Y., Lin, S. R., Lian, S. T. & Hsieh, J. S. Overexpression of the c-Met protooncogene in human gastric carcinoma — correlation to clinical features. Acta Oncol. 40, 638–643 (2001).

    CAS  PubMed  Google Scholar 

  69. Takeo, S. et al. Examination of oncogene amplification by genomic DNA microarray in hepatocellular carcinomas: comparison with comparative genomic hybridisation analysis. Cancer Genet. Cytogenet. 130, 127–132 (2001).

    CAS  PubMed  Google Scholar 

  70. Morello, S. et al. MET receptor is overexpressed but not mutated in oral squamous cell carcinomas. J. Cell. Physiol. 189, 285–290 (2001).

    CAS  PubMed  Google Scholar 

  71. Huang, Y. et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc. Natl Acad. Sci. USA 98, 15044–15049 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Genet. 16, 68–73 (1997).The first report of naturally occurring oncogenic mutations of MET in humans. Missense mutations were identified that are located in the tyrosine kinase domain of the MET gene in the germ line of patients who suffer from hereditary papillary renal-cell carcinomas and in a subset of sporadic papillary renal carcinomas.

    CAS  PubMed  Google Scholar 

  73. Fischer, J. et al. Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene 17, 733–739 (1998).

    CAS  PubMed  Google Scholar 

  74. Schmidt, L. et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18, 2343–2350 (1999).

    CAS  PubMed  Google Scholar 

  75. Olivero, M. et al. Novel mutation in the ATP-binding site of the MET oncogene tyrosine kinase in a HPRCC family. Int. J. Cancer 82, 640–643 (1999).

    CAS  PubMed  Google Scholar 

  76. Park, W. S. et al. Somatic mutations in the kinase domain of the MET/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res. 59, 307–310 (1999).

    CAS  PubMed  Google Scholar 

  77. Lee, J. H. et al. A novel germ line juxtamembrane MET mutation in human gastric cancer. Oncogene 19, 4947–4953 (2000).

    CAS  PubMed  Google Scholar 

  78. Jeffers, M. et al. Activating mutations for the MET tyrosine kinase receptor in human cancer. Proc. Natl Acad. Sci. USA 94, 11445–11450 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Michieli, P. et al. Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene 18, 5221–5231 (1999).Shows that the transforming potential displayed by mutant forms of MET found in human cancer is not only sensitive to, but entirely contingent on, the presence of HGF. This finding indicates that mutant MET-driven tumour development relies on local availability and tissue distribution of active HGF and provides proof-of-concept for the treatment of MET-dependent neoplasms by HGF antagonists.

    CAS  PubMed  Google Scholar 

  80. Yao, Y. et al. Scatter factor protein levels in human breast cancers: clinicopathological and biological correlations. Am. J. Pathol. 149, 1707–1717 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Di Renzo, M. F. et al. Overexpression and amplification of the MET/HGF receptor gene during the progression of colorectal cancer. Clin. Cancer Res. 1, 147–154 (1995).

    CAS  PubMed  Google Scholar 

  82. Di Renzo, M. F. et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 19, 1547–1555 (2000).The first report of a direct involvement of MET in tumour metastasis in humans. Neoplastic cells that harbour activating mutations of the MET gene undergo clonal expansion during the metastatic spreading of head and neck squamous-cell carcinomas.

    CAS  PubMed  Google Scholar 

  83. Eagles, G. et al. Hepatocyte growth factor/scatter factor is present in most pleural effusion fluids from cancer patients. Br. J. Cancer 73, 377–381 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nagafuchi, A. Molecular architecture of adherens junctions. Curr. Opin. Cell Biol. 13, 600–603 (2001).

    CAS  PubMed  Google Scholar 

  85. Tannapfel, A., Yasui, W., Yokozaki, H., Wittekind, C. & Tahara, E. Effect of hepatocyte growth factor on the expression of E- and P-cadherin in gastric carcinoma cell lines. Virchows Arch. 425, 139–144 (1994).

    CAS  PubMed  Google Scholar 

  86. Miura, H. et al. Effects of hepatocyte growth factor on E-cadherin-mediated cell–cell adhesion in DU145 prostate cancer cells. Urology 58, 1064–1069 (2001).

    CAS  PubMed  Google Scholar 

  87. Balkovetz, D. F., Pollack, A. L. & Mostov, K. E. Hepatocyte growth factor alters the polarity of Madin–Darby canine kidney cell monolayers. J. Biol. Chem. 272, 3471–3477 (1997).

    CAS  PubMed  Google Scholar 

  88. Balkovetz, D. F. & Sambandam, V. Dynamics of E-cadherin and γ-catenin complexes during dedifferentiation of polarized MDCK cells. Kidney Int. 56, 910–921 (1999).

    CAS  PubMed  Google Scholar 

  89. Davies, G., Jiang, W. G. & Mason, M. D. Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte growth factor/scatter factor-induced cell–cell dissociation and in vitro invasion. Clin. Cancer Res. 7, 3289–3297 (2001).

    CAS  PubMed  Google Scholar 

  90. Shibamoto, S. et al. Tyrosine phosphorylation of β-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes. Commun. 1, 295–305 (1994).

    CAS  PubMed  Google Scholar 

  91. Frisch, S. M. & Screaton, R. A. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562 (2001).

    CAS  PubMed  Google Scholar 

  92. Plow, E. F., Haas, T. A., Zhang, L., Loftus, J. & Smith, J. W. Ligand binding to integrins. J. Biol. Chem. 275, 21785–21788 (2000).

    CAS  PubMed  Google Scholar 

  93. Woods, A. & Couchman, J. R. Integrin modulation by lateral association. J. Biol. Chem. 275, 24233–24236 (2000).

    CAS  PubMed  Google Scholar 

  94. Nebe, B., Sanftleben, H., Pommerenke, H., Peters, A. & Rychly, J. Hepatocyte growth factor enables enhanced integrin-cytoskeleton linkage by affecting integrin expression in subconfluent epithelial cells. Exp. Cell Res. 243, 263–273 (1998).

    CAS  PubMed  Google Scholar 

  95. Liang, C. C. & Chen, H. C. Sustained activation of extracellular signal-regulated kinase stimulated by hepatocyte growth factor leads to integrin α2 expression that is involved in cell scattering. J. Biol. Chem. 276, 21146–21152 (2001).

    CAS  PubMed  Google Scholar 

  96. Trusolino, L. et al. Growth factor-dependent activation of αvβ3 integrin in normal epithelial cells: implications for tumor invasion. J. Cell Biol. 142, 1145–1156 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Trusolino, L. et al. HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB J. 14, 1629–1640 (2000).

    CAS  PubMed  Google Scholar 

  98. Brooks, P. C. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ Cell 85, 683–693 (1996).

    CAS  PubMed  Google Scholar 

  99. Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G. & Quaranta, V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277, 225–228 (1997).

    CAS  PubMed  Google Scholar 

  100. Rosenthal, E. L. et al. Role of the plasminogen activator and matrix metalloproteinase systems in epidermal growth factor- and scatter factor-stimulated invasion of carcinoma cells. Cancer Res. 58, 5221–5230 (1998).

    CAS  PubMed  Google Scholar 

  101. Nabeshima, K. et al. Front-cell-specific expression of membrane-type 1 matrix metalloproteinase and gelatinase A during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor. Cancer Res. 60, 3364–3369 (2000).

    CAS  PubMed  Google Scholar 

  102. Monvoisin, A. et al. Involvement of matrix metalloproteinase type-3 in hepatocyte growth factor-induced invasion of human hepatocellular carcinoma cells. Int. J. Cancer 97, 157–162 (2002).

    CAS  PubMed  Google Scholar 

  103. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nature Med. 6, 389–395 (2000).

    CAS  PubMed  Google Scholar 

  104. Martin-Satue, M. & Blanco, J. Identification of semaphorin E gene expression in metastatic human lung adenocarcinoma cells by mRNA differential display. J. Surg. Oncol. 72, 18–23 (1999).

    CAS  PubMed  Google Scholar 

  105. Yamada, T., Endo, R., Gotoh, M. & Hirohashi, S. Identification of semaphorin E as a non-MDR drug resistance gene of human cancer. Proc. Natl Acad. Sci. USA 94, 14713–14718 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Christensen, C. R. et al. Transcription of a novel mouse semaphorin gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines. Cancer Res. 58, 1238–1244 (1998).

    CAS  PubMed  Google Scholar 

  107. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    CAS  PubMed  Google Scholar 

  108. Ponzetto, C. et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77, 261–271 (1994).

    CAS  PubMed  Google Scholar 

  109. Pelicci, G. et al. The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene 10, 1631–1638 (1995).

    CAS  PubMed  Google Scholar 

  110. Weidner, K. M. et al. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384, 173–176 (1996).

    CAS  PubMed  Google Scholar 

  111. Gual, P. et al. Sustained recruitment of phospholipase c-γ to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene 19, 1509–1518 (2000).

    CAS  PubMed  Google Scholar 

  112. Maroun, C. R., Naujokas, M. A., Holgado-Madruga, M., Wong, A. J. & Park, M. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol. Cell. Biol. 20, 8513–8525 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Schaeper, U. et al. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J. Cell Biol. 149, 1419–1432 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Boccaccio, C. et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 391, 285–288 (1998).

    CAS  PubMed  Google Scholar 

  115. Bardelli, A. et al. Uncoupling signal transducers from oncogenic MET mutants abrogates cell transformation and inhibits invasive growth. Proc. Natl Acad. Sci. USA 95, 14379–14383 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Maina, F. et al. Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell 87, 531–542 (1996).

    CAS  PubMed  Google Scholar 

  117. Sachs, M. et al. Motogenic and morphogenic activity of epithelial receptor tyrosine kinases. J. Cell Biol. 133, 1095–1107 (1996).

    CAS  PubMed  Google Scholar 

  118. Giordano, S. et al. A point mutation in the MET oncogene abrogates metastasis without affecting transformation. Proc. Natl Acad. Sci. USA 94, 13868–13872 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Bardelli, A. et al. Concomitant activation of pathways downstream of Grb2 and PI3-kinase is required for MET-mediated metastasis. Oncogene 18, 1139–1146 (1999).

    CAS  PubMed  Google Scholar 

  120. Trusolino, L., Bertotti, A. & Comoglio, P. M. A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell 107, 643–654 (2001).

    CAS  PubMed  Google Scholar 

  121. Peschard, P. et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol. Cell 8, 995–1004 (2001).A new mechanism of MET-dependent oncogenic transformation. The c-CBL adaptor protein binds a juxtamembrane tyrosine residue on MET and drives it to ubiquitin-mediated proteasomal degradation. A MET receptor in which this tyrosine is replaced by phenylalanine does not undergo polyubiquitylation and displays transforming activity in fibroblasts and epithelial cells.

    CAS  PubMed  Google Scholar 

  122. Petrelli, A. et al. The endophilin/CIN85/CBL complex mediates ligand-dependent down-regulation of c-Met. Nature 416, 187–190 (2002).

    CAS  PubMed  Google Scholar 

  123. Brodin, L., Low, P. & Shupliakov, O. Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Curr. Opin. Neurobiol. 10, 312–320 (2000).

    CAS  PubMed  Google Scholar 

  124. Winberg, M. L. et al. The transmembrane protein Off-Track associates with plexins and functions downstream of semaphorin signaling during axon guidance. Neuron 32, 53–62 (2001).

    CAS  PubMed  Google Scholar 

  125. Luo, L. RHO–GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 1, 173–180 (2000).

    CAS  Google Scholar 

  126. Dickson, B. J. RHO–GTPases in growth cone guidance. Curr. Opin. Neurobiol. 11, 103–110 (2001).

    CAS  PubMed  Google Scholar 

  127. Rohm, B., Rahim, B., Kleiber, B., Hovatta, I. & Pueschel, A. W. The semaphorin 3A receptor may directly regulate the activity of small GTPases. FEBS Lett. 486, 68–72 (2000).

    CAS  PubMed  Google Scholar 

  128. Vikis, H. G., Li, W., He, Z. & Guan, K.-L. The semaphorin receptor plexin-B1 specifically interacts with active Rac in a ligand-dependent manner. Proc. Natl Acad. Sci. USA 97, 12457–12462 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Driessens, M. H. et al. Plexin-B semaphorin receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho. Curr. Biol. 11, 339–344 (2001).

    CAS  PubMed  Google Scholar 

  130. Hu, H., Marton, T. F. & Goodman, C. S. Plexin B mediates axon guidance in Drosophila by simultaneously inhibiting active Rac and enhancing RhoA signalling. Neuron 32, 39–51 (2001).

    CAS  PubMed  Google Scholar 

  131. Simon, M. A. Receptor tyrosine kinases: specific outcomes from general signals. Cell 103, 13–15 (2000).

    CAS  PubMed  Google Scholar 

  132. Pawson, T. & Saxton, T. M. Signaling networks — do all roads lead to the same genes? Cell 97, 675–678 (1999).

    CAS  PubMed  Google Scholar 

  133. Maina, F. et al. Coupling Met to specific pathways results in distinct developmental outcomes. Mol. Cell 7, 1293–1306 (2001).Addresses, in vivo , the issue of whether the specificity of tyrosine-kinase-receptor-dependent responses is determined by qualitative or quantitative differences in signalling outputs. Knockin Met mutants with optimal PI3K or Src binding motifs result in loss of function, but display different phenotypes and rescue of specific cell types, indicating that specific signalling pathways are necessary to achieve specific biological responses.

    CAS  PubMed  Google Scholar 

  134. Karihaloo, A., O'Rourke, D. A., Nickel, C. H., Spokes, K. & Cantley, L. G. Differential MAPK pathways utilized for HGF- and EGF-dependent renal epithelial morphogenesis. J. Biol. Chem. 276, 9166–9173 (2001).

    CAS  PubMed  Google Scholar 

  135. Boccaccio, C., Andò, M. & Comoglio, P. M. A differentiation switch for genetically modified hepatocytes. FASEB J. 16, 120–122 (2002).

    CAS  PubMed  Google Scholar 

  136. Chan, A. M. et al. Identification of a competitive HGF antagonist encoded by an alternative transcript. Science 254, 1382–1385 (1991).

    CAS  PubMed  Google Scholar 

  137. Hartmann, G. et al. A functional domain in the heavy chain of scatter factor/hepatocyte growth factor binds the c-Met receptor and induces cell dissociation but not mitogenesis. Proc. Natl Acad. Sci. USA 89, 11574–11578 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lokker, N. A. et al. Structure–function analysis of hepatocyte growth factor: identification of variants that lack mitogenic activity yet retain high affinity receptor binding. EMBO J. 11, 2503–2510 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cioce, V. et al. Hepatocyte growth factor (HGF)/NK1 is a naturally occurring HGF/scatter factor variant with partial agonist/antagonist activity. J. Biol. Chem. 271, 13110–13115 (1996).

    CAS  PubMed  Google Scholar 

  140. Waltz, S. E. et al. Functional characterization of domains contained in hepatocyte growth factor-like protein. J. Biol. Chem. 272, 30526–30537 (1997).

    CAS  PubMed  Google Scholar 

  141. Matsumoto, K., Kataoka, H., Date, K. & Nakamura, T. Cooperative interaction between α- and β-chains of hepatocyte growth factor on c-Met receptor confers ligand-induced receptor tyrosine phosphorylation and multiple biological responses. J. Biol. Chem. 273, 22913–22920 (1998).

    CAS  PubMed  Google Scholar 

  142. Danilkovitch, A., Miller, M. & Leonard, E. J. Interaction of macrophage-stimulating protein with its receptor. Residues critical for β-chain binding and evidence for independent alpha chain binding. J. Biol. Chem. 274, 29937–29943 (1999).

    CAS  PubMed  Google Scholar 

  143. Michieli, P. et al. An HGF-MSP chimaera disassociates the trophic properties of scatter factors from their pro-invasive activity. Nature Biotechnol. (in the press).

  144. Kawaida, K., Matsumoto, K., Shimazu, H. & Nakamura, T. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proc. Natl Acad. Sci. USA 91, 4357–4361 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Tsubouchi, H. et al. Clinical significance of human hepatocyte growth factor in blood from patients with fulminant hepatic failure. Hepatology 9, 875–881 (1989).

    CAS  PubMed  Google Scholar 

  146. Yaekashi, M. et al. Simultaneous or delayed administration of hepatocyte growth factor (HGF) equally repress the fibrotic changes in murine lung injury by bleomycin: a morphological study. Am. J. Respir. Clin. Care Med. 156, 1937–1944 (1997).

    Google Scholar 

  147. Ueki, T. et al. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nature Med. 5, 226–230 (1999).An example of how the beneficial trophic properties of HGF can be exploited for therapeutic applications. In a rat model of lethal liver cirrhosis, transduction of skeletal muscles with the human HGF gene increases HGF plasma levels and produces the complete resolution of fibrosis in the cirrhotic livers, thereby improving the survival rate of rats.

    CAS  PubMed  Google Scholar 

  148. Kuba, K. et al. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res. 60, 6737–6743 (2000).

    CAS  PubMed  Google Scholar 

  149. Cao, B. et al. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc. Natl Acad. Sci. USA 98, 7443–7448 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Abounader, R. et al. In vivo targeting of SF/HGF and c-MET expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB J. 16, 108–110 (2002).

    CAS  PubMed  Google Scholar 

  151. The Semaphorin Nomenclature Committee. Unified nomenclature for the semaphorin/collapsins. Cell 97, 551–552 (1999).

  152. Ponzetto, C. et al. c-Met is amplified but not mutated in a cell line with an activated Met tyrosine kinase. Oncogene 6, 553–559 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Bertotti for discussion, critical reading of the manuscript and help with the artwork, and E. Wright for editing the manuscript. Work in the authors' laboratory is supported by AIRC (Associazione Italiana per la Ricerca sul Cancro) and Armenise–Harvard Foundation for Advanced Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Livio Trusolino or Paolo M. Comoglio.

Related links

Related links

DATABASES

Cancer.gov

breast carcinoma

colorectal carcinoma

gastric carcinoma

head and neck squamous-cell carcinoma

hepatocellular carcinoma

renal carcinoma

rhabdomyosarcomas

FlyBase

Plexin A

Sema1a

LocusLink

actin

CBL

CDC42

CIN85

EGF

EGF receptor

fibroblast growth factor

GAB1

GRB2

HGF

Hgf

insulin-like growth factor-1

α6β4 integrin

MAPK

MET

Met

MSP

PAK

PI3K

PLCγ

plexin B1

RAC

RAS

RON

SEMA3C

SEMA3E

SHC

SHP2

SOS

SRC

STAT3

TPR

Glossary

MYOTOME

A block of cells that is derived from the somite that, during embryogenesis, gives rise to some sets of skeletal muscles.

GROWTH CONE

Exploratory tip of an extending neuronal process such as an axon.

INTEGRINS

A family of more than 20 heterodimeric cell-surface extracellular matrix (ECM) receptors. They connect the structure of the ECM with the cytoskeleton and can transmit signalling information bidirectionally.

ADHERENS JUNCTIONS

Cell–cell or cell–matrix adhesive junctions that are linked to microfilaments.

CADHERINS

(For example, E-, N-, P- and R-cadherin.) A subfamily of cadherins that share a common primary structure and bind to catenins by conserved cytoplasmic domains.

CATENINS

A family of submembraneous proteins (α-, β-, and γ-catenin, also known as plakoglobin) that are enriched at adherens junctions and connect the cytoplasmic domains of transmembrane cadherins to the actin microfilament cytoskeleton.

MATRIX METALLOPROTEINASES

A family of proteolytic enzymes that degrade the extracellular matrix and have important roles in tissue remodelling and tumour metastasis.

STATS

A family of cytoplasmic transcription factors (signal transducers and activators of transcription) that dimerize following phosphorylation, and translocate to the nucleus to activate transcription of target genes.

E3 UBIQUITIN PROTEIN LIGASE

The third enzyme in a series — the first two are designated E1 and E2 — that are responsible for ubiquitylation of target proteins. E3 enzymes provide platforms for binding E2 enzymes and specific substrates, thereby coordinating ubiquitylation of the selected substrates.

LAMELLIPODIUM

A thin sheet-like cell extension that is found at the leading edge of crawling cells or growth cones.

FILOPODIUM

A finger-like exploratory cell extension that is found in crawling cells and growth cones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trusolino, L., Comoglio, P. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2, 289–300 (2002). https://doi.org/10.1038/nrc779

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing