Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New functions for the matrix metalloproteinases in cancer progression

Key Points

  • The matrix metalloproteinases (MMPs) comprise a family of zinc-dependent endopeptidases that consist of more than 21 human MMPs and numerous homologues from other species. They can be divided into eight structural classes, three of which are membrane bound.

  • The MMPs are synthesized as inactive zymogens and activated by proteinase cleavage. Their activity is regulated by endogenous inhibitors, including α2-macroglobulin; tissue inhibitors of metalloproteinases (TIMPs); small molecules with TIMP-like domains; and the membrane-bound inhibitor RECK (reversion-inducing cysteine-rich protein with kazal motifs).

  • Direct evidence for a role of MMPs in tumour progression comes from xenograft experiments using cancer cells with decreased and increased expression levels of MMPs or TIMPs, and from carcinogenesis experiments with mice that either lack a specific Mmp or Timp-1 or have organ-specific Mmp or Timp-1 overexpression.

  • MMPs are upregulated in almost every type of human cancer, and their expression is often associated with poor survival. Whereas some of the MMPs (for example, MMP-7) are expressed by the cancer cells, other MMPs (for example, MMP-2 and MMP-9) are synthesized by the tumour stromal cells, including fibroblasts, myofibroblasts, inflammatory cells and endothelial cells.

  • MMPs can promote cancer progression by increasing cancer-cell growth, migration, invasion, metastasis and angiogenesis. MMPs exert these effects by cleaving a diverse group of substrates, which include not only structural components of the extracellular matrix, but also growth-factor-binding proteins, growth-factor precursors, receptor tyrosine kinases, cell-adhesion molecules and other proteinases.

  • Several synthetic MMP inhibitors are undergoing Phase III clinical trials. Although a few encouraging results have been reported, some trials were prematurely terminated due to either lack of benefits or major adverse effects.

  • The clinical trials have so far focused on patients with advanced-stage disease. Based on animal experiments, we would expect, however, that clinical efficacy might be improved either by using MMP inhibitors in the treatment of early disease (in combination with conventional therapy), or as preoperative and postoperative treatment to prevent surgical-induced micrometastatic spread and recurrence of the disease.

Abstract

Matrix metalloproteinases (MMPs) have long been associated with cancer-cell invasion and metastasis. This provided the rationale for clinical trials of MMP inhibitors, unfortunately with disappointing results. We now know, however, that the MMPs have functions other than promotion of invasion, have substrates other than components of the extracellular matrix, and that they function before invasion in the development of cancer. With this knowledge in hand, can we rethink the use of MMP inhibitors in the clinic?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The protein structure of the MMPs.
Figure 2: Properties of MMPs in models of cancer.
Figure 3: Expression of MMPs and TIMPs in breast tumours.
Figure 4: Functions of MMPs in cancer progression.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  2. Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer 1, 46–54 (2001).

    Article  CAS  Google Scholar 

  3. Werb, Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 91, 439–442 (1997).

    CAS  PubMed  Google Scholar 

  4. Brooks, P. C. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85, 683–693 (1996).Localization of active MMP-2, secreted by stromal cells, to the cell surface of invasive cells by binding to αvβ3 integrin is necessary for invasive behaviour. Similar results relating to the importance of invasion, angiogenesis and TGF-β processing of tethering MMP-9 to the cell surface by binding to CD44 were reported in references 5 and 28.

    CAS  PubMed  Google Scholar 

  5. Yu, Q. & Stamenkovic, I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 13, 35–48 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu, W.-H., Woessner, J. F. Jr, McNeish, J. D. & Stamenkovic, I. CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev. 16, 307–323 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463–516 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Strongin, A. Y. et al. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 270, 5331–5338 (1995).

    CAS  PubMed  Google Scholar 

  9. Deryugina, E. I. et al. MT1-MMP initiates activation of pro-MMP-2 and integrin αvβ3 promotes maturation of MMP-2 in breast carcinoma cells. Exp. Cell Res. 263, 209–223 (2001).

    CAS  PubMed  Google Scholar 

  10. Morrison, C. J. et al. Cellular activation of MMP-2 (Gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J. Biol. Chem. 276, 47402–47410 (2001).

    CAS  PubMed  Google Scholar 

  11. Sottrup-Jensen, L. & Birkedal-Hansen, H. Human fibroblast collagenase-α-macroglobulin interactions. Localization of cleavage sites in the bait regions of five mammalian α-macroglobulins. J. Biol. Chem. 264, 393–401 (1989).

    CAS  PubMed  Google Scholar 

  12. Yang, Z., Strickland, D. K. & Bornstein, P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J. Biol. Chem. 276, 8403–8408 (2001).

    CAS  PubMed  Google Scholar 

  13. Bein, K. & Simons, M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J. Biol. Chem. 275, 32167–32173 (2000).

    CAS  PubMed  Google Scholar 

  14. Rodriguez-Manzaneque, J. C. et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA 98, 12485–12490 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Taraboletti, G. et al. The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J. 14, 1674–1676 (2000).

    CAS  PubMed  Google Scholar 

  16. Edwards, D. R. in Matrix Metalloproteinase Inhibitors in Cancer Therapy (eds Clendeninn, N. J. & Appelt, K.) 67–84 (Humana Press, Totowa, New Jersey, 2001).

    Google Scholar 

  17. Wang, Z., Juttermann, R. & Soloway, P. D. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J. Biol. Chem. 275, 26411–26415 (2000).

    CAS  PubMed  Google Scholar 

  18. Mott, J. D. et al. Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor. J. Biol. Chem. 275, 1384–1390 (2000).

    CAS  PubMed  Google Scholar 

  19. Netzer, K. O., Suzuki, K., Itoh, Y., Hudson, B. G. & Khalifah, R. G. Comparative analysis of the noncollagenous NC1 domain of type IV collagen: identification of structural features important for assembly, function, and pathogenesis. Protein Sci. 7, 1340–1351 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Oh, J. et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107, 789–800 (2001).Reports that deficiency of an MMP inhibitor, RECK, is embryonic lethal, due to a defect in vascular development. Also shows that the blood vessels in tumours that overexpress RECK have a reduced branching phenotype.

    CAS  PubMed  Google Scholar 

  21. Streuli, C. Extracellular matrix remodelling and cellular differentiation. Curr. Opin. Cell. Biol. 11, 634–640 (1999).

    CAS  PubMed  Google Scholar 

  22. Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G. & Quaranta, V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277, 225–228 (1997).Shows, together with reference 100 , that cleavage of laminin-5 by MMPs triggers the migration of cells by unmasking a cryptic site that might act as a ligand for an unidentified cellular receptor.

    CAS  PubMed  Google Scholar 

  23. Xu, J. et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol. 154, 1069–1080 (2001).Shows that a cryptic site within collagen type IV that is exposed following proteinase cleavage promotes angiogenesis and tumour growth, probably by interacting with αvβ3 integrin. This cryptic site is detected in blood vessels from tumours but not normal tissue.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Manes, S. et al. Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J. Biol. Chem. 272, 25706–25712 (1997).

    CAS  PubMed  Google Scholar 

  25. Manes, S. et al. The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J. Biol. Chem. 274, 6935–6945 (1999).

    CAS  PubMed  Google Scholar 

  26. Whitelock, J. M., Murdoch, A. D., Iozzo, R. V. & Underwood, P. A. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 271, 10079–10086 (1996).

    CAS  PubMed  Google Scholar 

  27. Peschon, J. J. et al. An essential role for ectodomain shedding in mammalian development. Science 282, 1281–1284 (1998).

    CAS  PubMed  Google Scholar 

  28. Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176 (2000).

    PubMed  PubMed Central  Google Scholar 

  29. Levi, E. et al. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc. Natl Acad. Sci. USA 93, 7069–7074 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Codony-Servat, J., Albanell, J., Lopez-Talavera, J. C., Arribas, J. & Baselga, J. Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res. 59, 1196–1201 (1999).

    CAS  PubMed  Google Scholar 

  31. Vecchi, M., Rudolph-Owen, L. A., Brown, C. L., Dempsey, P. J. & Carpenter, G. Tyrosine phosphorylation and proteolysis. Pervanadate-induced, metalloprotease-dependent cleavage of the ErbB-4 receptor and amphiregulin. J. Biol. Chem. 273, 20589–20595 (1998).

    CAS  PubMed  Google Scholar 

  32. Nath, D., Williamson, N. J., Jarvis, R. & Murphy, G. Shedding of c-Met is regulated by crosstalk between a G-protein coupled receptor and the EGF receptor and is mediated by a TIMP-3 sensitive metalloproteinase. J. Cell Sci. 114, 1213–1220 (2001).

    CAS  PubMed  Google Scholar 

  33. Noe, V. et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J. Cell Sci. 114, 111–118 (2001).

    CAS  PubMed  Google Scholar 

  34. Kajita, M. et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J. Cell Biol. 153, 893–904 (2001).Reports that CD44 is shed by MMP-14 and that mutation of the cleavage site inhibits migration.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Deryugina, E. I., Ratnikov, B. I., Postnova, T. I., Rozanov, D. V. & Strongin, A. Y. Processing of integrin αV subunit by MT1–MMP stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of FAK. J. Biol. Chem. 2001 Nov 27; [epub ahead of print].

  36. Coussens, L. M. & Werb, Z. Matrix metalloproteinases and the development of cancer. Chem. Biol. 3, 895–904 (1996).

    CAS  PubMed  Google Scholar 

  37. Masson, R. et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J. Cell Biol. 140, 1535–1541 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Itoh, T. et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 58, 1048–1051 (1998).

    CAS  PubMed  Google Scholar 

  39. Itoh, T. et al. Experimental metastasis is suppressed in MMP-9-deficient mice. Clin. Exp. Metastasis 17, 177–181 (1999).

    CAS  PubMed  Google Scholar 

  40. Sternlicht, M. D. et al. The stromal proteinase MMP-3/ stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146 (1999).Shows, together with reference 95 , that active MMP-3 changes the phenotype of mammary epithelial cells to mesenchymal-like cells, and that the E-cadherin–β-catenin complex is involved in this regulation. Expression of an MMP, even when expressed only in the early stages of cancer development, is also sufficient to initiate tumour formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ha, H. Y. et al. Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res 61, 984–990 (2001).

    CAS  PubMed  Google Scholar 

  42. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).In a transgenic mouse model of skin cancer, the reduced carcinogenesis in mice that are deficient for MMP9 can be completely restored by bone-marrow transplantation of MMP9 -expressing cells. Tumours that arise in the absence of MMP9 are of a more advanced stage than those that arise in wild-type mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, W. et al. Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. Cancer 91, 1277–1283 (2001).

    CAS  PubMed  Google Scholar 

  44. Takeha, S. et al. Stromal expression of MMP-9 and urokinase receptor is inversely associated with liver metastasis and with infiltrating growth in human colorectal cancer: a novel approach from immune/inflammatory aspect. Jpn. J. Cancer Res. 88, 72–81 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang, Y. et al. Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Res. 61, 2365–2370 (2001).

    CAS  PubMed  Google Scholar 

  46. Hayakawa, T., Yamashita, K., Ohuchi, E. & Shinagawa, A. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J. Cell Sci. 107, 2373–2379 (1994).

    CAS  PubMed  Google Scholar 

  47. Yoshiji, H. et al. Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression. Int. J. Cancer 75, 81–87 (1998).

    CAS  PubMed  Google Scholar 

  48. Gururajan, R. et al. Duplication of a genomic region containing the Cdc2L1-2 and MMP21-22 genes on human chromosome 1p36.3 and their linkage to D1Z2. Genome Res. 8, 929–939 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Llano, E. et al. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res. 59, 2570–2576 (1999).

    CAS  PubMed  Google Scholar 

  50. Crawford, H. C. et al. The PEA3 subfamily of Ets transcription factors synergizes with β- catenin–LEF-1 to activate matrilysin transcription in intestinal tumors. Mol. Cell Biol. 21, 1370–1383 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun, Y. et al. p53 down-regulates human matrix metalloproteinase-1 (collagenase-1) gene expression. J. Biol. Chem. 274, 11535–11540 (1999).

    CAS  PubMed  Google Scholar 

  52. Sun, Y. et al. Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J. Biol. Chem. 275, 11327–11332 (2000).

    CAS  PubMed  Google Scholar 

  53. Polette, M. et al. Gelatinase A expression and localization in human breast cancers. An in situ hybridization study and immunohistochemical detection using confocal microscopy. Virchows Arch. 424, 641–645 (1994).

    CAS  PubMed  Google Scholar 

  54. Kanamori, Y. et al. Correlation between expression of the matrix metalloproteinase-1 gene in ovarian cancers and an insertion/deletion polymorphism in its promoter region. Cancer Res. 59, 4225–4227 (1999).

    CAS  PubMed  Google Scholar 

  55. Ye, S. et al. Invasiveness of cutaneous malignant melanoma is influenced by matrix metalloproteinase 1 gene polymorphism. Cancer Res. 61, 1296–1298 (2001).

    CAS  PubMed  Google Scholar 

  56. Zhu, Y., Spitz, M. R., Lei, L., Mills, G. B. & Wu, X. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances lung cancer susceptibility. Cancer Res. 61, 7825–7829 (2001).

    CAS  PubMed  Google Scholar 

  57. Ye, S. et al. Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J. Biol. Chem. 271, 13055–13060 (1996).

    CAS  PubMed  Google Scholar 

  58. Biondi, M. L. et al. MMP1 and MMP3 polymorphisms in promoter regions and cancer. Clin. Chem. 46, 2023–2024 (2000).

    CAS  PubMed  Google Scholar 

  59. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000).MMP-9 controls tumour angiogenesis by increasing the bioavailability of VEGF, and is expressed by stromal cells but not by cancer cells. MMP-2 also influences tumour growth but not angiogenesis. Invasion is not affected by MMP-2 or MMP-9.

    CAS  PubMed  Google Scholar 

  60. Agrez, M., Chen, A., Cone, R. I., Pytela, R. & Sheppard, D. The αvβ6 integrin promotes proliferation of colon carcinoma cells through a unique region of the β6 cytoplasmic domain. J. Cell Biol. 127, 547–556 (1994).

    CAS  PubMed  Google Scholar 

  61. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet. 29, 117–129 (2001).

    CAS  PubMed  Google Scholar 

  62. Reed, J. C. Mechanisms of apoptosis avoidance in cancer. Curr. Opin. Oncol. 11, 68–75 (1999).

    CAS  PubMed  Google Scholar 

  63. Alexander, C. M., Howard, E. W., Bissell, M. J. & Werb, Z. Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J. Cell Biol. 135, 1669–1677 (1996).

    CAS  PubMed  Google Scholar 

  64. Witty, J. P., Lempka, T., Coffey, R. J. Jr & Matrisian, L. M. Decreased tumor formation in 7,12-dimethylbenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial cell apoptosis. Cancer Res. 55, 1401–1406 (1995).

    CAS  PubMed  Google Scholar 

  65. Sympson, C. J. et al. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell Biol. 125, 681–693 (1994).

    CAS  PubMed  Google Scholar 

  66. Powell, W. C., Fingleton, B., Wilson, C. L., Boothby, M. & Matrisian, L. M. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr. Biol. 9, 1441–1447 (1999).

    CAS  PubMed  Google Scholar 

  67. Mitsiades, N., Yu, W.-H., Poulaki, V., Tsokos, M. & Stamenkovic, I. Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res. 61, 577–581 (2001).

    CAS  PubMed  Google Scholar 

  68. Wu, E. et al. Stromelysin-3 suppresses tumor cell apoptosis in a murine model. J. Cell Biochem. 82, 549–555 (2001).

    CAS  PubMed  Google Scholar 

  69. Boulay, A. et al. High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res. 61, 2189–2193 (2001).

    CAS  PubMed  Google Scholar 

  70. Baserga, R. The contradictions of the insulin-like growth factor 1 receptor. Oncogene 19, 5574–5581 (2000).

    CAS  PubMed  Google Scholar 

  71. Ishizuya-Oka, A. et al. Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis. J. Cell Biol. 150, 1177–1188 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Vu, T. H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Herren, B., Levkau, B., Raines, E. W. & Ross, R. Cleavage of β-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol. Biol. Cell 9, 1589–1601 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ilan, N., Mohsenin, A., Cheung, L. & Madri, J. A. PECAM-1 shedding during apoptosis generates a membrane-anchored truncated molecule with unique signaling characteristics. FASEB J. 15, 362–372 (2001).

    CAS  PubMed  Google Scholar 

  75. Steinhusen, U. et al. Cleavage and shedding of E-cadherin after induction of apoptosis. J. Biol. Chem. 276, 4972–4980 (2001).

    CAS  PubMed  Google Scholar 

  76. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS  PubMed  Google Scholar 

  77. Martin, D. C. et al. Transgenic TIMP-1 inhibits simian virus 40 T antigen-induced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis. Lab. Invest. 79, 225–234 (1999).

    CAS  PubMed  Google Scholar 

  78. Li, H. et al. AdTIMP-2 inhibits tumor growth, angiogenesis, and metastasis, and prolongs survival in mice. Hum. Gene Ther. 12, 515–526 (2001).

    CAS  PubMed  Google Scholar 

  79. Gatto, C. et al. BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clin. Cancer Res. 5, 3603–3607 (1999).

    CAS  PubMed  Google Scholar 

  80. Seandel, M., Noack-Kunnmann, K., Zhu, D., Aimes, R. T. & Quigley, J. P. Growth factor-induced angiogenesis in vivo requires specific cleavage of fibrillar type I collagen. Blood 97, 2323–2332 (2001).

    CAS  PubMed  Google Scholar 

  81. Kolb, C., Mauch, S., Peter, H. H., Krawinkel, U. & Sedlacek, R. The matrix metalloproteinase RASI-1 is expressed in synovial blood vessels of a rheumatoid arthritis patient. Immunol. Lett. 57, 83–88 (1997).

    CAS  PubMed  Google Scholar 

  82. Fang, J. et al. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc. Natl Acad. Sci. USA 97, 3884–3889 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Galvez, B. G., Matias-Roman, S., Albar, J. P., Sanchez-Madrid, F. & Arroyo, A. G. Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J. Biol. Chem. 276, 37491–37500 (2001).

    CAS  PubMed  Google Scholar 

  84. Hiraoka, N., Allen, E., Apel, I. J., Gyetko, M. R. & Weiss, S. J. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95, 365–377 (1998).

    CAS  PubMed  Google Scholar 

  85. Zhou, Z. et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl Acad. Sci. USA 97, 4052–4057 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dong, Z., Kumar, R., Yang, X. & Fidler, I. J. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88, 801–810 (1997).The first paper to show that MMP cleavage can produce anti-angiogenic fragments of ECM components.

    CAS  PubMed  Google Scholar 

  87. Cornelius, L. A. et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J. Immunol. 161, 6845–6852 (1998).

    CAS  PubMed  Google Scholar 

  88. Gorrin-Rivas, M. J. et al. Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin. Cancer Res. 6, 1647–1654 (2000).

    CAS  PubMed  Google Scholar 

  89. Ferreras, M., Felbor, U., Lenhard, T., Olsen, B. R. & Delaisse, J. Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett. 486, 247–251 (2000).

    CAS  PubMed  Google Scholar 

  90. O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    CAS  PubMed  Google Scholar 

  91. O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    CAS  PubMed  Google Scholar 

  92. Kim, Y. M. et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res. 60, 5410–5413 (2000).

    CAS  PubMed  Google Scholar 

  93. Koolwijk, P. et al. Proteolysis of the urokinase-type plasminogen activator receptor by metalloproteinase-12: implication for angiogenesis in fibrin matrices. Blood 97, 3123–3131 (2001).

    CAS  PubMed  Google Scholar 

  94. Ahonen, M., Baker, A. H. & Kahari, V. M. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res. 58, 2310–2315 (1998).

    CAS  PubMed  Google Scholar 

  95. Lochter, A. et al. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell Biol. 139, 1861–1872 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Belien, A. T., Paganetti, P. A. & Schwab, M. E. Membrane-type 1 matrix metalloprotease (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter. J. Cell Biol. 144, 373–384 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Deryugina, E. I., Luo, G. X., Reisfeld, R. A., Bourdon, M. A. & Strongin, A. Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer Res. 17, 3201–3210 (1997).

    CAS  PubMed  Google Scholar 

  98. Ala-Aho, R., Johansson, N., Baker, A. H. & Kahari, V. M. Expression of collagenase-3 (MMP-13) enhances invasion of human fibrosarcoma HT-1080 cells. Int. J. Cancer 97, 283–289 (2002).

    CAS  PubMed  Google Scholar 

  99. Hua, J. & Muschel, R. J. Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res. 56, 5279–5284 (1996).

    CAS  PubMed  Google Scholar 

  100. Koshikawa, N., Giannelli, G., Cirulli, V., Miyazaki, K. & Quaranta, V. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J. Cell Biol. 148, 615–624 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Birchmeier, C., Birchmeier, W. & Brand-Saberi, B. Epithelial–mesenchymal transitions in cancer progression. Acta Anat. (Basel.) 156, 217–226 (1996).

    CAS  Google Scholar 

  102. Nakahara, H. et al. Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc. Natl Acad. Sci. USA 94, 7959–7964 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bourguignon, L. Y. et al. CD44v(3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J. Cell Physiol. 176, 206–215 (1998).

    CAS  PubMed  Google Scholar 

  104. Kim, J., Yu, W., Kovalski, K. & Ossowski, L. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 94, 353–362 (1998).

    CAS  PubMed  Google Scholar 

  105. Tsunezuka, Y. et al. Expression of membrane-type matrix metalloproteinase 1 (MT1-MMP) in tumor cells enhances pulmonary metastasis in an experimental metastasis assay. Cancer Res. 56, 5678–5683 (1996).

    CAS  PubMed  Google Scholar 

  106. Koop, S. et al. Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth. Cancer Res. 54, 4791–4797 (1994).

    CAS  PubMed  Google Scholar 

  107. Krüger, A., Fata, J. E. & Khokha, R. Altered tumor growth and metastasis of a T-cell lymphoma in Timp-1 transgenic mice. Blood 90, 1993–2000 (1997).

    PubMed  Google Scholar 

  108. Krüger, A. et al. Host TIMP-1 overexpression confers resistance to experimental brain metastasis of a fibrosarcoma cell line. Oncogene 16, 2419–2423 (1998).

    PubMed  Google Scholar 

  109. Soloway, P. D., Alexander, C. M., Werb, Z. & Jaenisch, R. Targeted mutagenesis of Timp-1 reveals that lung tumor invasion is influenced by Timp-1 genotype of the tumor but not by that of the host. Oncogene 13, 2307–2314 (1996).

    CAS  PubMed  Google Scholar 

  110. Coussens, L. M. & Werb, Z. Inflammatory cells and cancer: think different! J. Exp. Med. 193, F23–F26 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sheu, B.-C. et al. A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res. 61, 237–242 (2001).Shows that MMPs can suppress the proliferation of activated T lymphocytes by shedding the interleukin-2 receptor-α from their surface.

    CAS  PubMed  Google Scholar 

  112. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med. 7, 1118–1122 (2001).

    CAS  PubMed  Google Scholar 

  113. Kataoka, H. et al. Enhanced tumor growth and invasiveness in vivo by a carboxyl-terminal fragment of α1-proteinase inhibitor generated by matrix metalloproteinases: a possible modulatory role in natural killer cytotoxicity. Am. J. Pathol. 154, 457–468 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Opdenakker, G., Van den Steen, P. E. & Van Damme, J. Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol. 22, 571–579 (2001).

    CAS  PubMed  Google Scholar 

  115. McQuibban, G. A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).MMPs regulate the inflammatory response by cleaving CCL7 — a chemokine that is involved in leukocyte recruitment — thereby converting it to an antagonist of its receptors.

    CAS  PubMed  Google Scholar 

  116. McQuibban, G. A. et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J. Biol. Chem. 276, 43503–43508 (2001).

    CAS  PubMed  Google Scholar 

  117. Müller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    PubMed  Google Scholar 

  118. Yonemura, Y. et al. Inhibition of peritoneal dissemination in human gastric cancer by MMP-7-specific antisense oligonucleotide. J. Exp. Clin. Cancer Res. 20, 205–212 (2001).

    CAS  PubMed  Google Scholar 

  119. Kondraganti, S. et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res. 60, 6851–6855 (2000).

    CAS  PubMed  Google Scholar 

  120. Noonberg, S. B. & Benz, C. C. Tyrosine kinase inhibitors targeted to the epidermal growth factor receptor subfamily: role as anticancer agents. Drugs 59, 753–767 (2000).

    CAS  PubMed  Google Scholar 

  121. Elkin, M. et al. Inhibition of matrix metalloproteinase-2 expression and bladder carcinoma metastasis by halofuginone. Clin. Cancer Res. 5, 1982–1988 (1999).

    CAS  PubMed  Google Scholar 

  122. Silletti, S., Kessler, T., Goldberg, J., Boger, D. L. & Cheresh, D. A. Disruption of matrix metalloproteinase 2 binding to integrin αvβ3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc. Natl Acad. Sci. USA 98, 119–124 (2001).Characterizes a compound that inhibits tumour growth by specifically disrupting the protein–protein interaction between MMP-2 and αvβ3 integrin, without any effects on MMP-2 activity in general.

    CAS  PubMed  Google Scholar 

  123. Liu, S., Netzel-Arnett, S., Birkedal-Hansen, H. & Leppla, S. H. Tumor cell-selective cytotoxicity of matrix metalloproteinase-activated anthrax toxin. Cancer Res. 60, 6061–6067 (2000).

    CAS  PubMed  Google Scholar 

  124. Celiker, M. Y. et al. Inhibition of Wilms' tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA. Oncogene 20, 4337–4343 (2001).

    CAS  PubMed  Google Scholar 

  125. Brand, K. et al. Treatment of colorectal liver metastases by adenoviral transfer of tissue inhibitor of metalloproteinases-2 into the liver tissue. Cancer Res. 60, 5723–5730 (2000).

    CAS  PubMed  Google Scholar 

  126. Koivunen, E. et al. Tumor targeting with a selective gelatinase inhibitor. Nature Biotechnol. 17, 768–774 (1999).Characterizes a peptide inhibitor that specifically inhibits the gelatin-binding MMPs, but not other MMPs.

    CAS  Google Scholar 

  127. Bramhall, S. R., Rosemurgy, A., Brown, P. D., Bowry, C. & Buckels, J. A. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J. Clin. Oncol. 19, 3447–3455 (2001).

    CAS  PubMed  Google Scholar 

  128. Hirte, H. et al. A phase I dose escalation study of the matrix metalloproteinase inhibitor BAY 12-9566 administered orally in patients with advanced solid tumours. Ann. Oncol. 11, 1579–1584 (2000).

    CAS  PubMed  Google Scholar 

  129. Moore, M. J. et al. A comparison between gemcitabine (GEM) and the matrix metalloproteinase (MMP) inhibitor BAY12–9566 (9566) in patients (PTS) with advanced pancreatic cancer. ASCO Online [online] (cited 05 Feb 2002), 〈http://www.asco.org/prof/me/html/00abstracts/gic/m_930.htm〉 (2000).

  130. Hidalgo, M. & Eckhardt, S. G. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl Cancer Inst. 93, 178–193 (2001).

    CAS  PubMed  Google Scholar 

  131. Boissier, S. et al. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res. 60, 2949–2954 (2000).

    CAS  PubMed  Google Scholar 

  132. Gingras, D. et al. Matrix proteinase inhibition by AE-941, a multifunctional antiangiogenic compound. Anticancer Res. 21, 145–155 (2001).

    CAS  PubMed  Google Scholar 

  133. Falardeau, P., Champagne, P., Poyet, P., Hariton, C. & Dupont, E. Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin. Oncol. 28, 620–625 (2001).

    CAS  PubMed  Google Scholar 

  134. Garbisa, S. et al. Tumor invasion: molecular shears blunted by green tea. Nature Med. 5, 1216 (1999).

    CAS  PubMed  Google Scholar 

  135. Thun, M. J., Namboodiri, M. M. & Heath, C. W. Jr. Aspirin use and reduced risk of fatal colon cancer. N. Engl. J. Med. 325, 1593–1596 (1991).

    CAS  PubMed  Google Scholar 

  136. Jiang, M. C., Liao, C. F. & Lee, P. H. Aspirin inhibits matrix metalloproteinase-2 activity, increases E-cadherin production, and inhibits in vitro invasion of tumor cells. Biochem. Biophys. Res. Commun. 282, 671–677 (2001).

    CAS  PubMed  Google Scholar 

  137. Bergers, G., Javaherian, K., Lo, K. M., Folkman, J. & Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 808–812 (1999).

    CAS  PubMed  Google Scholar 

  138. Eccles, S. A. et al. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res. 56, 2815–2822 (1996).

    CAS  PubMed  Google Scholar 

  139. Kheradmand, F. & Werb, Z. Shedding light on sheddases: role in growth and development. Bioessays 24, 8–12 (2002).

    CAS  PubMed  Google Scholar 

  140. Tang, B. L. ADAMTS: a novel family of extracellular matrix proteases. Int. J. Biochem. Cell Biol. 33, 33–44 (2001).

    CAS  PubMed  Google Scholar 

  141. Olsen, B. R. & Ninomiya, Y. in Guidebook to the Extracellular Matrix, Anchor and Adhesion Proteins (eds Kreis, T. & Vale, R.) 380–408 (Oxford Univ. Press, Oxford, UK, 1999).

    Google Scholar 

  142. Maeshima, Y. et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295, 140–143 (2002).

    CAS  PubMed  Google Scholar 

  143. Sasaki, T. & Timpl, R. in Guidebook to the Extracellular Matrix, Anchor and Adhesion Proteins (eds Kreis, T. & Vale, R.) 434–443 (Oxford Univ. Press, Oxford, UK, 1999).

    Google Scholar 

  144. Hynes, R. in Guidebook to the Extracellular Matrix, Anchor and Adhesion Proteins (eds Kreis, T. & Vale, R.) 422–425 (Oxford Univ. Press, Oxford, UK, 1999).

    Google Scholar 

  145. Gustafsson, E. & Fassler, R. Insights into extracellular matrix functions from mutant mouse models. Exp. Cell Res. 261, 52–68 (2000).

    CAS  PubMed  Google Scholar 

  146. Lander, A. D. in Guidebook to the Extracellular Matrix, Anchor and Adhesion Proteins (eds Kreis, T. & Vale, R.) 351–356 (Oxford Univ. Press, Oxford, UK, 1999).

    Google Scholar 

  147. Cossins, J., Dudgeon, T. J., Catlin, G., Gearing, A. J. & Clements, J. M. Identification of MMP-18, a putative novel human matrix metalloproteinase. Biochem. Biophys. Res. Commun. 228, 494–498 (1996).

    CAS  PubMed  Google Scholar 

  148. Marchenko, G. N. et al. Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. Biochem. J. 356, 705–718 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Pei, D., Kang, T. & Qi, H. Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J. Biol. Chem. 275, 33988–33997 (2000).

    CAS  PubMed  Google Scholar 

  150. Ohnishi, J. et al. Cloning and characterization of a rat ortholog of MMP-23 (matrix metalloproteinase-23), a unique type of membrane-anchored matrix metalloproteinase and conditioned switching of its expression during the ovarian follicular development. Mol. Endocrinol. 15, 747–764 (2001).

    CAS  PubMed  Google Scholar 

  151. D'Armiento, J. et al. Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis. Mol. Cell Biol. 15, 5732–5739 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Colandrea, T. D., D'Armiento, J., Kesari, K. V. & Chada, K. K. Collagenase induction promotes mouse tumorigenesis by two independent pathways. Mol. Carcinog. 29, 8–16 (2000).

    CAS  PubMed  Google Scholar 

  153. Matrisian, L. M. Cancer biology: extracellular proteinases in malignancy. Curr. Biol. 9, R776–R778 (1999).

    CAS  PubMed  Google Scholar 

  154. Rudolph-Owen, L. A., Chan, R., Muller, W. J. & Matrisian, L. M. The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res. 58, 5500–5506 (1998).

    CAS  PubMed  Google Scholar 

  155. Wilson, C. L., Heppner, K. J., Labosky, P. A., Hogan, B. L. & Matrisian, L. M. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc. Natl Acad. Sci. USA 94, 1402–1407 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Martin, D. C., Rüther, U., Sanchez-Sweatman, O. H., Orr, F. W. & Khokha, R. Inhibition of SV40 T antigen-induced hepatocellular carcinoma in TIMP-1 transgenic mice. Oncogene 13, 569–576 (1996).

    CAS  PubMed  Google Scholar 

  157. Buck, T. B., Yoshiji, H., Harris, S. R., Bunce, O. R. & Thorgeirsson, U. P. The effects of sustained elevated levels of circulating tissue inhibitor of metalloproteinases-1 on the development of breast cancer in mice. Ann. NY Acad. Sci. 878, 732–735 (1999).

    CAS  PubMed  Google Scholar 

  158. Goss, K. J., Brown, P. D. & Matrisian, L. M. Differing effects of endogenous and synthetic inhibitors of metalloproteinases on intestinal tumorigenesis. Int. J. Cancer 78, 629–635 (1998).

    CAS  PubMed  Google Scholar 

  159. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Status of matrix metalloproteinase inhibitors as anti-cancer therapeutics. Science (in the press).

Download references

Acknowledgements

We thank B. Wiseman and M. Sternlicht for their helpful comments on the manuscript and apologize for omission of many significant references due to space constraints. This work was supported by grants from the National Cancer Institute and from the Danish Cancer Society.

Author information

Authors and Affiliations

Authors

Supplementary information

Online Table 1: The matrix metalloproteinases (MMPs) and their substrates (PDF 28 kb)

Online Table 2: Properties of the tissue inhibitors of matrix metalloproteinases (TIMPs) (PDF 40 kb)

41568_2002_BFnrc745_MOESM3_ESM.pdf

Online Table 3: Expression and clinical relevance of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in human cancer (PDF 58 kb)

Related links

Related links

DATABASES

CancerNet:

brain tumours

breast cancers

colon cancer

gastric cancer

Kaposi's sarcoma

liver cancer

non-small-cell lung cancer

ovarian cancer

pancreatic cancer

prostate cancer

skin cancer

small-cell lung cancers

bladder cancer

 LocusLink:

aggrecan

BCL-XL

CCL7

CD44

c-JUN

c-MET

collagen type IV

CXCL1

CXCL12

CXCL4

CXCL7

CXCL8

CXCR4

decorin

E-cadherin

EGFR

emmprin

endostatin

ETS

FAS

FASL

FGF receptor 1

FGFs

fibronectin

HB-EGF

HER2

HER4

IL-2Rα

αv integrin

αvβ3 integrin

keratan

laminin-5

LEF-1

MMP-1

Mmp-2

MMP-2

MMP3

Mmp-7

MMP-7

Mmp-9

MMP-9

Mmp-11

MMP-11

MMP-12

MMP-13

Mmp-14

MMP-14

MMP-15

MMP-20

MMP23

MMP24

MMP-28

nidogen

p53

PECAM-1

perlecan

RECK

serpins

syndecans

tenascin

TGF-α

TGF-β

thrombospondin-1

thrombospondin-2

Timp-1

TIMP-1

Timp-2

TIMP-2

TIMP-3

TIMP-4

VE-cadherin

VEGF

versican

vitronectin

α2-macroglobulin

β-catenin

 OMIM:

neuroblastoma

FURTHER INFORMATION

Agouron Pfizer Press Release

Bayer Pharmaceutical Division Press Release

British Biotech Press Release

CancerNet, search for clinical trials

ClinicalTrials.gov, search for clinical trials

International Society for Fibrinolysis and Proteolysis

Glossary

EXTRACELLULAR MATRIX

All secreted molecules that are immobilized outside cells, see Box 1.

CLINICAL TRIALS

Phase I: the first testing of a new drug in humans. A small group of people is tested to determine drug safety, safe dosage range and side effects. Phase II: the drug is tested on a larger group of patients to see if it is effective and to further evaluate its safety. Phase III: conducted on a large group of patients to confirm the effectiveness, monitor side effects and compare the drug to commonly used treatments.

ZYMOGEN

An enzyme that is secreted by cells as an inactive precursor. Activation of the enzymes occurs as one or more peptide bonds in the zymogen are cleaved.

INTRACELLULAR FURIN-LIKE SERINE PROTEINASES

A family of intracellular proteinases, including furin, that are localized in the trans-Golgi network, where they have an important role in the intracellular processing of secreted proteins.

SCAVENGER RECEPTORS

A broad class of receptors that 'scavenge' cellular debris: the ligands are endocytosed and subsequently degraded. Scavenger receptors also have other activities, such as adhesion.

CRYPTIC SITE

Part of a protein that is normally hidden within the three-dimensional structure. The cryptic site might be exposed following conformational changes in the protein — for example, as a result of proteolytic cleavage.

ADAM

(A disintegrin and metalloproteinase). A family of transmembrane proteinases with metalloproteinase, disintegrin (integrin-binding), cysteine-rich and epidermal growth factor (EGF)-like domains. ADAMs participate in cell-surface proteolysis and cleave substrates such as tumour necrosis factor-α and Notch.

XENOGRAFT

Transplantation of tissue or cells from one species to another. In cancer research, most xenografts are human cancer-cell lines or human tumours that have been transplanted to immune-deficient rodents.

K14-HPV16 MOUSE MODEL OF SQUAMOUS-CELL CARCINOMA

A transgenic mouse strain that expresses the human papillomavirus type 16 (HPV16) early-region genes, including the E6/E7 oncogenes, under the control of the human keratin-14 promoter (K14) in basal keratinocytes. Invasive squamous carcinomas of the epidermis develop through characteristic stages.

RIP-TAg MOUSE MODEL OF ISLET-CELL CARCINOMA

A transgenic mouse strain that expresses the simian virus T antigen (TAg) under the rat insulin II promoter (RIP) in the pancreatic islet β-cells. Carcinomas develop in the pancreatic islets cells and progress through characteristic stages.

PLASMINOGEN

The precursor of plasmin, a trypsin-like serine proteinase that cleaves fibrin in blood clots.

ANGIOSTATIN

A proteolytic fragment of plasminogen and an inhibitor of angiogenesis.

ENDOSTATIN

A proteolytic fragment of the non-collagenous domain of collagen type XVIII and an inhibitor of angiogenesis.

UROKINASE-TYPE PLASMINOGEN-ACTIVATOR RECEPTOR

(uPAR). A cell-surface receptor for urokinase-type plasminogen activator (uPA), a serine proteinase that catalyses the formation of plasmin from plasminogen.

METASTASIS ASSAYS

In spontaneous metastasis assays, the tumour cells are inoculated either subcutaneously or orthotopically in animals, and spontaneous metastases from this primary site to distant locations are monitored. In experimental metastasis assays, tumour cells are injected into the bloodstream (for example, intravenously for lung metastasis, into the left heart ventricle for bone metastases and into the portal vein for liver metastases), thereby circumventing the first steps in the metastatic process.

MATRIGEL

The extracellular matrix secreted by the Engelbrecht–Holm–Swarm mouse sarcoma cell line. It contains laminin, collagen IV, nidogen/entactin and proteoglycans, and so resembles the basement membrane.

HYALURONAN

A high molecular weight glycosaminoglycan. It is widely distributed both in the extracellular matrix and at the cell surface.

INVADOPODIA

Specialized membrane protrusions (also known as an invasive pseudopodia) where active extracellular matrix degradation takes place.

INTRAVASATION

Passage from tissue into blood or lymph vessel.

EXTRAVASATION

Passage from blood or lymph vessel into tissue.

CHEMOKINES

A family of chemotactic proteins that are divided into C, CC, CXC and CX3C chemokines, depending on the number and spacing of conserved cysteine residues in the amino-terminal part of the protein. Chemokines are involved in inflammatory-cell recruitment and act through G-protein-coupled receptors.

RIBOZYMES

RNA molecules that function like enzymes and exert a catalytic activity. Ribozymes can be designed to cleave specific mRNAs and thereby inhibit protein synthesis.

COCCIDIOSTAT

A drug used to treat coccidiosis, an intestinal disease that is caused by a protozoan.

ANTHRAX TOXIN

Anthrax toxin is a three-part toxin that is secreted by the bacterium Bacillus anthracis and consists of protective antigen (PA), oedema factor (EF) and lethal factor (LF). PA is cleaved by furin-like proteinases at the cell surface, and cleaved PAs form a complex with EF and LF. The complex is endocytosed, and LF and EF are translocated to the cytosol where they act cytotoxically. The requirement for proteolysis of PA has been exploited by replacing the furin-like cleavage site with a sequence recognized by MMPs, in a recombinant anthrax toxin derivative.

ADAMTS

(A disintegrin and metalloproteinase with thrombospondin type 1 motifs). A family of soluble proteinases, closely related to the ADAMs, that contains domains with high homology to thrombospondin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egeblad, M., Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161–174 (2002). https://doi.org/10.1038/nrc745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing