Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Natural products in cancer chemotherapy: past, present and future

Abstract

Natural products have been the mainstay of cancer chemotherapy for the past 30 years. However, the quickening pace of (aberrant) gene identification, and the new technologies of combinatorial chemistry and high-throughput screening, should provide access to a wide range of new, totally synthetic drugs. Will these new approaches sound the death knell for therapies based on natural products? In reality, natural products are likely to provide many of the lead structures, and these will be used as templates for the construction of novel compounds with enhanced biological properties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two of the earliest plants to yield natural products with anticancer activities.
Figure 2: Some of nature's combinatorial chemists.
Figure 3: Structure–activity relationships for the sarcodictyins.
Figure 4: Targeting natural products with antibodies and peptide hormones.

References

  1. Pettit, G. R., Pierson, F. H. & Herald, C. L. Anticancer Drugs from Animals, Plants and Microorganisms (Wiley, New York, 1994).

    Google Scholar 

  2. Newman, D. J., Cragg, G. M. & Snader, K. M. The influence of natural products on drug discovery. Nat. Prod. Rep. 17, 215–234 (2000).

    Article  CAS  Google Scholar 

  3. Zubrod, C. G. Origins and development of chemotherapy research at the National Cancer Institute. Cancer Treat. Rep. 68, 9–19 (1984).

    CAS  PubMed  Google Scholar 

  4. Cragg, G. M. et al. in Human Medicinal Agents from Plants (eds Kinghorn, A. D. & Balandrin, M. F.) 80–95 (ACS, Washington, 1993).

    Book  Google Scholar 

  5. Fahy, J. Modifications of the Vinca alkaloids have major implications for tubulin interacting activities. Curr Pharm Des 7, 1181–1197 (2001).

    Article  CAS  Google Scholar 

  6. Hande, K. R. Etoposide: four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer, 34, 1514–1521 (1998).

    Article  CAS  Google Scholar 

  7. Goodman, J. & Walsh, V. The Story of Taxol (Cambridge Univ. Press, Cambridge, UK, 2001).

    Google Scholar 

  8. Gueritte-Voegelein, F. et al. Relationships between the structure of Taxol analogues and their antimitotic activity. J. Med. Chem. 34, 992–998 (1991).

    Article  CAS  Google Scholar 

  9. Schiff, P. B., Fant, J. & Horwitz, S. Promotion of microtubule assembly in vitro by Taxol. Nature 277, 665–667 (1979).

    Article  CAS  Google Scholar 

  10. Kingston, D. G. I. Taxol, a molecule for all seasons. Chem. Commun. 867–880 (2001).

  11. Chesnoff, S. The use of Taxol as a trademark. Nature 374, 208 (1995).

    Article  CAS  Google Scholar 

  12. Jonsson, E. et al. Differential activity of topotecan and irinotecan. Eur. J. Cancer 36, 2120–2127 (2000).

    Article  CAS  Google Scholar 

  13. Chen, A. Y. & Liu, L. F. DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 34, 191–218 (1994).

    Article  CAS  Google Scholar 

  14. Leitheiser, C. J., Rishel, M. J., Wu, X. & Hecht, S. M. Solid-phase synthesis of bleomycin group antibiotics. Elaboration of deglycobleomycin A (5). Org. Lett. 2, 3397–3399 (2000).

    Article  CAS  Google Scholar 

  15. Hofle, G. et al. Structure ekucidation of epothilones. Angew. Chemie 35, 1567–1569 (1996).

    Article  Google Scholar 

  16. Nicolaou, K. C., Roschangar, F. & Vourloumis, D. Chemical biology of epothilones. Angew. Chemie 37, 2014–2045 (1998).

    Article  CAS  Google Scholar 

  17. Nicolaou, K. C., Ritzen, A. & Namoto, K. Recent developments in the chemistry, biology and medicine of the epothilones. Chem. Commun. 1523–1535 (2001).

  18. Nicolaou, K. C. et al. Designed epothilones: combinatorial synthesis, tubulin assembly properties, and cytotoxic action against Taxol-resistant tumour cells. Angew. Chemie 36, 2097–2100 (1997).

    Article  CAS  Google Scholar 

  19. Danishefsky, S. J. et al. On the interactivity of complex synthesis and tumor pharmacology in the drug discovery process (epothilone analogues). J. Org. Chem. 66, 4369–4378 (2001).

    Article  Google Scholar 

  20. Faulkner, D. J. Highllights of marine natural products chemistry (1972–1999). Nat. Prod. Rep. 17, 1–6 (2000).

    Article  CAS  Google Scholar 

  21. Faulkner, D. J. Marine natural products. Nat Prod Rep 18, 1–49 (2001).

    Article  CAS  Google Scholar 

  22. Nuijen, B. et al. Pharmaceutical developments of anticancer agents derived from marine sources. Anti-Cancer Drugs 11, 793–811 (2000).

    Article  CAS  Google Scholar 

  23. Mendola, D. in Drugs from the Sea (ed. N. Fusetani) 121–133 (Karger, Basel, 2000).

    Google Scholar 

  24. Watson, C. Polymer-supported synthesis of non-oligomeric natural products. Angew. Chemie 38, 1903–1908 (1999).

    Article  CAS  Google Scholar 

  25. Terrett, N. K., Gardner, M., Gordon, D. W., Kobylecki, R. J. & Steele, J. Combinatorial synthesis: the design of compound libraries and their application to drug discovery. Tetrahedron 51, 8135–8173 (1995).

    Article  CAS  Google Scholar 

  26. Mutter, R. & Wills, M. Chemistry and biology of the bryostatins. Bioorg. Med. Chem. 8, 1841–1860 (2000).

    Article  CAS  Google Scholar 

  27. Wender, P. A. et al. The design, computer modeling, solution structure, and biological evaluation of synthetic analogues of bryostatin 1. Proc. Natl Acad. Sci. USA 95, 6624–6629 (1998).

    Article  CAS  Google Scholar 

  28. Wender, P. A. & Lippa, B. Synthesis and biological evaluation of bryostatin anaologues. Tet. Lett. 41, 1007–1011 (2000).

    Article  CAS  Google Scholar 

  29. D'Ambrosio, M., Guerriero, A. & Pietra, F. Sarcodictyin. Helv. Chim. Acta 70, 2019 (1987).

  30. Fenical, W. et al. Eleutherobin. J. Am. Chem. Soc. 119, 8744–8745 (1997).

    Article  Google Scholar 

  31. Nicolaou, K. C. et al. Total synthesis of eleutherobin. Angew. Chemie 36, 2520–2524 (1997).

    Article  CAS  Google Scholar 

  32. Danishefsky, S. J. et al. The total synthesis of eleutherobin. Angew. Chemie 37, 185–187, 789–791 (1998).

    Article  Google Scholar 

  33. Nicolaou, K. C. et al. Solid and solution phase synthesis and biological evaluation of combinatorial sarcodictyin libraries. J. Am. Chem. Soc. 120, 10814–10826 (1998).

    Article  CAS  Google Scholar 

  34. Kohler, G. & Milstein, C. Contimous cultures of fused cells secreting antibody of prediefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  Google Scholar 

  35. Niculescu-Duvaz, I. & Springer, C. J. Antibody-driected enzyme prodrug therapy (ADEPT). Adv Drug Deliv Rev 26, 151–172 (1997).

    Article  CAS  Google Scholar 

  36. Smyth, T. P., O'Donnell, M. E., O'Connor, M. J. & St Ledger, J. O. β-lactamase-dependent prodrugs- recent developments. Tetrahedron 56, 5699–5707 (2000).

    Article  CAS  Google Scholar 

  37. Bross, P. F. et al. Approval summary: gemtuzumab ozogamicin (Mylotarg) in relapsed acute myeloid leukemia. Clin. Cancer Res. 7, 1490–1496 (2001).

    CAS  Google Scholar 

  38. Langer, M., Kratz, F., Rothen-Rutishauser, B., Wunderli-Allenspach, H. & Beck-Sickinger, A. G. Novel peptide conjugates for tumor-specific chemotherapy. J. Med. Chem. 44, 1341–1348 (2001).

    Article  CAS  Google Scholar 

  39. Corey, E. J., Gin, D. Y. & Kania, R. S. Enantioselective total synthesis of exteinascidin 743. J. Am. Chem. Soc. 118, 9202–9203 (1996).

    Article  CAS  Google Scholar 

  40. Liekens, S., De Clercq, E. & Neyts, J. Angiogenesis: regulators and clinical applications. Biochem. Pharmacol. 61, 253–270 (2001).

    Article  CAS  Google Scholar 

  41. Folkman, J. et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348, 555–557 (1990).

    Article  Google Scholar 

  42. Wernert, N. et al. Inhibition of Ets-1 transcription factor expression by the antibiotic fumagillin. Angew. Chemie 38, 3228–3231 (1999).

    Article  CAS  Google Scholar 

  43. Pettit, G. R. et al. Isolation and structure of the strong cell-growth and tubulin inhibitor combretastatin A4. Experientia 45, 209–211 (1989).

    Article  CAS  Google Scholar 

  44. Griggs, J., Metcalfe, J. C. & Hesketh, R. Targeting tumour vasculature: the development of combretastatin A4. Lancet Oncol. 2, 82–87 (2001).

    Article  CAS  Google Scholar 

  45. Grosios, K., Loadman, P. M., Swaine, D. J., Pettit, G. R. & Bibby, M. C. Combination chemotherapy with combretastatin A-4 phosphate and 5-fluorouracil in an experimental murine colon adenocarcinoma. Anticancer Res. 20, 229–233 (2000).

    CAS  PubMed  Google Scholar 

  46. Weinstein-Oppenheimer, C. R., Blalock, W. L., Steelman, L. S., Chang, F. & McCubrey, J. A. The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Pharmacol. Ther. 88, 229–279 (2000).

    Article  CAS  Google Scholar 

  47. Sano, M. Radicicol and geldanamycin prevent neurotoxic effects of anti-cancer drugs. Neuropharmacology 40, 947–953 (2001).

    Article  CAS  Google Scholar 

  48. Cushman, M. et al. Design, synthesis, and biological evaluation of a series of lavendustin A analogues that inhibit EGRF and Syk tyrosine kinases, as well as tubulin polymerisation. J. Med. Chem. 44, 441–452 (2001).

    Article  Google Scholar 

  49. Fabbro, D. et al. Inhibitors of protein kinases: CGP 41251, a protein kinase inhibitor with potential as an anticancer agent. Pharmacol. Ther. 82, 293–301 (1999).

    Article  CAS  Google Scholar 

  50. Mann, J. et al. A novel inhibitor of human telomerase derived from 10H-indolo[3,2-b]quinoline. Bioorg. Med. Chem. Lett. 10, 2063–2066 (2000).

    Article  Google Scholar 

  51. Autexier, C. Telomerase as a possible target for anticancer therapy. Chem. Biol. 6, R299–R303 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

CancerNet:

acute lymphocytic leukaemia

acute myeloid leukaemia

brain tumours

breast tumours

cervical cancer

colon tumours

Hodgkin's disease

kidney tumours

melanoma

neuroblastoma

non-Hodgkin's lymphomas

oesophageal cancer

ovarian tumours

prostate tumours

skin cancers

small-cell lung cancer

stomach cancer

testicular teratoma 

LocusLink:

CD33

EGFR

ERK

ETS1

β-glucuronidase

MEK

neuropeptide Y

p53

protein kinase C

RAF

RAS

topoisomerase I

VEGFs 

Medscape DrugInfo:

Blenoxane

cisplatin

dactinomycin

doxorubicin

etoposide

5-fluorouracil

irinotecan

Mylotarg

Taxol

taxotere

teniposide

topotecan

vinblastine

vincristine

vinorelbine

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, J. Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2, 143–148 (2002). https://doi.org/10.1038/nrc723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing