Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aryl hydrocarbon receptor ligands in cancer: friend and foe

Key Points

  • The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is best known for mediating the toxicity and tumour-promoting properties of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; commonly referred to as 'dioxin').

  • Three distinct classes of ligands bind to AHR: agonists, antagonists and selective AHR modulators. AHR is activated by endogenous ligands such as kynurenine, kynurenic acid and indoxyl sulphate, and physiologically relevant flora can produce potent AHR ligands from tryptophan.

  • Human AHR and mouse AHR exhibit substantial differences in ligand specificity, which might influence the progression of cancer. This complicates the validity of mouse models for studying the effects of AHR on human carcinogenesis.

  • Numerous studies demonstrate the ability of AHR to increase the proliferative and migratory potential of tumour cells.

  • AHR directly modulates inflammatory signalling, and AHR levels are often increased in tumours, probably as a result of inflammatory signalling. AHR agonist-mediated activity can have a key role in the production of regulatory T cells and thus could have a role in immune tolerance in cancer.

Abstract

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is best known for mediating the toxicity and tumour-promoting properties of the carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin, commonly referred to as 'dioxin'. AHR influences the major stages of tumorigenesis — initiation, promotion, progression and metastasis — and physiologically relevant AHR ligands are often formed during disease states or during heightened innate and adaptive immune responses. Interestingly, ligand specificity and affinity vary between rodents and humans. Studies of aggressive tumours and tumour cell lines show increased levels of AHR and constitutive localization of this receptor in the nucleus. This suggests that the AHR is chronically activated in tumours, thus facilitating tumour progression. This Review discusses the role of AHR in tumorigenesis and the potential for therapeutic modulation of its activity in tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Agonist-mediated activation of AHR.
Figure 2: AHR activity within the tumour microenvironment.
Figure 3: Proposed mechanisms of cell cycle modulation by AHR.
Figure 4: Proposed role of AHR in tumour metastasis.

Similar content being viewed by others

References

  1. Bersten, D. C., Sullivan, A. E., Peet, D. J. & Whitelaw, M. L. bHLH-PAS proteins in cancer. Nature Rev. Cancer 13, 827–841 (2013).

    CAS  Google Scholar 

  2. Poland, A., Palen, D. & Glover, E. Tumour promotion by TCDD in skin of HRS/J hairless mice. Nature 300, 271–273 (1982).

    CAS  PubMed  Google Scholar 

  3. Sato, S. et al. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicol. Appl. Pharmacol. 229, 10–19 (2008).

    CAS  PubMed  Google Scholar 

  4. Denison, M. S., Soshilov, A. A., He, G., DeGroot, D. E. & Zhao, B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol. Sci. 124, 1–22 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao, B. et al. Common commercial and consumer products contain activators of the aryl hydrocarbon (dioxin) receptor. PLoS ONE 8, e56860 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeuken, A. et al. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits. J. Agr. Food Chem. 51, 5478–5487 (2003).

    CAS  Google Scholar 

  7. Hu, W., Sorrentino, C., Denison, M. S., Kolaja, K. & Fielden, M. R. Induction of Cyp1a1 is a nonspecific biomarker of aryl hydrocarbon receptor activation: results of large scale screening of pharmaceuticals and toxicants in vivo and in vitro. Mol. Pharmacol. 71, 1475–1486 (2007).

    CAS  PubMed  Google Scholar 

  8. Van der Heiden, E. et al. Food flavonoid aryl hydrocarbon receptor-mediated agonistic/antagonistic/synergic activities in human and rat reporter gene assays. Anal. Chim. Acta 637, 337–345 (2009).

    CAS  PubMed  Google Scholar 

  9. Zhang, S., Qin, C. & Safe, S. H. Flavonoids as aryl hydrocarbon receptor agonists/antagonists: effects of structure and cell context. Environ. Health Perspect. 111, 1877–1882 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bjeldanes, L. F., Kim, J. Y., Grose, K. R., Bartholomew, J. C. & Bradfield, C. A. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc. Natl Acad. Sci. USA 88, 9543–9547 (1991). This study shows that the high-affinity AHR ligand indolo[3,2 b ]carbazole is produced in vivo from indole-3-carbinol.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jin, U. H. et al. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol. Pharmacol. 85, 777–788 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    CAS  PubMed  Google Scholar 

  13. Fukumoto, S. et al. Identification of a probiotic bacteria-derived activator of the aryl hydrocarbon receptor that inhibits colitis. Immunol. Cell Biol. 92, 460–465 (2014).

    CAS  PubMed  Google Scholar 

  14. Magiatis, P. et al. Malassezia yeasts produce a collection of exceptionally potent activators of the Ah (dioxin) receptor detected in diseased human skin. J. Invest. Dermatol. 133, 2023–2030 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. van den Bogaard, E. H. et al. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis. J. Clin. Invest. 123, 917–927 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Oesch-Bartlomowicz, B. et al. Aryl hydrocarbon receptor activation by cAMP versus dioxin: divergent signaling pathways. Proc. Natl Acad. Sci. USA 102, 9218–9223 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ikuta, T. et al. Nucleocytoplasmic shuttling of the aryl hydrocarbon receptor. J. Biochem. 127, 503–509 (2000).

    CAS  PubMed  Google Scholar 

  18. DiNatale, B. C. et al. Ah receptor antagonism represses head and neck tumor cell aggressive phenotype. Mol. Cancer Res. 10, 1369–1379 (2012). This study demonstrates that AHR antagonism inhibits constitutive AHR-mediated IL-6 production and migration, and the invasive phenotype in head and neck squamous cell carcinoma cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Han, Z. et al. Aryl hydrocarbon receptor mediates laminar fluid shear stress-induced CYP1A1 activation and cell cycle arrest in vascular endothelial cells. Cardiovasc. Res. 77, 809–818 (2008).

    CAS  PubMed  Google Scholar 

  20. Conway, D. E. et al. Expression of CYP1A1 and CYP1B1 in human endothelial cells: regulation by fluid shear stress. Cardiovasc. Res. 81, 669–677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Murray, I. A. et al. Evidence that ligand binding is a key determinant of Ah receptor-mediated transcriptional activity. Arch. Biochem. Biophys. 442, 59–71 (2005).

    CAS  PubMed  Google Scholar 

  22. Bock, K. W. & Kohle, C. Ah receptor- and TCDD-mediated liver tumor promotion: clonal selection and expansion of cells evading growth arrest and apoptosis. Biochem. Pharmacol. 69, 1403–1408 (2005).

    CAS  PubMed  Google Scholar 

  23. Knerr, S. & Schrenk, D. Carcinogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in experimental models. Mol. Nutr. Food Res. 50, 897–907 (2006).

    CAS  PubMed  Google Scholar 

  24. Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    CAS  PubMed  Google Scholar 

  25. Kennedy, G. D. et al. Liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin is dependent on the aryl hydrocarbon receptor and TNF/IL-1 receptors. Toxicol. Sci. 140, 135–143 (2014). This study provides evidence that liver tumour promotion by activated AHR is dependent on inflammatory signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. He, G. et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 155, 384–396 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. DiNatale, B. C., Schroeder, J. C., Francey, L. J., Kusnadi, A. & Perdew, G. H. Mechanistic insights into the events that lead to synergistic induction of interleukin 6 transcription upon activation of the aryl hydrocarbon receptor and inflammatory signaling. J. Biol. Chem. 285, 24388–24397 (2010). This study shows that AHR bound to DREs in the IL-6 promoter displaces HDAC1, leading to increased acetylation of RELA and synergistic induction of IL-6 transcription in the presence of an inflammatory signal.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schlezinger, J. J. et al. Direct assessment of cumulative aryl hydrocarbon receptor agonist activity in sera from experimentally exposed mice and environmentally exposed humans. Environ. Health Perspect. 118, 693–698 (2010).

    CAS  PubMed  Google Scholar 

  29. Connor, K. T. et al. AH receptor agonist activity in human blood measured with a cell-based bioassay: evidence for naturally occurring AH receptor ligands in vivo. J. Expo. Sci. Environ. Epidemiol. 18, 369–380 (2008).

    CAS  PubMed  Google Scholar 

  30. Adachi, J. et al. Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J. Biol. Chem. 276, 31475–31478 (2001).

    CAS  PubMed  Google Scholar 

  31. Wincent, E. et al. The suggested physiologic aryl hydrocarbon receptor activator and cytochrome P4501 substrate 6-formylindolo[3,2-b]carbazole is present in humans. J. Biol. Chem. 284, 2690–2696 (2009).

    CAS  PubMed  Google Scholar 

  32. Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010). This is the first study to link the activation of AHR by kynurenine with the generation of T Reg cells.

    CAS  PubMed  Google Scholar 

  33. Pilotte, L. et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc. Natl Acad. Sci. USA 109, 2497–2502 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Stone, T. W., Stoy, N. & Darlington, L. G. An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol. Sci. 34, 136–143 (2013).

    CAS  PubMed  Google Scholar 

  35. Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011). This is a landmark study that correlates negative outcome in human brain cancer with levels of AHR and TDO2.

    CAS  PubMed  Google Scholar 

  36. DiNatale, B. C. et al. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin 6 in the presence of inflammatory signaling. Toxicol. Sci. 115, 89–97 (2010). This is the first report of an IDO1 product as a potent endogenous human AHR ligand.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Botwinick, I. C. et al. A biological basis for depression in pancreatic cancer. HPB 16, 740–743 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Schroeder, J. C. et al. The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor. Biochemistry 49, 393–400 (2010).

    CAS  PubMed  Google Scholar 

  39. Niwa, T., Takeda, N., Tatematsu, A. & Maeda, K. Accumulation of indoxyl sulfate, an inhibitor of drug-binding, in uremic serum as demonstrated by internal-surface reversed-phase liquid chromatography. Clin. Chem. 34, 2264–2267 (1988).

    CAS  PubMed  Google Scholar 

  40. Meijers, B. K. et al. p-Cresyl sulfate and indoxyl sulfate in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 4, 1932–1938 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sindhu, R. K. & Vaziri, N. D. Upregulation of cytochrome P450 1A2 in chronic renal failure: does oxidized tryptophan play a role? Adv. Exp. Med. Biol. 527, 401–407 (2003).

    CAS  PubMed  Google Scholar 

  42. Wong, G. et al. Time on dialysis and cancer risk after kidney transplantation. Transplantation 95, 114–121 (2013).

    CAS  PubMed  Google Scholar 

  43. Fan, Y. et al. The aryl hydrocarbon receptor functions as a tumor suppressor of liver carcinogenesis. Cancer Res. 70, 212–220 (2010).

    CAS  PubMed  Google Scholar 

  44. Ikuta, T. et al. ASC-associated inflammation promotes cecal tumorigenesis in aryl hydrocarbon receptor-deficient mice. Carcinogenesis 34, 1620–1627 (2013).

    CAS  PubMed  Google Scholar 

  45. Fritz, W. A., Lin, T. M., Cardiff, R. D. & Peterson, R. E. The aryl hydrocarbon receptor inhibits prostate carcinogenesis in TRAMP mice. Carcinogenesis 28, 497–505 (2007). This study establishes that expression of AHR represses prostate carcinogenesis in TRAMP mice.

    CAS  PubMed  Google Scholar 

  46. Moennikes, O. et al. A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res. 64, 4707–4710 (2004).

    CAS  PubMed  Google Scholar 

  47. Andersson, P. et al. A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc. Natl Acad. Sci. USA 99, 9990–9995 (2002). This report shows that the expression of a constitutively active mutant AHR in transgenic mice induces the formation of stomach tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Puga, A., Xia, Y. & Elferink, C. Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem. Biol. Interact. 141, 117–130 (2002).

    CAS  PubMed  Google Scholar 

  49. John, K., Lahoti, T. S., Wagner, K., Hughes, J. M. & Perdew, G. H. The Ah receptor regulates growth factor expression in head and neck squamous cell carcinoma cell lines. Mol. Carcinog. 53, 765–776 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Chuang, C. Y. et al. Up-regulation of osteopontin expression by aryl hydrocarbon receptor via both ligand-dependent and ligand-independent pathways in lung cancer. Gene 492, 262–269 (2012).

    CAS  PubMed  Google Scholar 

  51. Patel, R. D., Kim, D. J., Peters, J. M. & Perdew, G. H. The aryl hydrocarbon receptor directly regulates expression of the potent mitogen epiregulin. Toxicol. Sci. 89, 75–82 (2006).

    CAS  PubMed  Google Scholar 

  52. Roman, A. C., Carvajal-Gonzalez, J. M., Rico-Leo, E. M. & Fernandez-Salguero, P. M. Dioxin receptor deficiency impairs angiogenesis by a mechanism involving VEGF-A depletion in the endothelium and transforming growth factor-β overexpression in the stroma. J. Biol. Chem. 284, 25135–25148 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shigeishi, H. et al. Expression of epiregulin, a novel epidermal growth factor ligand associated with prognosis in human oral squamous cell carcinomas. Oncol. Rep. 19, 1557–1564 (2008).

    CAS  PubMed  Google Scholar 

  54. Wang, C. K. et al. Aryl hydrocarbon receptor activation and overexpression upregulated fibroblast growth factor-9 in human lung adenocarcinomas. Int. J. Cancer 125, 807–815 (2009).

    CAS  PubMed  Google Scholar 

  55. Nishimura, T. et al. Amphiregulin and epiregulin expression in neoplastic and inflammatory lesions in the colon. Oncol. Rep. 19, 105–110 (2008).

    PubMed  Google Scholar 

  56. Riese, D. J., 2nd & Cullum, R. L. Epiregulin: roles in normal physiology and cancer. Semin. Cell Dev. Biol. 28, 49–56 (2014).

    CAS  PubMed  Google Scholar 

  57. Zhu, Z. et al. Epiregulin is up-regulated in pancreatic cancer and stimulates pancreatic cancer cell growth. Biochem. Biophys. Res. Commun. 273, 1019–1024 (2000).

    CAS  PubMed  Google Scholar 

  58. Marlowe, J. L. & Puga, A. Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J. Cell Biochem. 96, 1174–1184 (2005).

    CAS  PubMed  Google Scholar 

  59. Elferink, C. J. Aryl hydrocarbon receptor-mediated cell cycle control. Prog. Cell Cycle Res. 5, 261–267 (2003).

    PubMed  Google Scholar 

  60. Vezina, C. M., Lin, T. M. & Peterson, R. E. AHR signaling in prostate growth, morphogenesis, and disease. Biochem. Pharmacol. 77, 566–576 (2009). This study shows that human prostrate tumours with an aggressive phenotype exhibit enhanced nuclear localization of AHR.

    CAS  PubMed  Google Scholar 

  61. Schlezinger, J. J. et al. A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis. Biol. Chem. 387, 1175–1187 (2006).

    CAS  PubMed  Google Scholar 

  62. Feng, S., Cao, Z. & Wang, X. Role of aryl hydrocarbon receptor in cancer. Biochim. Biophys. Acta 1836, 197–210 (2013).

    CAS  PubMed  Google Scholar 

  63. Safe, S., Lee, S. O. & Jin, U. H. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol. Sci. 135, 1–16 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Spink, D. C., Johnson, J. A., Connor, S. P., Aldous, K. M. & Gierthy, J. F. Stimulation of 17 β-estradiol metabolism in MCF-7 cells by bromochloro- and chloromethyl-substituted dibenzo-p-dioxins and dibenzofurans: correlations with antiestrogenic activity. J. Toxicol. Environ. Health 41, 451–466 (1994).

    CAS  PubMed  Google Scholar 

  65. Wormke, M. et al. The aryl hydrocarbon receptor mediates degradation of estrogen receptor α through activation of proteasomes. Mol. Cell. Biol. 23, 1843–1855 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ohtake, F., Fujii-Kuriyama, Y. & Kato, S. AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem. Pharmacol. 77, 474–484 (2009).

    CAS  PubMed  Google Scholar 

  67. Safe, S. & Wormke, M. Inhibitory aryl hydrocarbon receptor–estrogen receptor α cross-talk and mechanisms of action. Chem. Res. Toxicol. 16, 807–816 (2003).

    CAS  PubMed  Google Scholar 

  68. Madak-Erdogan, Z. & Katzenellenbogen, B. S. Aryl hydrocarbon receptor modulation of estrogen receptor α-mediated gene regulation by a multimeric chromatin complex involving the two receptors and the coregulator RIP140. Toxicol. Sci. 125, 401–411 (2012).

    CAS  PubMed  Google Scholar 

  69. Beischlag, T. V. & Perdew, G. H. ERα-AHR-ARNT protein-protein interactions mediate estradiol-dependent transrepression of dioxin-inducible gene transcription. J. Biol. Chem. 280, 21607–21611 (2005).

    CAS  PubMed  Google Scholar 

  70. Dohr, O., Vogel, C. & Abel, J. Different response of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-sensitive genes in human breast cancer MCF-7 and MDA-MB 231 cells. Arch. Biochem. Biophys. 321, 405–412 (1995).

    CAS  PubMed  Google Scholar 

  71. Stark, K. et al. Reactivation of estrogen receptor α by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor. PLoS ONE 8, e74525 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wihlen, B., Ahmed, S., Inzunza, J. & Matthews, J. Estrogen receptor subtype- and promoter-specific modulation of aryl hydrocarbon receptor-dependent transcription. Mol. Cancer Res. 7, 977–986 (2009).

    CAS  PubMed  Google Scholar 

  73. Terashima, J., Habano, W., Gamou, T. & Ozawa, S. Induction of CYP1 family members under low-glucose conditions requires AhR expression and occurs through the nuclear translocation of AhR. Drug Metab. Pharmacokinet. 26, 577–583 (2011).

    CAS  PubMed  Google Scholar 

  74. Vorrink, S. U. & Domann, F. E. Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1α signaling node. Chem. Biol. Interact. 218, 82–88 (2014).

    CAS  PubMed  Google Scholar 

  75. Hamouchene, H., Arlt, V. M., Giddings, I. & Phillips, D. H. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene. BMC Genomics 12, 333 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shin, S. et al. NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol. Cell. Biol. 27, 7188–7197 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cho, Y. C., Zheng, W. & Jefcoate, C. R. Disruption of cell-cell contact maximally but transiently activates AhR-mediated transcription in 10T1/2 fibroblasts. Toxicol. Appl. Pharmacol. 199, 220–238 (2004).

    CAS  PubMed  Google Scholar 

  78. Ikuta, T., Kobayashi, Y. & Kawajiri, K. Cell density regulates intracellular localization of aryl hydrocarbon receptor. J. Biol. Chem. 279, 19209–19216 (2004).

    CAS  PubMed  Google Scholar 

  79. Diry, M. et al. Activation of the dioxin/aryl hydrocarbon receptor (AhR) modulates cell plasticity through a JNK-dependent mechanism. Oncogene 25, 5570–5574 (2006).

    CAS  PubMed  Google Scholar 

  80. Peng, T. L., Chen, J., Mao, W., Song, X. & Chen, M. H. Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9. BMC Cell Biol. 10, 27 (2009).

    PubMed  PubMed Central  Google Scholar 

  81. Niermann, T., Schmutz, S., Erne, P. & Resink, T. Aryl hydrocarbon receptor ligands repress T-cadherin expression in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 300, 943–949 (2003).

    CAS  PubMed  Google Scholar 

  82. Dinatale, B. C. & Perdew, G. H. Ah receptor antagonism inhibits constitutive and cytokine inducible IL6 production in head and neck tumor cell lines. Mol. Carcinog. 50, 173–183 (2011).

    CAS  PubMed  Google Scholar 

  83. Bui, L. C. et al. Nedd9/Hef1/Cas-L mediates the effects of environmental pollutants on cell migration and plasticity. Oncogene 28, 3642–3651 (2009).

    CAS  PubMed  Google Scholar 

  84. Fernandez-Salguero, P. M. A remarkable new target gene for the dioxin receptor: The Vav3 proto-oncogene links AhR to adhesion and migration. Cell Adh Migr 4, 172–175 (2010).

    PubMed  PubMed Central  Google Scholar 

  85. Ikuta, T. & Kawajiri, K. Zinc finger transcription factor Slug is a novel target gene of aryl hydrocarbon receptor. Exp. Cell Res. 312, 3585–3594 (2006). This study shows that AHR exhibits increased nuclear localization at low cellular densities and participates in the induction and regulation of tumour cell invasion.

    CAS  PubMed  Google Scholar 

  86. Belguise, K. et al. Green tea polyphenols reverse cooperation between c-Rel and CK2 that induces the aryl hydrocarbon receptor, slug, and an invasive phenotype. Cancer Res. 67, 11742–11750 (2007).

    CAS  PubMed  Google Scholar 

  87. Hsu, E. L. et al. A proposed mechanism for the protective effect of dioxin against breast cancer. Toxicol. Sci. 98, 436–444 (2007).

    CAS  PubMed  Google Scholar 

  88. Jin, U. H., Lee, S. O., Pfent, C. & Safe, S. The aryl hydrocarbon receptor ligand omeprazole inhibits breast cancer cell invasion and metastasis. BMC Cancer 14, 498 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    CAS  PubMed  Google Scholar 

  90. Fardel, O. Cytokines as molecular targets for aryl hydrocarbon receptor ligands: implications for toxicity and xenobiotic detoxification. Expert Opin. Drug Metab. Toxicol. 9, 141–152 (2013).

    CAS  PubMed  Google Scholar 

  91. Haarmann-Stemmann, T., Bothe, H. & Abel, J. Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochem. Pharmacol. 77, 508–520 (2009).

    CAS  PubMed  Google Scholar 

  92. Sekine, H. et al. Hypersensitivity of aryl hydrocarbon receptor-deficient mice to lipopolysaccharide-induced septic shock. Mol. Cell. Biol. 29, 6391–6400 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lahoti, T. S. et al. Aryl hydrocarbon receptor antagonism attenuates growth factor expression, proliferation, and migration in fibroblast-like synoviocytes from patients with rheumatoid arthritis. J. Pharmacol. Exp. Ther. 348, 236–245 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nature Immunol. 11, 854–861 (2010). This study shows that AHR promotes T Reg cell production through binding to MAF and inducing the expression of IL-10 and IL-21.

    CAS  Google Scholar 

  95. Hollingshead, B. D., Beischlag, T. V., Dinatale, B. C., Ramadoss, P. & Perdew, G. H. Inflammatory signaling and aryl hydrocarbon receptor mediate synergistic induction of interleukin 6 in MCF-7 cells. Cancer Res. 68, 3609–3617 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Furman, D. P., Oshchepkova, E. A., Oshchepkov, D. Y., Shamanina, M. Y. & Mordvinov, V. A. Promoters of the genes encoding the transcription factors regulating the cytokine gene expression in macrophages contain putative binding sites for aryl hydrocarbon receptor. Comput. Biol. Chem. 33, 465–468 (2009).

    CAS  PubMed  Google Scholar 

  97. Vogel, C. F. et al. Aryl hydrocarbon receptor signaling regulates NF-κB RelB activation during dendritic-cell differentiation. Immunol. Cell Biol. 91, 568–575 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Vogel, C. F. et al. Pathogenesis of aryl hydrocarbon receptor-mediated development of lymphoma is associated with increased cyclooxygenase-2 expression. Am. J. Pathol. 171, 1538–1548 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Degner, S. C., Papoutsis, A. J., Selmin, O. & Romagnolo, D. F. Targeting of aryl hydrocarbon receptor-mediated activation of cyclooxygenase-2 expression by the indole-3-carbinol metabolite 3,3′-diindolylmethane in breast cancer cells. J. Nutr. 139, 26–32 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tian, Y., Ke, S., Denison, M. S., Rabson, A. B. & Gallo, M. A. Ah receptor and NF-κB interactions, a potential mechanism for dioxin toxicity. J. Biol. Chem. 274, 510–515 (1999). This is the first report demonstrating that AHR can interact with NF-κB.

    CAS  PubMed  Google Scholar 

  101. Vogel, C. F. et al. RelB, a new partner of aryl hydrocarbon receptor-mediated transcription. Mol. Endocrinol. 21, 2941–2955 (2007).

    CAS  PubMed  Google Scholar 

  102. Kim, D. W. et al. The RelA NF-κB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene 19, 5498–5506 (2000).

    CAS  PubMed  Google Scholar 

  103. Vogel, C. F., Sciullo, E. & Matsumura, F. Involvement of RelB in aryl hydrocarbon receptor-mediated induction of chemokines. Biochem. Biophys. Res. Commun. 363, 722–726 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Vogel, C. F. et al. Interaction of aryl hydrocarbon receptor and NF-κB subunit RelB in breast cancer is associated with interleukin-8 overexpression. Arch. Biochem. Biophys. 512, 78–86 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nature Rev. Immunol. 6, 295–307 (2006).

    CAS  Google Scholar 

  106. Corthay, A. Does the immune system naturally protect against cancer? Front. Immunol. 5, 197 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Darrasse-Jeze, G. & Podsypanina, K. How numbers, nature, and immune status of Foxp3 regulatory T-cells shape the early immunological events in tumor development. Front. Immunol. 4, 292 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Marshall, N. B., Vorachek, W. R., Steppan, L. B., Mourich, D. V. & Kerkvliet, N. I. Functional characterization and gene expression analysis of CD4+ CD25+ regulatory T cells generated in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Immunol. 181, 2382–2391 (2008).

    CAS  PubMed  Google Scholar 

  109. Gandhi, R. et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3+ regulatory T cells. Nature Immunol. 11, 846–853 (2010).

    CAS  Google Scholar 

  110. Funatake, C. J., Marshall, N. B. & Kerkvliet, N. I. 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters the differentiation of alloreactive CD8+ T cells toward a regulatory T cell phenotype by a mechanism that is dependent on aryl hydrocarbon receptor in CD4+ T cells. J. Immunotoxicol 5, 81–91 (2008).

    CAS  PubMed  Google Scholar 

  111. Kerkvliet, N. I., Shepherd, D. M. & Baecher-Steppan, L. T lymphocytes are direct, aryl hydrocarbon receptor (AhR)-dependent targets of 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD): AhR expression in both CD4+ and CD8+ T cells is necessary for full suppression of a cytotoxic T lymphocyte response by TCDD. Toxicol. Appl. Pharmacol. 185, 146–152 (2002). This study provides the first in vivo evidence that TCDD can directly suppress a cytotoxic T lymphocyte response.

    CAS  PubMed  Google Scholar 

  112. Kerkvliet, N. I. et al. Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+ T cells in pancreatic lymph nodes. Immunotherapy 1, 539–547 (2009).

    CAS  PubMed  Google Scholar 

  113. Benson, J. M. & Shepherd, D. M. Aryl hydrocarbon receptor activation by TCDD reduces inflammation associated with Crohn's disease. Toxicol. Sci. 120, 68–78 (2011).

    CAS  PubMed  Google Scholar 

  114. Singh, N. P. et al. Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis. PLoS ONE 6, e23522 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Quintana, F. J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    CAS  PubMed  Google Scholar 

  116. Punj, S. et al. Benzimidazoisoquinolines: a new class of rapidly metabolized aryl hydrocarbon receptor (AhR) ligands that induce AhR-dependent Tregs and prevent murine graft-versus-host disease. PLoS ONE 9, e88726 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Wang, H. K. et al. Dietary flavonoid naringenin induces regulatory T cells via an aryl hydrocarbon receptor mediated pathway. J. Agr. Food Chem. 60, 2171–2178 (2012).

    CAS  Google Scholar 

  118. Luster, M. I. et al. 1-amino-3,7,8-trichlorodibenzo-p-dioxin: a specific antagonist for TCDD-induced myelotoxicity. Biochem. Biophys. Res. Commun. 139, 747–756 (1986).

    CAS  PubMed  Google Scholar 

  119. Merchant, M., Arellano, L. & Safe, S. The mechanism of action of α-naphthoflavone as an inhibitor of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced CYP1A1 gene expression. Arch. Biochem. Biophys. 281, 84–89 (1990).

    CAS  PubMed  Google Scholar 

  120. Gasiewicz, T. A. & Rucci, G. α-naphthoflavone acts as an antagonist of 2,3,7,8-tetrachlorodibenzo-p-dioxin by forming an inactive complex with the Ah receptor. Mol. Pharmacol. 40, 607–612 (1991).

    CAS  PubMed  Google Scholar 

  121. Henry, E. C. et al. Flavone antagonists bind competitively with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to the aryl hydrocarbon receptor but inhibit nuclear uptake and transformation. Mol. Pharmacol. 55, 716–725 (1999).

    CAS  PubMed  Google Scholar 

  122. Murray, I. A. et al. Antagonism of aryl hydrocarbon receptor signaling by 6,2′,4′-trimethoxyflavone. J. Pharmacol. Exp. Ther. 332, 135–144 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ciolino, H. P., Daschner, P. J. & Yeh, G. C. Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor. Cancer Res. 58, 5707–5712 (1998).

    CAS  PubMed  Google Scholar 

  124. Kim, S. H. et al. Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Mol. Pharmacol. 69, 1871–1878 (2006).

    CAS  PubMed  Google Scholar 

  125. Boitano, A. E. et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345–1348 (2010). This study reports the development of a high-affinity AHR antagonist that promotes the proliferation of human haematopoietic stem cells in vitro and that demonstrates therapeutic potential.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Smith, K. J. et al. Identification of a high affinity ligand that exhibits complete Ah receptor antagonism. J. Pharmacol. Exp. Ther. 338, 318–327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Brembilla, N. C. et al. In vivo dioxin favors interleukin-22 production by human CD4+ T cells in an aryl hydrocarbon receptor (AhR)-dependent manner. PLoS ONE 6, e18741 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhao, B., Degroot, D. E., Hayashi, A., He, G. & Denison, M. S. CH223191 is a ligand-selective antagonist of the Ah (Dioxin) receptor. Toxicol. Sci. 117, 393–403 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lewis, J. S. & Jordan, V. C. Selective estrogen receptor modulators (SERMs): mechanisms of anticarcinogenesis and drug resistance. Mutat. Res. 591, 247–263 (2005).

    CAS  PubMed  Google Scholar 

  130. Safe, S. & McDougal, A. Mechanism of action and development of selective aryl hydrocarbon receptor modulators for treatment of hormone-dependent cancers (Review). Int. J. Oncol. 20, 1123–1128 (2002).

    CAS  PubMed  Google Scholar 

  131. Steffan, R. J. et al. Synthesis and activity of substituted 4-(indazol-3-yl)phenols as pathway-selective estrogen receptor ligands useful in the treatment of rheumatoid arthritis. J. Med. Chem. 47, 6435–6438 (2004).

    CAS  PubMed  Google Scholar 

  132. Chadwick, C. C. et al. Identification of pathway-selective estrogen receptor ligands that inhibit NF-κB transcriptional activity. Proc. Natl Acad. Sci. USA 102, 2543–2548 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Murray, I. A. et al. Evidence for ligand-mediated selective modulation of aryl hydrocarbon receptor activity. Mol. Pharmacol. 77, 247–254 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Murray, I. A. et al. Development of a selective modulator of aryl hydrocarbon (Ah) receptor activity that exhibits anti-inflammatory properties. Chem. Res. Toxicol. 23, 955–966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Murray, I. A. et al. Suppression of cytokine-mediated complement factor gene expression through selective activation of the Ah receptor with 3′,4′-dimethoxy-α-naphthoflavone. Mol. Pharmacol. 79, 508–519 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Astroff, B. et al. 6-Methyl-1,3,8-trichlorodibenzofuran as a 2,3,7,8-tetrachlorodibenzo-p-dioxin antagonist: inhibition of the induction of rat cytochrome P-450 isozymes and related monooxygenase activities. Mol. Pharmacol. 33, 231–236 (1988).

    CAS  PubMed  Google Scholar 

  137. Zacharewski, T. et al. 6-Methyl-1,3,8-trichlorodibenzofuran (MCDF) as an antiestrogen in human and rodent cancer cell lines: evidence for the role of the Ah receptor. Toxicol. Appl. Pharmacol. 113, 311–318 (1992).

    CAS  PubMed  Google Scholar 

  138. McDougal, A., Wilson, C. & Safe, S. Inhibition of 7,12-dimethylbenz[a]anthracene-induced rat mammary tumor growth by aryl hydrocarbon receptor agonists. Cancer Lett. 120, 53–63 (1997).

    CAS  PubMed  Google Scholar 

  139. Zhang, S. et al. The aryl hydrocarbon receptor as a target for estrogen receptor-negative breast cancer chemotherapy. Endocr. Relat. Cancer 16, 835–844 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, S. et al. Aryl hydrocarbon receptor agonists induce microRNA-335 expression and inhibit lung metastasis of estrogen receptor negative breast cancer cells. Mol. Cancer Ther. 11, 108–118 (2012).

    PubMed  Google Scholar 

  141. Manchester, D. K., Gordon, S. K., Golas, C. L., Roberts, E. A. & Okey, A. B. Ah receptor in human placenta: stabilization by molybdate and characterization of binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3-methylcholanthrene, and benzo(a)pyrene. Cancer Res. 47, 4861–4868 (1987).

    CAS  PubMed  Google Scholar 

  142. Flaveny, C. A., Murray, I. A. & Perdew, G. H. Differential gene regulation by the human and mouse aryl hydrocarbon receptor. Toxicol. Sci. 114, 217–225 (2010).

    CAS  PubMed  Google Scholar 

  143. Forgacs, A. L., Dere, E., Angrish, M. M. & Zacharewski, T. R. Comparative analysis of temporal and dose-dependent TCDD-elicited gene expression in human, mouse, and rat primary hepatocytes. Toxicol. Sci. 133, 54–66 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Black, M. B. et al. Cross-species comparisons of transcriptomic alterations in human and rat primary hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 127, 199–215 (2012).

    CAS  PubMed  Google Scholar 

  145. Flaveny, C., Reen, R. K., Kusnadi, A. & Perdew, G. H. The mouse and human Ah receptor differ in recognition of LXXLL motifs. Arch. Biochem. Biophys. 471, 215–223 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Ramadoss, P. & Perdew, G. H. Use of 2-azido-3-[125I]iodo-7,8-dibromodibenzo-p-dioxin as a probe to determine the relative ligand affinity of human versus mouse aryl hydrocarbon receptor in cultured cells. Mol. Pharmacol. 66, 129–136 (2004).

    CAS  PubMed  Google Scholar 

  147. Flaveny, C. A., Murray, I. A., Chiaro, C. R. & Perdew, G. H. Ligand selectivity and gene regulation by the human aryl hydrocarbon receptor in transgenic mice. Mol. Pharmacol. 75, 1412–1420 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Saito, R. et al. Aryl hydrocarbon receptor in breast cancer — a newly defined prognostic marker. Horm. Cancer 5, 11–21 (2014).

    CAS  PubMed  Google Scholar 

  149. Richmond, O. et al. The aryl hydrocarbon receptor is constitutively active in advanced prostate cancer cells. PLoS ONE 9, e95058 (2014).

    PubMed  PubMed Central  Google Scholar 

  150. Yin, X. F., Chen, J., Mao, W., Wang, Y. H. & Chen, M. H. Downregulation of aryl hydrocarbon receptor expression decreases gastric cancer cell growth and invasion. Oncol. Rep. 30, 364–370 (2013).

    CAS  PubMed  Google Scholar 

  151. Su, J. M., Lin, P. & Chang, H. Prognostic value of nuclear translocation of aryl hydrocarbon receptor for non-small cell lung cancer. Anticancer Res. 33, 3953–3961 (2013).

    PubMed  Google Scholar 

  152. Liu, Z. et al. AhR expression is increased in hepatocellular carcinoma. J. Mol. Histol. 44, 455–461 (2013).

    CAS  PubMed  Google Scholar 

  153. Tanaka, G. et al. Induction and activation of the aryl hydrocarbon receptor by IL-4 in B cells. Int. Immunol. 17, 797–805 (2005).

    CAS  PubMed  Google Scholar 

  154. Vogel, C. F. et al. Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-κB. J. Biol. Chem. 289, 1866–1875 (2014).

    CAS  PubMed  Google Scholar 

  155. Beischlag, T. V., Luis Morales, J., Hollingshead, B. D. & Perdew, G. H. The aryl hydrocarbon receptor complex and the control of gene expression. Crit. Rev. Eukaryot. Gene Expr. 18, 207–250 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Mellor, A. L. et al. Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J. Immunol. 171, 1652–1655 (2003).

    CAS  PubMed  Google Scholar 

  157. Litzenburger, U. M. et al. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget 5, 1038–1051 (2014).

    PubMed  PubMed Central  Google Scholar 

  158. Kolluri, S. K., Weiss, C., Koff, A. & Gottlicher, M. p27Kip1 induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev. 13, 1742–1753 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Pang, P. H. et al. Molecular mechanisms of p21 and p27 induction by 3-methylcholanthrene, an aryl-hydrocarbon receptor agonist, involved in antiproliferation of human umbilical vascular endothelial cells. J. Cell. Physiol. 215, 161–171 (2008).

    CAS  PubMed  Google Scholar 

  160. Puga, A. et al. Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. J. Biol. Chem. 275, 2943–2950 (2000).

    CAS  PubMed  Google Scholar 

  161. Barhoover, M. A., Hall, J. M., Greenlee, W. F. & Thomas, R. S. Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4. Mol. Pharmacol. 77, 195–201 (2010).

    CAS  PubMed  Google Scholar 

  162. Denison, M. S. & Nagy, S. R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 43, 309–334 (2003).

    CAS  PubMed  Google Scholar 

  163. Poland, A., Glover, E. & Kende, A. S. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J. Biol. Chem. 251, 4936–4946 (1976).

    CAS  PubMed  Google Scholar 

  164. Farrell, K., Safe, L. & Safe, S. Synthesis and aryl hydrocarbon receptor binding properties of radiolabeled polychlorinated dibenzofuran congeners. Arch. Biochem. Biophys. 259, 185–195 (1987).

    CAS  PubMed  Google Scholar 

  165. Jensen, B. A., Reddy, C. M., Nelson, R. K. & Hahn, M. E. Developing tools for risk assessment in protected species: relative potencies inferred from competitive binding of halogenated aromatic hydrocarbons to aryl hydrocarbon receptors from beluga (Delphinapterus leucas) and mouse. Aquat. Toxicol. 100, 238–245 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kolasa, E., Houlbert, N., Balaguer, P. & Fardel, O. AhR- and NF-κB-dependent induction of interleukin-6 by co-exposure to the environmental contaminant benzanthracene and the cytokine tumor necrosis factor-α in human mammary MCF-7 cells. Chem. Biol. Interact. 203, 391–400 (2013).

    CAS  PubMed  Google Scholar 

  167. Gillner, M., Bergman, J., Cambillau, C., Fernstrom, B. & Gustafsson, J. A. Interactions of indoles with specific binding sites for 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver. Mol. Pharmacol. 28, 357–363 (1985).

    CAS  PubMed  Google Scholar 

  168. Jin, U. H., Lee, S. O. & Safe, S. Aryl hydrocarbon receptor (AHR)-active pharmaceuticals are selective AHR modulators in MDA-MB-468 and BT474 breast cancer cells. J. Pharmacol. Exp. Ther. 343, 333–341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. O'Donnell, E. F. et al. The anti-inflammatory drug leflunomide is an agonist of the aryl hydrocarbon receptor. PLoS ONE 5, e13128 (2010).

    PubMed  PubMed Central  Google Scholar 

  170. Quattrochi, L. C. & Tukey, R. H. Nuclear uptake of the Ah (dioxin) receptor in response to omeprazole: transcriptional activation of the human CYP1A1 gene. Mol. Pharmacol. 43, 504–508 (1993).

    CAS  PubMed  Google Scholar 

  171. Ciolino, H. P., Daschner, P. J. & Yeh, G. C. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem. J. 340, 715–722 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Oberg, M., Bergander, L., Hakansson, H., Rannug, U. & Rannug, A. Identification of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole, in cell culture medium, as a factor that controls the background aryl hydrocarbon receptor activity. Toxicol. Sci. 85, 935–943 (2005).

    PubMed  Google Scholar 

  173. Savouret, J. F. et al. 7-ketocholesterol is an endogenous modulator for the arylhydrocarbon receptor. J. Biol. Chem. 276, 3054–3059 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. H. Perdew for critically reviewing the manuscript. The authors apologize to those whose work is not cited owing to space limitations. The authors' research is funded by US National Institutes of Health grants (ES004869, ES019964 and ES022186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary H. Perdew.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

2,3,7,8-tetrachlorodibenzo-p-dioxin

(TCDD). A polycyclic halogenated hydrocarbon that is highly toxic to rodents and that exhibits high affinity for the aryl hydrocarbon receptor.

Polycyclic aromatic hydrocarbons

A group of more than 100 different stable organic molecules comprised of only carbon and hydrogen. They are large, planar molecules assembled from a collection of fused benzene-like rings. They are formed during the incomplete burning of coal, oil, gas, garbage or other organic substances such as tobacco or charbroiled meat.

Barrier function

The integrity of a protective epithelial layer that serves as a barrier and allows selective absorption.

Antagonists

In the context of this Review, aryl hydrocarbon receptor (AHR) ligands that inhibit canonical dioxin-responsive element (DRE)-mediated and non-DRE-mediated AHR activity.

TRAMP

(Transgenic adenocarcinoma of mouse prostate). A mouse prostate cancer model in which mice that express SV40 T/t antigens that are under the control of the androgen-sensitive rat probasin promoter develop focal adenocarcinomas with 100% frequency between 10 and 20 weeks of age.

Epithelial–mesenchymal transition

The process by which cells convert from an epithelial to a mesenchymal phenotype. This process, which occurs during normal embryonic development, can be abnormally activated in carcinomas, resulting in altered cell morphology, the expression of mesenchymal proteins and increased invasiveness.

Weak agonist

In the context of this Review, this refers to an aryl hydrocarbon receptor ligand that displays partial agonist activity, eliciting a sub-maximal dioxin-responsive element-mediated transcriptional response. In addition, in the presence of a strong agonist, a weak agonist will exhibit antagonist activity.

Selective AHR modulators

(SAHRMs). Aryl hydrocarbon receptor (AHR) ligands that display functional selectivity, exhibiting negligible dioxin-responsive element (DRE)-mediated transcriptional responses while maximally stimulating non-DRE mediated AHR activity.

Full agonist

In the context of this Review, an aryl hydrocarbon receptor ligand that maximally elicits canonical dioxin-responsive element-mediated transcriptional responses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, I., Patterson, A. & Perdew, G. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer 14, 801–814 (2014). https://doi.org/10.1038/nrc3846

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3846

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer