Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The roles of TGFβ in the tumour microenvironment

Key Points

  • During the early stages of tumorigenesis, transforming growth factor-β (TGFβ) functions as a tumour suppressor. However, as tumours progress, tumour cells may lose their growth-inhibitory response to TGFβ and may instead respond by initiating epithelial-to-mesenchymal transition and by increasing cell migration.

  • Experimental data support the idea that both loss of and gain of TGFβ signalling is pro-tumorigenic, as mouse models show that the overexpression of TGFβ and the abrogation of signalling results in increased tumour cell metastasis. It is beginning to be appreciated that the effects of TGFβ signalling in the tumour epithelium extend beyond tumour cell-autonomous mechanisms into the tumour microenvironment.

  • Nearly every cell in the tumour microenvironment responds to TGFβ in a unique way, and these diverse biological responses have a variety of effects on tumour progression.

  • Given the pleotropic nature of TGFβ signalling, the numerous downstream signalling events of TGFβ offer new and intriguing targets for therapeutic intervention.

  • Successful therapeutic targeting of TGFβ itself remains a highly desirable goal and the considerable advances in understanding TGFβ signalling, not only in the tumour epithelium but also in the tumour microenvironment, bring the realization of this goal closer.

Abstract

The influence of the microenvironment on tumour progression is becoming clearer. In this Review we address the role of an essential signalling pathway, that of transforming growth factor-β, in the regulation of components of the tumour microenvironment and how this contributes to tumour progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epithelial TGFβ signalling during tumour progression.
Figure 2: TGFβ signalling in tumour cells determines microenvironmental modification.

Similar content being viewed by others

References

  1. Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGFβ in homeostasis and cancer. Nature Rev. Cancer 3, 807–821 (2003).

    Article  CAS  Google Scholar 

  2. Massague, J. G1 cell-cycle control and cancer. Nature 432, 298–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Gorsch, S. M., Memoli, V. A., Stukel, T. A., Gold, L. I. & Arrick, B. A. Immunohistochemical staining for transforming growth factor β 1 associates with disease progression in human breast cancer. Cancer Res. 52, 6949–6952 (1992).

    CAS  PubMed  Google Scholar 

  4. Hasegawa, Y. et al. Transforming growth factor-β1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 91, 964–971 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127, 2021–2036 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Caulin, C., Scholl, F. G., Frontelo, P., Gamallo, C. & Quintanilla, M. Chronic exposure of cultured transformed mouse epidermal cells to transforming growth factor-β 1 induces an epithelial-mesenchymal transdifferentiation and a spindle tumoral phenotype. Cell Growth Differ. 6, 1027–1035 (1995).

    CAS  PubMed  Google Scholar 

  7. Walker, R. A., Dearing, S. J. & Gallacher, B. Relationship of transforming growth factor β 1 to extracellular matrix and stromal infiltrates in invasive breast carcinoma. Br. J. Cancer 69, 1160–1165 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wikstrom, P., Stattin, P., Franck-Lissbrant, I., Damber, J. E. & Bergh, A. Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 37, 19–29 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Hazelbag, S., Gorter, A., Kenter, G. G., van den Broek, L. & Fleuren, G. Transforming growth factor-β1 induces tumor stroma and reduces tumor infiltrate in cervical cancer. Hum. Pathol. 33, 1193–1199 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Bierie, B. & Moses, H. L. TGF-β and cancer. Cytokine Growth Factor Rev. 17, 29–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Massague, J. TGFβ signalling in context. Nature Rev. Mol. Cell Biol. 13, 616–630 (2012).

    Article  CAS  Google Scholar 

  12. Rifkin, D. B. Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. J. Biol. Chem. 280, 7409–7412 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Shi, Y. & Massague, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Stenvers, K. L. et al. Heart and liver defects and reduced transforming growth factor β2 sensitivity in transforming growth factor β type III receptor-deficient embryos. Mol. Cell. Biol. 23, 4371–4385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moustakas, A. et al. The transforming growth factor β receptors types I, II, and III form hetero-oligomeric complexes in the presence of ligand. J. Biol. Chem. 268, 22215–22218 (1993).

    CAS  PubMed  Google Scholar 

  16. Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Schmierer, B. & Hill, C. S. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor β-dependent nuclear accumulation of Smads. Mol. Cell. Biol. 25, 9845–9858 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moustakas, A. & Heldin, C. H. Non-Smad TGF-β signals. J. Cell Sci. 118, 3573–3584 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Massague, J. & Gomis, R. R. The logic of TGFβ signaling. FEBS Lett. 580, 2811–2820 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Ewen, M. E., Oliver, C. J., Sluss, H. K., Miller, S. J. & Peeper, D. S. p53-dependent repression of CDK4 translation in TGF-β-induced G1 cell-cycle arrest. Genes Dev. 9, 204–217 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Polyak, K. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 8, 9–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371, 257–261 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Pardali, K. & Moustakas, A. Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim. Biophys. Acta 1775, 21–62 (2007).

    CAS  PubMed  Google Scholar 

  25. Bottinger, E. P. et al. Expression of a dominant-negative mutant TGF-β type II receptor in transgenic mice reveals essential roles for TGF-β in regulation of growth and differentiation in the exocrine pancreas. EMBO J. 16, 2621–2633 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Amendt, C., Schirmacher, P., Weber, H. & Blessing, M. Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene 17, 25–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Dumont, N., Bakin, A. V. & Arteaga, C. L. Autocrine transforming growth factor-β signaling mediates Smad-independent motility in human cancer cells. J. Biol. Chem. 278, 3275–3285 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Giampieri, S. et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biol. 11, 1287–1296 (2009). This paper shows the identification of TGFβ signalling as a mediator of single-cell invasion and of vascular metastasis, with the cells that are unable to respond to TGFβ showing a cohesive migratory phenotype.

    Article  CAS  PubMed  Google Scholar 

  30. Muraoka-Cook, R. S. et al. Activated type I TGFβ receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene 25, 3408–3423 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Safina, A., Vandette, E. & Bakin, A. V. ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene 26, 2407–2422 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Schniewind, B. et al. Dissecting the role of TGF-β type I receptor/ALK5 in pancreatic ductal adenocarcinoma: Smad activation is crucial for both the tumor suppressive and prometastatic function. Oncogene 26, 4850–4862 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Esquela-Kerscher, A. & Slack, F. J. Oncomirs — microRNAs with a role in cancer. Nature Rev. Cancer 6, 259–269 (2006).

    Article  CAS  Google Scholar 

  34. Yang, P. et al. TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 22, 291–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davis, B. N., Hilyard, A. C., Lagna, G. & Hata, A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454, 56–61 (2008). This is the first established link between SMAD activity and the maturation of pri-miRNA through DROSHA, specifically following BMP treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, J., Wang, Y., Ma, Y., Lan, Y. & Yang, X. Transforming growth factor β-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium. J. Biol. Chem. 288, 10418–10426 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y. et al. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. J. Immunol. 188, 5500–5510 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, S. E. et al. Transforming growth factor β engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol. Cell. Biol. 28, 5605–5620 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sartor, M. A. et al. ConceptGen: a gene set enrichment and gene set relation mapping tool. Bioinformatics 26, 456–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Hills, C. E., Willars, G. B. & Brunskill, N. J. Proinsulin C-peptide antagonizes the profibrotic effects of TGF-β1 via up-regulation of retinoic acid and HGF-related signaling pathways. Mol. Endocrinol. 24, 822–831 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maupin, K. A. et al. Glycogene expression alterations associated with pancreatic cancer epithelial–mesenchymal transition in complementary model systems. PLoS ONE 5, e13002 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Coulouarn, C., Factor, V. M. & Thorgeirsson, S. S. Transforming growth factor-β gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology 47, 2059–2067 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Massague, J. TGFβ in cancer. Cell 134, 215–230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mima, K. et al. Epithelial–mesenchymal transition expression profiles as a prognostic factor for disease-free survival in hepatocellular carcinoma: clinical significance of transforming growth factor-β signaling. Oncol. Lett. 5, 149–154 (2013).

    Article  PubMed  Google Scholar 

  45. Forrester, E. et al. Effect of conditional knockout of the type II TGF-β receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res. 65, 2296–2302 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Lu, S. L. et al. Loss of transforming growth factor-β type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev. 20, 1331–1342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Paiva, C. E. et al. Absence of TGF-βRII predicts bone and lung metastasis and is associated with poor prognosis in stage III breast tumors. Cancer Biomark 11, 209–217 (2012). This paper is a histochemical study of TGFβ signalling in breast cancer and shows a correlation between decreased signalling in the tumour epithelium and increased tumour metastasis to the lungs and the bone. This article also indicates that low TGFBR2 levels indicate poor disease-free and overall survival.

    Article  CAS  PubMed  Google Scholar 

  48. Levy, L. & Hill, C. S. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 17, 41–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Malkoski, S. P. et al. Loss of transforming growth factor β type II receptor increases aggressive tumor behavior and reduces survival in lung adenocarcinoma and squamous cell carcinoma. Clin. Cancer Res. 18, 2173–2183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bierie, B. & Moses, H. L. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nature Rev. Cancer 6, 506–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, L. et al. Abrogation of TGF β signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ijichi, H. et al. Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J. Clin. Invest. 121, 4106–4117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin, S. et al. Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells. Mol. Biol. Cell 23, 1569–1581 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gewin, L. et al. TGF-β receptor deletion in the renal collecting system exacerbates fibrosis. J. Am. Soc. Nephrol. 21, 1334–1343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bierie, B. et al. Abrogation of TGF-β signaling enhances chemokine production and correlates with prognosis in human breast cancer. J. Clin. Invest. 119, 1571–1582 (2009). This paper is the first to establish of a poor clinical outcome related to the genetic changes, particularly the altered chemokine expression, that occur following ablation of TGFβ signalling in the tumour epithelium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nature Med. 14, 518–527 (2008). This is the first identification of a link between stromal gene expression changes and the outcome of patients with breast cancer.

    Article  CAS  PubMed  Google Scholar 

  57. Knudsen, E. S. et al. Progression of ductal carcinoma in situ to invasive breast cancer is associated with gene expression programs of EMT and myoepithelia. Breast Cancer Res. Treat. 133, 1009–1024 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Nombela-Arrieta, C., Ritz, J. & Silberstein, L. E. The elusive nature and function of mesenchymal stem cells. Nature Rev. Mol. Cell Biol. 12, 126–131 (2011).

    Article  CAS  Google Scholar 

  61. Watabe, T. & Miyazono, K. Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Res. 19, 103–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Cuiffo, B. G. & Karnoub, A. E. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh. Migr. 6, 220–230 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tang, Y. et al. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Med. 15, 757–765 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Zhao, L. & Hantash, B. M. TGF-β1 regulates differentiation of bone marrow mesenchymal stem cells. Vitam. Horm. 87, 127–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Kurpinski, K. et al. Transforming growth factor-β and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28, 734–742 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Wan, M. et al. Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells 30, 2498–2511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jung, Y. et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nature Commun. 4, 1795 (2013).

    Article  CAS  Google Scholar 

  68. Quante, M. et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19, 257–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Spaeth, E. L. et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE 4, e4992 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Shangguan, L. et al. Inhibition of TGF-β/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells 30, 2810–2819 (2012).

    Article  PubMed  CAS  Google Scholar 

  72. Verona, E. V. et al. Transforming growth factor-β signaling in prostate stromal cells supports prostate carcinoma growth by up-regulating stromal genes related to tissue remodeling. Cancer Res. 67, 5737–5746 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Border, W. A. & Noble, N. A. Transforming growth factor β in tissue fibrosis. N. Engl. J. Med. 331, 1286–1292 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Leask, A. & Abraham, D. J. TGF-β signaling and the fibrotic response. FASEB J. 18, 816–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Boyd, N. F. et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 356, 227–236 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Desmouliere, A., Geinoz, A., Gabbiani, F. & Gabbiani, G. Transforming growth factor-β 1 induces αalpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 122, 103–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Sime, P. J., Xing, Z., Graham, F. L., Csaky, K. G. & Gauldie, J. Adenovector-mediated gene transfer of active transforming growth factor-β1 induces prolonged severe fibrosis in rat lung. J. Clin. Invest. 100, 768–776 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sonnylal, S. et al. Postnatal induction of transforming growth factor β signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum. 56, 334–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Navab, R. et al. Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc. Natl Acad. Sci. USA 108, 7160–7165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hawinkels, L. J. et al. Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene http://dx.doi.org/10.1038/onc.2012.536 (2012).

  81. Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012). This paper establishes TGFβ-responsive stromal signalling, especially from fibroblasts, as a driver of tumour progression and metastasis. This stromal programme could be blocked with the addition of TGFβ inhibitors to slow tumour growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004). This is the first report showing that genetic mutations in stromal fibroblast can result in the development of carcinoma formation from the adjacent epithelium.

    Article  CAS  PubMed  Google Scholar 

  83. Cheng, N. et al. Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24, 5053–5068 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Franco, O. E. et al. Altered TGF-β signaling in a subpopulation of human stromal cells promotes prostatic carcinogenesis. Cancer Res. 71, 1272–1281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meng, W. et al. Downregulation of TGF-β receptor types II and III in oral squamous cell carcinoma and oral carcinoma-associated fibroblasts. BMC Cancer 11, 88 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Xu, B. J. et al. Quantitative analysis of the secretome of TGF-β signaling-deficient mammary fibroblasts. Proteomics 10, 2458–2470 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bacman, D. et al. TGF-β receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-β1 expression in colon carcinoma: a retrospective study. BMC Cancer 7, 156 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Achyut, B. R. et al. Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling. PLoS Genet. 9, e1003251 (2013). This is an interesting paper showing that inflammatory infiltrates mediate the pro-tumorigenic functions of fibroblasts that lack TGFβ signalling, particularly through the induction of epigenetic silencing of p15 and p16 in epithelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Flavell, R. A., Sanjabi, S., Wrzesinski, S. H. & Licona-Limon, P. The polarization of immune cells in the tumour environment by TGFβ. Nature Rev. Immunol. 10, 554–567 (2010).

    Article  CAS  Google Scholar 

  90. Gigante, M., Gesualdo, L. & Ranieri, E. TGF-β: a master switch in tumor immunity. Curr. Pharm. Des. 18, 4126–4134 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Gong, D. et al. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 13, 31 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nature Rev. Immunol. 11, 723–737 (2011).

    Article  CAS  Google Scholar 

  93. Fridlender, Z. G. & Albelda, S. M. Tumor-associated neutrophils: friend or foe? Carcinogenesis 33, 949–955 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009). This is the first paper to establish an N2 neutrophil phenotype and to show that this phenotype is driven by TGFβ signalling. These neutrophils promote tumour progression through the inhibition of antitumorigenic CD8+ T cell activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Marcoe, J. P. et al. TGF-β is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy. Nature Immunol. 13, 843–850 (2012). This paper identifies TGFβ as a factor that inhibits NK cell maturation and shows that loss of TGFβ signalling is a mark of stage F NK cell development.

    Article  CAS  Google Scholar 

  96. Leavy, O. Maturation and function of NK cells. Nature Rev. Immunol. 12, 150 (2012).

    Article  CAS  Google Scholar 

  97. Laouar, Y., Sutterwala, F. S., Gorelik, L. & Flavell, R. A. Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nature Immunol. 6, 600–607 (2005).

    Article  CAS  Google Scholar 

  98. Tanaka, H. et al. Transforming growth factor β signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity. Oncol. Rep. 24, 1637–1643 (2010).

    CAS  PubMed  Google Scholar 

  99. Novitskiy, S. V. et al. Deletion of TGF-β signaling in myeloid cells enhances their anti-tumorigenic properties. J. Leukoc. Biol. 92, 641–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Perrot, I. et al. Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J. Immunol. 178, 2763–2769 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Roncarolo, M. G., Levings, M. K. & Traversari, C. Differentiation of T regulatory cells by immature dendritic cells. J. Exp. Med. 193, F5–9 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kulkarni, A. B. et al. Transforming growth factor β 1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl Acad. Sci. USA 90, 770–774 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Marie, J. C., Liggitt, D. & Rudensky, A. Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity 25, 441–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Bommireddy, R. et al. Self-antigen recognition by TGF β1-deficient T cells causes their activation and systemic inflammation. Lab Invest. 86, 1008–1019 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, M. O. & Flavell, R. A. TGF-β: a master of all T cell trades. Cell 134, 392–404 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nature Immunol. 9, 194–202 (2008).

    Article  CAS  Google Scholar 

  109. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  CAS  PubMed  Google Scholar 

  110. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nature Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  Google Scholar 

  111. von Boehmer, H. & Daniel, C. Therapeutic opportunities for manipulating TReg cells in autoimmunity and cancer. Nature Rev. Drug Discov. 12, 51–63 (2013).

    Article  CAS  Google Scholar 

  112. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006). This paper identifies TGFβ as a primary factor in the induced differentiation of T H 17 cell commitment in a subpopulation of T cells — a process that is independent of T Reg cells.

    Article  CAS  PubMed  Google Scholar 

  113. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Whiteside, T. L. What are regulatory T cells (Treg) regulating in cancer and why? Semin. Cancer Biol. 22, 327–334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kim, B. G. et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441, 1015–1019 (2006). This seminal paper identifies of TGFβ superfamily signalling in T cells as an inhibitor of tumour progression due to the suppression of the expression of T H 1 cytokines.

    Article  CAS  PubMed  Google Scholar 

  116. Ghoreschi, K. et al. Generation of pathogenic Th17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Huang, Y. et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl Acad. Sci. USA 109, 17561–17566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, J. et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc. Natl Acad. Sci. USA 109, 16618–16623 (2012). This is an interesting paper showing that TGFβ inhibition-normalized breast tumour stroma enhances chemotherapeutic efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Diop-Frimpong, B., Chauhan, V. P., Krane, S., Boucher, Y. & Jain, R. K. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl Acad. Sci. USA 108, 2909–2914 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mead, A. L., Wong, T. T., Cordeiro, M. F., Anderson, I. K. & Khaw, P. T. Evaluation of anti-TGF-β2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest. Ophthalmol. Vis. Sci. 44, 3394–3401 (2003).

    Article  PubMed  Google Scholar 

  122. Bogdahn, U. et al. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol. 13, 132–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Schlingensiepen, K. H. et al. Transforming growth factor-β 2 gene silencing with trabedersen in pancreatic cancer. Cancer Sci. 102, 1193–1200 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Roldan Urgoiti, G. B., Singh, A. D. & Easaw, J. C. Extended adjuvant temozolomide for treatment of newly diagnosed glioblastoma multiforme. J. Neurooncol. 108, 173–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Akhurst, R. J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nature Rev. Drug Discov. 11, 790–811 (2012).

    Article  CAS  Google Scholar 

  126. Zhong, Z. et al. Anti-transforming growth factor β receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells. Clin. Cancer Res. 16, 1191–1205 (2010). This paper shows that anti-TGFβ therapeutics slow tumour progression by modulating the composition of immune cell infiltrates in favour of an antitumorigenic phenotype.

    Article  CAS  PubMed  Google Scholar 

  127. Uhl, M. et al. SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res. 64, 7954–7961 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Kim, S. et al. Systemic blockade of transforming growth factor-β signaling augments the efficacy of immunogene therapy. Cancer Res. 68, 10247–10256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Foster, A. E. et al. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-β receptor. J. Immunother. 31, 500–505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Azad, N., Zahnow, C. A., Rudin, C. M. & Baylin, S. B. The future of epigenetic therapy in solid tumours-lessons from the past. Nature Rev. Clin. Oncol. 10, 256–266 (2013).

    Article  CAS  Google Scholar 

  131. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet. 3, 415–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, Q. et al. TGF-β regulates DNA methyltransferase expression in prostate cancer, correlates with aggressive capabilities, and predicts disease recurrence. PLoS ONE 6, e25168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ammanamanchi, S. & Brattain, M. G. Restoration of transforming growth factor-β signaling through receptor RI induction by histone deacetylase activity inhibition in breast cancer cells. J. Biol. Chem. 279, 32620–32625 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Kang, S. H. et al. Transcriptional repression of the transforming growth factor-β type I receptor gene by DNA methylation results in the development of TGF-β resistance in human gastric cancer. Oncogene 18, 7280–7286 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Osada, H. et al. Heterogeneous transforming growth factor (TGF)-β unresponsiveness and loss of TGF-β receptor type II expression caused by histone deacetylation in lung cancer cell lines. Cancer Res. 61, 8331–8339 (2001).

    CAS  PubMed  Google Scholar 

  136. Khin, S. S. et al. Epigenetic alteration by DNA promoter hypermethylation of genes related to transforming growth factor-β (TGF-B) signaling in cancer. Cancers 3, 982–993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yeh, K. T. et al. Aberrant TGFβ/SMAD4 signaling contributes to epigenetic silencing of a putative tumor suppressor, RunX1T1 in ovarian cancer. Epigenetics 6, 727–739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Papageorgis, P. et al. Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res. 70, 968–978 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pan, X., Chen, Z., Huang, R., Yao, Y. & Ma, G. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts. PLoS ONE 8, e60335 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hu, B., Gharaee-Kermani, M., Wu, Z. & Phan, S. H. Epigenetic regulation of myofibroblast differentiation by DNA methylation. Am. J. Pathol. 177, 21–28 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ross, S. et al. Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription. EMBO J. 25, 4490–4502 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sun, G. et al. Epigenetic histone methylation modulates fibrotic gene expression. J. Am. Soc. Nephrol. 21, 2069–2080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Glenisson, W., Castronovo, V. & Waltregny, D. Histone deacetylase 4 is required for TGFβ1-induced myofibroblastic differentiation. Biochim. Biophys. Acta 1773, 1572–1582 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Diaz-Valdes, N. et al. Induction of monocyte chemoattractant protein-1 and interleukin-10 by TGFβ1 in melanoma enhances tumor infiltration and immunosuppression. Cancer Res. 71, 812–821 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Terabe, M. et al. Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-β monoclonal antibody. Clin. Cancer Res. 15, 6560–6569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hardee, M. E. et al. Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res. 72, 4119–4129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Noma, K. et al. The essential role of fibroblasts in esophageal squamous cell carcinoma-induced angiogenesis. Gastroenterology 134, 1981–1993 (2008).

    Article  PubMed  Google Scholar 

  148. Mazzocca, A., Fransvea, E., Lavezzari, G., Antonaci, S. & Giannelli, G. Inhibition of transforming growth factor β receptor I kinase blocks hepatocellular carcinoma growth through neo-angiogenesis regulation. Hepatology 50, 1140–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Zhang, M. et al. Trimodal glioblastoma treatment consisting of concurrent radiotherapy, temozolomide, and the novel TGF-β receptor I kinase inhibitor LY2109761. Neoplasia 13, 537–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tran, T. T. et al. Inhibiting TGF-β signaling restores immune surveillance in the SMA-560 glioma model. Neuro Oncol. 9, 259–270 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Garrison, K. et al. The small molecule TGF-β signaling inhibitor SM16 synergizes with agonistic OX40 antibody to suppress established mammary tumors and reduce spontaneous metastasis. Cancer Immunol. Immunother. 61, 511–521 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Lucas, P. J., Kim, S. J., Melby, S. J. & Gress, R. E. Disruption of T. cell homeostasis in mice expressing a T. cell-specific dominant negative transforming growth factor β II receptor. J. Exp. Med. 191, 1187–1196 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by US National Institutes of Health (NIH) Grants CA085492 and CA102162. The authors would also like to thank all of the members of the Moses Laboratory for their thoughtful discussions. In addition, the authors would like to apologize to any investigators whose work could not be included owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold L. Moses.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Epithelial-to-mesenchymal transition

The process by which epithelial cells lose their epithelial characteristics, such as cellular polarity and cell–cell junctions, in favour of mesenchymal characteristics, which include high cellular motility.

Cohesive migratory phenotype

Contrary to single-cell invasion, this is a form of invasion by which cells maintain their cell–cell contacts and by which cells migrate as a unit.

MicroRNA

(miRNA). 20–30 nucleotide long non-coding RNA that modulates gene expression by binding to complementary sequences in the 3′ untranslated region of target genes, which induces repression of gene translation or mRNA degradation.

Myeloid-derived suppressor cells

(MDSCs). A heterogeneous population of cells that are defined by their myeloid origin, immature state and ability to potently suppress T cell responses.

Chemotaxis

The function of a cell responding to a chemokine gradient to promote directional migration towards sites of tissue injury or into tumour microenvironments.

Dominant-negative

A defective protein product that effectively inhibits the function of its wild-type counterpart by retaining essential interaction capabilities without having a desired effector function.

Desmoplasia

The accumulation of extracellular matrix proteins, usually through the enhanced activation of stromal fibroblasts.

Vogelgram

A model for colorectal cancer development in which specific genetic changes are acquired, which mark progression of the disease from benign to malignant.

Myofibroblast

A generalized term for an activated fibroblast. In tumour biology, these cells function to deposit and to remodel the extracellular matrix as well as to alter tumour progression through paracrine protein signalling.

T helper 1 cell

(TH1 cell). A primary effector cell of the adaptive immune system, which is classically defined as antitumorigenic.

1D11

An antibody which is specifically directed towards the three transforming growth factor-β ligands and used to sequester these ligands, thus inhibiting TGFβ signalling.

Losartan

An angiotensin II receptor antagonist that has been shown to have the off-target effects of downregulating expression of type I transforming growth factor-β receptor (Tgfbr1) and Tgfbr2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickup, M., Novitskiy, S. & Moses, H. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer 13, 788–799 (2013). https://doi.org/10.1038/nrc3603

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3603

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer