Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular pathogenesis and mechanisms of thyroid cancer

Key Points

  • Thyroid cancer is a common endocrine malignancy, and exciting progress has occurred in recent years in understanding its molecular pathogenesis.

  • Genetic and epigenetic alterations are the driving forces of thyroid cancer. Examples of these alterations include mutations in BRAF (BRAFV600E), RAS, PIK3CA, PTEN, TP53, β-catenin (CTNNB1), anaplastic lymphoma kinase (ALK) and isocitrate dehydrogenase 1 (IDH1), translocations (RET–PTC and paired box 8 (PAX8)–peroxisome proliferator-activated receptor-γ (PPARG)) and aberrant gene methylation.

  • At the core of the molecular pathogenesis of thyroid cancer is the uncontrolled activity of various signalling pathways, including the MAPK, PI3K–AKT, nuclear factor-κB (NF-κB), RASSF1–mammalian STE20-like protein kinase 1 (MST1)–forkhead box O3 (FOXO3), WNT–β-catenin, hypoxia-inducible factor 1α (HIF1α) and thyroid-stimulating hormone (TSH)–TSH receptor (TSHR) pathways.

  • The progression of thyroid cancer is a process of accumulation of genetic and epigenetic alterations with corresponding progressive derangements of signalling pathways. These are accompanied by numerous secondary molecular alterations, both in the cell and in the tumour microenvironment, which, acting in cooperation, amplify and synergize their impacts on thyroid tumorigenesis.

  • Aberrant silencing of thyroid iodide-handling genes and consequent loss of radioiodine avidity of thyroid cancer promoted by BRAF-V600E is a unique molecular pathological process in thyroid cancer, which causes the failure of radioiodine treatment.

  • The recent molecular findings provide unprecedented opportunities for further research and clinical development of novel molecular-based treatment strategies for thyroid cancer.

Abstract

Thyroid cancer is a common endocrine malignancy. There has been exciting progress in understanding its molecular pathogenesis in recent years, as best exemplified by the elucidation of the fundamental role of several major signalling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, such as mutation, gene copy-number gain and aberrant gene methylation. Many of these molecular alterations represent novel diagnostic and prognostic molecular markers and therapeutic targets for thyroid cancer, which provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The MAPK and related pathways in thyroid cancer.
Figure 2: The PI3K–AKT and related pathways in thyroid cancer.
Figure 3: Model of the progression of thyroid tumorigenesis driven by the MAPK and PI3K–AKT pathways.
Figure 4: Iodide-handling machinery in the thyroid cell and its silencing by BRAF-V600E.

Similar content being viewed by others

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  2. Howlader, N. et al. SEER Cancer Statistics Review 1975–2009 (Vintage 2009 Populations). National Cancer Institute [online], (2012).

    Google Scholar 

  3. Tuttle, R. M. et al. Thyroid carcinoma. J. Natl Compr. Canc. Netw. 8, 1228–1274 (2010).

    Article  PubMed  Google Scholar 

  4. DeLellis, R. A., Lloyd, R. V., Heitz, P. U. & Eng, C. World Health Organization Classification of Tumours. Pathology And Genetics Of Tumors Of Endocrine Organs (IARC Press, 2004). This book describes the most recent version of World Health Organization classification of thyroid tumours.

    Google Scholar 

  5. Hofstra, R. M. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367, 375–376 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Cohen, Y. et al. BRAF mutation in papillary thyroid carcinoma. J. Natl Cancer Inst. 95, 625–627 (2003). This is the first submitted and accepted study that reported a high prevalence of BRAFV600E mutation in thyroid cancer, which was awarded a United States patent.

    Article  CAS  PubMed  Google Scholar 

  7. Soares, P. et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22, 4578–4580 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Namba, H. et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab. 88, 4393–4397 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Kimura, E. T. et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63, 1454–1457 (2003). References 7 and 9 demonstrate a mutual exclusivity between BRAF , RAS and RET –PTC mutations, thus suggesting an independent role of BRAF mutation in activating the MAPK pathway.

    CAS  PubMed  Google Scholar 

  10. Xu, X., Quiros, R. M., Gattuso, P., Ain, K. B. & Prinz, R. A. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res. 63, 4561–4567 (2003).

    CAS  PubMed  Google Scholar 

  11. Fukushima, T. et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene 22, 6455–6457 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Xing, M. BRAF mutation in thyroid cancer. Endocr. Relat. Cancer 12, 245–262 (2005). This is the first comprehensive review of BRAF mutation in thyroid cancer that provides a good summary and analysis of the prevalence and other characteristics of this mutation in various types of thyroid cancer.

    Article  CAS  PubMed  Google Scholar 

  13. Hou, P., Liu, D. & Xing, M. Functional characterization of the T1799-1801del and A1799-1816ins BRAF mutations in papillary thyroid cancer. Cell Cycle 6, 377–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Trovisco, V. et al. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients' age but not with tumour aggressiveness. Virchows Arch. 446, 589–595 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, D., Liu, Z., Condouris, S. & Xing, M. BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J. Clin. Endocrinol. Metab. 92, 2264–2271 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Xing, M. et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J. Clin. Endocrinol. Metab. 90, 6373–6379 (2005). This is the first comprehensive multicentre study that shows the association of BRAF mutation with aggressive behaviours of PTC, including aggressive pathological features, disease recurrence, loss of radioiodine avidity of the tumour and treatment failure.

    Article  CAS  PubMed  Google Scholar 

  17. Xing, M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr. Rev. 28, 742–762 (2007). This is a large meta-analysis on the role of BRAF mutation in the aggressiveness of PTC.

    Article  CAS  PubMed  Google Scholar 

  18. Kim, T. H. et al. The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer 118, 1764–1773 (2012). This is a large meta-analysis on the relationship of BRAF mutation with clinicopathological behaviours of PTC.

    Article  CAS  PubMed  Google Scholar 

  19. Charles, R. P., Iezza, G., Amendola, E., Dankort, D. & McMahon, M. Mutationally activated BRAF(V600E) elicits papillary thyroid cancer in the adult mouse. Cancer Res. 71, 3863–3871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knauf, J. A. et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 65, 4238–4245 (2005). This is the first transgenic mouse study demonstrating that BRAF-V600E could induce the development of aggressive PTC.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, S. J. et al. Cross-regulation between oncogenic BRAF(V600E) kinase and the MST1 pathway in papillary thyroid carcinoma. PLoS ONE 6, e16180 (2011). This study for the first time demonstrated a direct role for BRAF-V600E in downregulating the pro-apoptotic RASSF1–MST1–FOXO3 signalling pathway by demonstrating the direct interaction of BRAF-V600E with MST1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guerra, A. et al. The primary occurrence of BRAF(V600E) is a rare clonal event in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 97, 517–524 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Xing, M. BRAFV600E mutation and papillary thyroid cancer: chicken or egg? J. Clin. Endocrinol. Metab. 97, 2295–2298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vasko, V. et al. High prevalence and possible de novo formation of BRAF mutation in metastasized papillary thyroid cancer in lymph nodes. J. Clin. Endocrinol. Metab. 90, 5265–5269 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Abubaker, J. et al. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J. Clin. Endocrinol. Metab. 93, 611–618 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Z. et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J. Clin. Endocrinol. Metab. 93, 3106–3116 (2008). This study demonstrates a high prevalence of genetic alterations that can activate both the MAPK and PI3K–AKT pathways in aggressive thyroid cancer, thus providing a strong genetic basis for the joint role of the two pathways in the progression and aggressiveness of thyroid cancer.

    Article  CAS  PubMed  Google Scholar 

  27. Bond, J. A., Wyllie, F. S., Rowson, J., Radulescu, A. & Wynford-Thomas, D. In vitro reconstruction of tumour initiation in a human epithelium. Oncogene 9, 281–290 (1994).

    CAS  PubMed  Google Scholar 

  28. Gire, V. & Wynford-Thomas, D. RAS oncogene activation induces proliferation in normal human thyroid epithelial cells without loss of differentiation. Oncogene 19, 737–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Miller, K. A. et al. Oncogenic Kras requires simultaneous PI3K signaling to induce ERK activation and transform thyroid epithelial cells in vivo. Cancer Res. 69, 3689–3694 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gustafson, S., Zbuk, K. M., Scacheri, C. & Eng, C. Cowden syndrome. Semin. Oncol. 34, 428–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Y. et al. High prevalence and mutual exclusivity of genetic alterations in the phosphatidylinositol-3-kinase/akt pathway in thyroid tumors. J. Clin. Endocrinol. Metab. 92, 2387–2390 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Santarpia, L., El Naggar, A. K., Cote, G. J., Myers, J. N. & Sherman, S. I. Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 93, 278–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Hou, P. et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin. Cancer Res. 13, 1161–1170 (2007). This study demonstrates collectively common genetic alterations in the PI3K–AKT pathway in thyroid cancer, thus providing a strong genetic basis for the extensive role of this pathway in thyroid tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Rostan, G. et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 65, 10199–10207 (2005). This is the first study that demonstrates common PIK3CA mutations in ATC.

    Article  CAS  PubMed  Google Scholar 

  35. Ricarte-Filho, J. C. et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 69, 4885–4893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Garcia-Rostan, G. et al. Frequent mutation and nuclear localization of β-catenin in anaplastic thyroid carcinoma. Cancer Res. 59, 1811–1815 (1999). This is the first study to demonstrate common mutations in β-catenin in ATC.

    CAS  PubMed  Google Scholar 

  38. Garcia-Rostan, G. et al. β-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am. J. Pathol. 158, 987–996 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fagin, J. A. et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Invest. 91, 179–184 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Donghi, R. et al. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J. Clin. Invest. 91, 1753–1760 (1993). References 39 and 40 demonstrate the high prevalence of mutations in TP53 in ATC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Murugan, A. K., Bojdani, E. & Xing, M. Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer. Biochem. Biophys. Res. Commun. 393, 555–559 (2010). This is the first demonstration that IDH1 mutations occur in thyroid cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hemerly, J. P., Bastos, A. U. & Cerutti, J. M. Identification of several novel non-p.R132 IDH1 variants in thyroid carcinomas. Eur. J. Endocrinol. 163, 747–755 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Murugan, A. K. & Xing, M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res. 71, 4403–4411 (2011). This is the first report of novel ALK mutations that can activate both the MAPK and PI3K–AKT pathways in ATC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Murugan, A. K., Dong, J., Xie, J. & Xing, M. Uncommon GNAQ, MMP8, AKT3, EGFR, and PIK3R1 mutations in thyroid cancers. Endocr. Pathol. 22, 97–102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maximo, V. et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br. J. Cancer 92, 1892–1898 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Musholt, P. B. et al. Follicular histotypes of oncocytic thyroid carcinomas do not carry mutations of the BRAF hot-spot. World J. Surg. 32, 722–728 (2008).

    Article  PubMed  Google Scholar 

  47. Corver, W. E. et al. Genome haploidisation with chromosome 7 retention in oncocytic follicular thyroid carcinoma. PLoS ONE. 7, e38287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, Z. et al. IQGAP1 plays an important role in the invasiveness of thyroid cancer. Clin. Cancer Res. 16, 6009–6018 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. White, C. D., Brown, M. D. & Sacks, D. B. IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett. 583, 1817–1824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rabes, H. M. et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin. Cancer Res. 6, 1093–1103 (2000).

    CAS  PubMed  Google Scholar 

  51. Santoro, M. et al. Gene rearrangement and Chernobyl related thyroid cancers. Br. J. Cancer 82, 315–322 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klugbauer, S., Demidchik, E. P., Lengfelder, E. & Rabes, H. M. Molecular analysis of new subtypes of ELE/RET rearrangements, their reciprocal transcripts and breakpoints in papillary thyroid carcinomas of children after Chernobyl. Oncogene 16, 671–675 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Ciampi, R. & Nikiforov, Y. E. RET/PTC rearrangements & BRAF mutations in thyroid tumorigenesis. Endocrinology 148, 936–941 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Santoro, M., Melillo, R. M. & Fusco, A. RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur. J. Endocrinol. 155, 645–653 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000). This study demonstrates the proximity of chromosomal loci that are involved in the formation of RET –PTC translocations, thus providing a structural basis and explanation for the formation of genetic rearrangements.

    Article  CAS  PubMed  Google Scholar 

  56. Marotta, V., Guerra, A., Sapio, M. R. & Vitale, M. RET/PTC rearrangement in benign and malignant thyroid diseases: a clinical standpoint. Eur. J. Endocrinol. 165, 499–507 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Sapio, M. R. et al. High growth rate of benign thyroid nodules bearing RET/PTC rearrangements. J. Clin. Endocrinol. Metab. 96, e916–e919 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Castellone, M. D. et al. The β-catenin axis integrates multiple signals downstream from RET/papillary thyroid carcinoma leading to cell proliferation. Cancer Res. 69, 1867–1876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miyagi, E. et al. Chronic expression of RET/PTC 3 enhances basal and insulin-stimulated PI3 kinase/AKT signaling and increases IRS-2 expression in FRTL-5 thyroid cells. Mol. Carcinog. 41, 98–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Hayashi, H. et al. Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene 19, 4469–4475 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Xing, M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 20, 697–706 (2010). This is a comprehensive review on genetic alterations in the PI3K–AKT pathway in thyroid cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kroll, T. G. et al. PAX8-PPARγ1 fusion oncogene in human thyroid carcinoma. Science 289, 1357–1360 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Dwight, T. et al. Involvement of the PAX8/peroxisome proliferator-activated receptor γ rearrangement in follicular thyroid tumors. J. Clin. Endocrinol. Metab. 88, 4440–4445 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Eberhardt, N. L., Grebe, S. K., McIver, B. & Reddi, H. V. The role of the PAX8/PPARγ fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol. Cell Endocrinol. 321, 50–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Placzkowski, K. A., Reddi, H. V., Grebe, S. K., Eberhardt, N. L. & McIver, B. The role of the PAX8/PPARγ fusion oncogene in thyroid cancer. PPAR Res. 2008, 672829 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ying, H. et al. Mutant thyroid hormone receptor β represses the expression and transcriptional activity of peroxisome proliferator-activated receptor γ during thyroid carcinogenesis. Cancer Res. 63, 5274–5280 (2003).

    CAS  PubMed  Google Scholar 

  67. Ciampi, R. et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Invest. 115, 94–101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, J. H., Lee, E. S., Kim, Y. S., Won, N. H. & Chae, Y. S. BRAF mutation and AKAP9 expression in sporadic papillary thyroid carcinomas. Pathology 38, 201–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Xing, M. Gene methylation in thyroid tumorigenesis. Endocrinology 148, 948–953 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Hu, S. et al. Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer. Int. J. Cancer. 119, 2322–2329 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Hou, P., Liu, D. & Xing, M. Genome-wide alterations in gene methylation by the BRAF V600E mutation in papillary thyroid cancer cells. Endocr. Relat. Cancer 18, 687–697 (2011). This is a DNA methylation microarray study that revealed genome-wide hypomethylation and hypermethylation and hence expression alterations of genes driven by BRAFV600E, thus uncovering a prominent epigenetic mechanism in thyroid tumorigenesis driven by this oncogene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hou, P., Ji, M. & Xing, M. Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. Cancer 113, 2440–2447 (2008). This study proposes a model in which activation of the PI3K–AKT pathway, driven by genetic alterations, causes aberrant methylation and hence silencing of PTEN , which in turn leads to the failure in terminating PI3K–AKT signalling, thus creating a self-amplification loop that enhances and maintains the constitutive activation of the PI3K–AKT pathway in thyroid cancer.

    Article  CAS  PubMed  Google Scholar 

  73. Alvarez-Nunez, F. et al. PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid 16, 17–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Schagdarsurengin, U., Gimm, O., Dralle, H., Hoang-Vu, C. & Dammann, R. CpG island methylation of tumor-related promoters occurs preferentially in undifferentiated carcinoma. Thyroid 16, 633–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Frisk, T. et al. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer 35, 74–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Bruni, P. et al. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene 19, 3146–3155 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Kondo, T., Ezzat, S. & Asa, S. L. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nature Rev. Cancer 6, 292–306 (2006).

    Article  CAS  Google Scholar 

  78. Xing, M. Recent advances in molecular biology of thyroid cancer and their clinical implications. Otolaryngol. Clin. North Am. 41, 1135–1146 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Melillo, R. M. et al. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J. Clin. Invest. 115, 1068–1081 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oler, G. et al. Gene expression profiling of papillary thyroid carcinoma identifies transcripts correlated with BRAF mutational status and lymph node metastasis. Clin. Cancer Res. 14, 4735–4742 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jo, Y. S. et al. Influence of the BRAF V600E mutation on expression of vascular endothelial growth factor in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 91, 3667–3670 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Giordano, T. J. et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 24, 6646–6656 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Kumagai, A. et al. Childhood thyroid carcinoma with BRAFT1799A mutation shows unique pathological features of poor differentiation. Oncol. Rep. 16, 123–126 (2006).

    CAS  PubMed  Google Scholar 

  84. Palona, I. et al. BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor κB activation. Endocrinology 147, 5699–5707 (2006). This study demonstrates a direct coupling of BRAF-V600E to the NF-κB pathway that is independent of MEK–ERK signalling in thyroid cancer.

    Article  CAS  PubMed  Google Scholar 

  85. Mesa, C. Jr et al. Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res. 66, 6521–6529 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Franzoni, A. et al. Prohibitin is overexpressed in papillary thyroid carcinomas bearing the BRAF(V600E) mutation. Thyroid 19, 247–255 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Watanabe, R. et al. Possible involvement of BRAFV600E in altered gene expression in papillary thyroid cancer. Endocr. J. 56, 407–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Zerilli, M. et al. BRAF(V600E) mutation influences hypoxia-inducible factor-1α expression levels in papillary thyroid cancer. Mod. Pathol. 23, 1052–1060 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Pasquali, D. et al. Upregulation of endocrine gland-derived vascular endothelial growth factor in papillary thyroid cancers displaying infiltrative patterns, lymph node metastases, and BRAF mutation. Thyroid 21, 391–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Nowicki, T. S. et al. Inhibition of uPAR and uPA reduces invasion in papillary thyroid carcinoma cells. Laryngoscope 120, 1383–1390 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Nowicki, T. S. et al. Downregulation of uPAR inhibits migration, invasion, proliferation, FAK/PI3K/Akt signaling and induces senescence in papillary thyroid carcinoma cells. Cell Cycle 10, 100–107 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Riesco-Eizaguirre, G. et al. The BRAFV600E oncogene induces transforming growth factor β secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res. 69, 8317–8325 (2009). This study demonstrates a unique mechanism in which BRAF-V600E causes silencing of NIS by promoting the secretion of TGFβ, which in turn activates SMAD to silence NIS.

    Article  CAS  PubMed  Google Scholar 

  93. Nucera, C. et al. B-Raf(V600E) and thrombospondin-1 promote thyroid cancer progression. Proc. Natl Acad. Sci. USA 107, 10649–10654 (2010). This study demonstrates an important role of TSP1 and its relationship with BRAF-V600E, thus providing an excellent example of the role of the tumour microenvironment in thyroid tumorigenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Knauf, J. A. et al. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling. Oncogene 30, 3153–3162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nucera, C., Lawler, J. & Parangi, S. BRAF(V600E) and microenvironment in thyroid cancer: a functional link to drive cancer progression. Cancer Res. 71, 2417–2422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xing, M. Oxidative stress: a new risk factor for thyroid cancer. Endocr. Relat. Cancer 19, C7–C11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Guo, M., Liu, W., Serra, S., Asa, S. L. & Ezzat, S. FGFR2 isoforms support epithelial-stromal interactions in thyroid cancer progression. Cancer Res. 72, 2017–2027 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Saji, M. & Ringel, M. D. The PI3K-Akt-mTOR pathway in initiation and progression of thyroid tumors. Mol. Cell Endocrinol. 321, 20–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Miyakawa, M. et al. Increased expression of phosphorylated p70S6 kinase and Akt in papillary thyroid cancer tissues. Endocr. J. 50, 77–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Ringel, M. D. et al. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res. 61, 6105–6111 (2001). This study provides the first functional evidence for the involvement of the PI3K–AKT pathway in thyroid tumorigenesis and thyroid cancer invasion.

    CAS  PubMed  Google Scholar 

  102. Vasko, V. et al. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J. Med. Genet. 41, 161–170 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Suzuki, H., Willingham, M. C. & Cheng, S. Y. Mice with a mutation in the thyroid hormone receptor βgene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. Thyroid 12, 963–969 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Furuya, F., Hanover, J. A. & Cheng, S. Y. Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone β receptor. Proc. Natl Acad. Sci. USA 103, 1780–1785 (2006). This study demonstrates robust activation of the PI3K–AKT pathway by a mutant thyroid hormone β-receptor that causes FTC in mice, thus providing the first animal data to support an important role of the PI3K–AKT pathway in the tumorigenesis of FTC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim, C. S. et al. AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma. Endocrinology 146, 4456–4463 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Saji, M. et al. Akt1 deficiency delays tumor progression, vascular invasion, and distant metastasis in a murine model of thyroid cancer. Oncogene 30, 4307–4315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xu, P. Z., Chen, M. L., Jeon, S. M., Peng, X. D. & Hay, N. The effect Akt2 deletion on tumor development in Pten+/− mice. Oncogene 31, 518–526 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Liu, D., Hou, P., Liu, Z., Wu, G. & Xing, M. Genetic alterations in the phosphoinositide 3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic targeting of Akt and mammalian target of rapamycin. Cancer Res. 69, 7311–7319 (2009). This study demonstrates that the efficacy of PI3K–AKT inhibitors in thyroid cancer cells depends on genetic alterations in the pathway, thus providing the first preclinical evidence supporting a genetic-based therapeutic approach targeting the PI3K–AKT pathway in thyroid cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, R. et al. The Akt-specific inhibitor MK2206 selectively inhibits thyroid cancer cells harboring mutations that can activate the PI3K/Akt pathway. J. Clin. Endocrinol. Metab. 96, e577–e585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. LiVolsi, V. A. & Baloch, Z. W. Follicular-patterned tumors of the thyroid: the battle of benign versus malignant versus so-called uncertain. Endocr. Pathol. 22, 184–189 (2011). This is an excellent discussion of the criteria and challenges for defining follicular thyroid tumours.

    Article  PubMed  Google Scholar 

  111. Abbosh, P. H. & Nephew, K. P. Multiple signaling pathways converge on β-catenin in thyroid cancer. Thyroid 15, 551–561 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Burrows, N. et al. Expression of hypoxia-inducible factor 1α in thyroid carcinomas. Endocr. Relat. Cancer 17, 61–72 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Burrows, N. et al. GDC-0941 inhibits metastatic characteristics of thyroid carcinomas by targeting both the phosphoinositide-3 kinase (PI3K) and hypoxia-inducible factor-1α (HIF-1α) pathways. J. Clin. Endocrinol. Metab. 96, e1934–e1943 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Guigon, C. J., Zhao, L., Willingham, M. C. & Cheng, S. Y. PTEN deficiency accelerates tumour progression in a mouse model of thyroid cancer. Oncogene 28, 509–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Karin, M. NF-κB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol. 1, a000141 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Pacifico, F. et al. Oncogenic and anti-apoptotic activity of NF-κB in human thyroid carcinomas. J. Biol. Chem. 279, 54610–54619 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Visconti, R. et al. Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFκB p65 protein expression. Oncogene 15, 1987–1994 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Mitsiades, C. S. et al. Antitumor effects of the proteasome inhibitor bortezomib in medullary and anaplastic thyroid carcinoma cells in vitro. J. Clin. Endocrinol. Metab. 91, 4013–4021 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Pacifico, F. & Leonardi, A. Role of NF-κB in thyroid cancer. Mol. Cell Endocrinol. 321, 29–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Li, X., Abdel-Mageed, A. B., Mondal, D. & Kandil, E. The nuclear factor κ-B signaling pathway as a therapeutic target against thyroid cancers. Thyroid 28 Dec 2012 (doi:10.1089/thy.2012.0237).

  121. Ikenoue, T. et al. Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors. Cancer Res. 63, 8132–8137 (2003).

    CAS  PubMed  Google Scholar 

  122. Ikenoue, T. et al. Different effects of point mutations within the B-Raf glycine-rich loop in colorectal tumors on mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase and nuclear factor κB pathway and cellular transformation. Cancer Res. 64, 3428–3435 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Vale, T., Ngo, T. T., White, M. A. & Lipsky, P. E. Raf-induced transformation requires an interleukin 1 autocrine loop. Cancer Res. 61, 602–607 (2001).

    CAS  PubMed  Google Scholar 

  124. Liu, D. & Xing, M. Potent inhibition of thyroid cancer cells by the MEK inhibitor PD0325901 and its potentiation by suppression of the PI3K and NF-κB pathways. Thyroid 18, 853–864 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Oh, H. J. et al. Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res. 66, 2562–2569 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Lehtinen, M. K. et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125, 987–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Schagdarsurengin, U. et al. Frequent epigenetic silencing of the CpG island promoter of RASSF1A in thyroid carcinoma. Cancer Res. 62, 3698–3701 (2002).

    CAS  PubMed  Google Scholar 

  128. Xing, M. et al. Early occurrence of RASSF1A hypermethylation and its mutual exclusion with BRAF mutation in thyroid tumorigenesis. Cancer Res. 64, 1664–1668 (2004). This is the first study to link BRAF-V600E to the RASSF1 pathway in thyroid cancer.

    Article  CAS  PubMed  Google Scholar 

  129. Van Der Heide, L. P., Hoekman, M. F. & Smidt, M. P. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem. J. 380, 297–309 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Wiseman, S. M., Griffith, O. L., Gown, A., Walker, B. & Jones, S. J. Immunophenotyping of thyroid tumors identifies molecular markers altered during transformation of differentiated into anaplastic carcinoma. Am. J. Surg. 201, 580–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Sastre-Perona, A. & Santisteban, P. Role of the wnt pathway in thyroid cancer. Front. Endocrinol. 3, 31 (2012).

    Article  CAS  Google Scholar 

  133. Lu, C., Zhu, X., Willingham, M. C. & Cheng, S. Y. Activation of tumor cell proliferation by thyroid hormone in a mouse model of follicular thyroid carcinoma. Oncogene 31, 2007–2016 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Choi, K. S., Bae, M. K., Jeong, J. W., Moon, H. E. & Kim, K. W. Hypoxia-induced angiogenesis during carcinogenesis. J. Biochem. Mol. Biol. 36, 120–127 (2003).

    CAS  PubMed  Google Scholar 

  136. Scarpino, S. et al. Increased expression of Met protein is associated with up-regulation of hypoxia inducible factor-1 (HIF-1) in tumour cells in papillary carcinoma of the thyroid. J. Pathol. 202, 352–358 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Kimura, T. et al. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr. Rev. 22, 631–656 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Lu, C., Zhao, L., Ying, H., Willingham, M. C. & Cheng, S. Y. Growth activation alone is not sufficient to cause metastatic thyroid cancer in a mouse model of follicular thyroid carcinoma. Endocrinology 151, 1929–1939 (2010). This study demonstrated for the first time that a transgenic mouse model of thyroid tumorigenesis promoted by a mutation (in this case, mutant THRβ) requires an intact TSHR pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Franco, A. T. et al. Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc. Natl Acad. Sci. USA 108, 1615–1620 (2011). Similarly to reference 138, this study also demonstrated a requirement for an intact TSHR pathway, this time for BRAF-V600E-induced thyroid tumorigenesis in transgenic mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Boelaert, K. et al. Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration. J. Clin. Endocrinol. Metab. 91, 4295–4301 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Fiore, E. et al. Lower levels of TSH are associated with a lower risk of papillary thyroid cancer in patients with thyroid nodular disease: thyroid autonomy may play a protective role. Endocr. Relat. Cancer 16, 1251–1260 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Haymart, M. R. et al. Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage. J. Clin. Endocrinol. Metab. 93, 809–814 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Lyons, J. et al. Two G protein oncogenes in human endocrine tumors. Science 249, 655–659 (1990).

    Article  CAS  PubMed  Google Scholar 

  144. Parma, J. et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 365, 649–651 (1993).

    Article  CAS  PubMed  Google Scholar 

  145. Gudmundsson, J. et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nature Genet. 41, 460–464 (2009). This is the first large genome-wide association study to reveal several novel single-nucleotide polymorphisms that are associated with an increased risk of thyroid cancer and low levels of serum TSH.

    Article  CAS  PubMed  Google Scholar 

  146. Gudmundsson, J. et al. Discovery of common variants associated with low TSH levels and thyroid cancer risk. Nature Genet. 44, 319–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Wu, G. et al. Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J. Clin. Endocrinol. Metab. 90, 4688–4693 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Costa, A. M. et al. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin. Endocrinol. 68, 618–634 (2008).

    Article  CAS  Google Scholar 

  149. Henderson, Y. C. et al. High rate of BRAF and RET/PTC dual mutations associated with recurrent papillary thyroid carcinoma. Clin. Cancer Res. 15, 485–491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nature Genet. 41, 544–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Riesco-Eizaguirre, G. & Santisteban, P. New insights in thyroid follicular cell biology and its impact in thyroid cancer therapy. Endocr. Relat. Cancer 14, 957–977 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Jhiang, S. M. Regulation of sodium/iodide symporter. Rev. Endocr. Metab. Disord. 1, 205–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Riesco-Eizaguirre, G., Gutierrez-Martinez, P., Garcia-Cabezas, M. A., Nistal, M. & Santisteban, P. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I targeting to the membrane. Endocr. Relat. Cancer 13, 257–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Mian, C. et al. Molecular characteristics in papillary thyroid cancers (PTCs) with no 131I uptake. Clin. Endocrinol. 68, 108–116 (2008).

    Article  CAS  Google Scholar 

  155. Barollo, S. et al. BRAF in primary and recurrent papillary thyroid cancers: the relationship with 131I and 2-[18F]fluoro-2-deoxy-D-glucose uptake ability. Eur. J. Endocrinol. 163, 659–663 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Durante, C. et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J. Clin. Endocrinol. Metab. 92, 2840–2843 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Romei, C. et al. BRAFV600E mutation, but not RET/PTC rearrangements, is correlated with a lower expression of both thyroperoxidase and sodium iodide symporter genes in papillary thyroid cancer. Endocr. Relat. Cancer 15, 511–520 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Oler, G. & Cerutti, J. M. High prevalence of BRAF mutation in a Brazilian cohort of patients with sporadic papillary thyroid carcinomas: correlation with more aggressive phenotype and decreased expression of iodide-metabolizing genes. Cancer 115, 972–980 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Espadinha, C., Santos, J. R., Sobrinho, L. G. & Bugalho, M. J. Expression of iodine metabolism genes in human thyroid tissues: evidence for age and BRAFV600E mutation dependency. Clin. Endocrinol. 70, 629–635 (2009).

    Article  CAS  Google Scholar 

  160. Morari, E. C. et al. Use of sodium iodide symporter expression in differentiated thyroid carcinomas. Clin. Endocrinol. 75, 247–254 (2011).

    Article  CAS  Google Scholar 

  161. Liu, D. et al. Suppression of BRAF/MEK/MAP kinase pathway restores expression of iodide-metabolizing genes in thyroid cells expressing the V600E BRAF mutant. Clin. Cancer Res. 13, 1341–1349 (2007). This study for the first time directly demonstrated in an in vitro thyroid cell system that BRAF-V600E silences thyroid iodide-handling genes and that suppression of BRAF-V600E or MEK can restore the expression of these genes, which was later reproduced in transgenic mouse studies in reference 163.

    Article  CAS  PubMed  Google Scholar 

  162. Vadysirisack, D. D., Venkateswaran, A., Zhang, Z. & Jhiang, S. M. MEK signaling modulates sodium iodide symporter at multiple levels and in a paradoxical manner. Endocr. Relat. Cancer 14, 421–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Chakravarty, D. et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J. Clin. Invest. 121, 4700–4711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hou, P., Bojdani, E. & Xing, M. Induction of thyroid gene expression and radioiodine uptake in thyroid cancer cells by targeting major signaling pathways. J. Clin. Endocrinol. Metab. 95, 820–828 (2010). This study demonstrated robust expression of thyroid iodide-handling genes and radioiodine uptake in thyroid cancer cells by simultaneously targeting MAPK, PI3K–AKT and histone deacetylase systems, which could be enhanced by TSH, thus providing strong clinical implications for the treatment of thyroid cancer.

    Article  CAS  PubMed  Google Scholar 

  165. Liu, Z. & Xing, M. Induction of sodium/iodide symporter (NIS) expression and radioiodine uptake in non-thyroid cancer cells. PLoS ONE 7, e31729 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Costamagna, E., Garcia, B. & Santisteban, P. The functional interaction between the paired domain transcription factor Pax8 and Smad3 is involved in transforming growth factor-β repression of the sodium/iodide symporter gene. J. Biol. Chem. 279, 3439–3446 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. de Souza, E. C. et al. MTOR downregulates iodide uptake in thyrocytes. J. Endocrinol. 206, 113–120 (2010).

    Article  PubMed  CAS  Google Scholar 

  168. Garcia, B. & Santisteban, P. PI3K is involved in the IGF-I inhibition of TSH-induced sodium/iodide symporter gene expression. Mol. Endocrinol. 16, 342–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Kogai, T., Sajid-Crockett, S., Newmarch, L. S., Liu, Y. Y. & Brent, G. A. Phosphoinositide-3-kinase inhibition induces sodium/iodide symporter expression in rat thyroid cells and human papillary thyroid cancer cells. J. Endocrinol. 199, 243–252 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Xing, M., Haugen, B. R. & Schlumberger, M. Promises in molecular-based management of differentiated thyroid cancer. Lancet (in the press). This is a review on the clinically promising diagnostic and prognostic molecular markers and molecular therapeutic targets in thyroid cancer. It summarizes the recent developments in clinical translational research of thyroid cancer medicine.

  171. Cohen, Y. et al. Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin. Cancer Res. 10, 2761–2765 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Xing, M. et al. Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J. Clin. Endocrinol. Metab. 89, 2867–2872 (2004). References 171 and 172 are the first studies to demonstrate the feasibility of BRAF mutation testing on thyroid FNAB samples for the diagnosis of thyroid cancer.

    Article  CAS  PubMed  Google Scholar 

  173. Xing, M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol. Cell Endocrinol. 321, 86–93 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Filicori, F. et al. Risk stratification of indeterminate thyroid fine-needle aspiration biopsy specimens based on mutation analysis. Surgery 150, 1085–1091 (2011).

    Article  PubMed  Google Scholar 

  175. Nikiforov, Y. E. et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J. Clin. Endocrinol. Metab. 96, 3390–3397 (2011). This is a large study of the mutational analyses of thyroid nodules for their diagnostic utility. The analyses show high diagnostic specificity and positive predictive value.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Alexander, E. K. et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N. Engl. J. Med. 367, 705–715 (2012). This study demonstrates a high sensitivity and negative predictive power of a gene expression classifier for diagnosing benign thyroid tumours with indeterminate cytology.

    Article  CAS  PubMed  Google Scholar 

  177. Xing, M. et al. The BRAF T1799A mutation and poor outcomes of papillary thyroid cancer-report from the international collaborative BRAF study group. Thyroid 21 (S1), Abstract 112 (2011).

    Google Scholar 

  178. Kebebew, E. et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann. Surg. 246, 466–470 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Basolo, F. et al. Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J. Clin. Endocrinol. Metab. 95, 4197–4205 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Lin, K. L. et al. The BRAF mutation is predictive of aggressive clinicopathological characteristics in papillary thyroid microcarcinoma. Ann. Surg. Oncol. 17, 3294–3300 (2010).

    Article  PubMed  Google Scholar 

  181. Elisei, R. et al. The BRAFV600E mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J. Clin. Endocrinol. Metab. 97, 4390–4398 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Xing, M. et al. BRAF mutation testing of thyroid fine-needle aspiration biopsy specimens for preoperative risk stratification in papillary thyroid cancer. J. Clin. Oncol. 27, 2977–2982 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Joo, J. Y. et al. Prediction of occult central lymph node metastasis in papillary thyroid carcinoma by preoperative BRAF analysis using fine-needle aspiration biopsy: a prospective study. J. Clin. Endocrinol. Metab. 97, 3996–4003 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Garcia-Rostan, G. et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J. Clin. Oncol. 21, 3226–3235 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Basolo, F. et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid 10, 19–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Volante, M. et al. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J. Clin. Endocrinol. Metab. 94, 4735–4741 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Fukahori, M. et al. The association between RAS gene mutations and clinical characteristics in follicular thyroid tumors: new insights from a single center and a large patient cohort. Thyroid 22, 683–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Cohen, E. E. et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J. Clin. Oncol. 26, 4708–4713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gupta-Abramson, V. et al. Phase II trial of sorafenib in advanced thyroid cancer. J. Clin. Oncol. 26, 4714–4719 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kloos, R. T. et al. Phase II trial of sorafenib in metastatic thyroid cancer. J. Clin. Oncol. 27, 1675–1684 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ahmed, M. et al. Analysis of the efficacy and toxicity of sorafenib in thyroid cancer: a phase II study in a UK based population. Eur. J. Endocrinol. 165, 315–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Sherman, S. I. et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N. Engl. J. Med. 359, 31–42 (2008). This study represents an outstanding example of the success of recent clinical trials of novel small-molecule inhibitors targeting aberrantly activated signalling pathways in thyroid cancer.

    Article  CAS  PubMed  Google Scholar 

  193. Bible, K. C. et al. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 11, 962–972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Xing, M. Genetic-targeted therapy of thyroid cancer: a real promise. Thyroid 19, 805–809 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Ball, D. W. et al. Selective growth inhibition in BRAF mutant thyroid cancer by the MEK 1/2 inhibitor AZD6244 (ARRY-142886). J. Clin. Endocrinol. Metab. 92, 4712–4718 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Leboeuf, R. et al. BRAFV600E mutation is associated with preferential sensitivity to mitogen-activated protein kinase kinase inhibition in thyroid cancer cell lines. J. Clin. Endocrinol. Metab. 93, 2194–2201 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Liu, D., Liu, Z., Jiang, D., Dackiw, A. P. & Xing, M. Inhibitory effects of the MEK inhibitor CI-1040 on the proliferation and tumor growth of thyroid cancer cells with BRAF or RAS mutations. J. Clin. Endocrinol. Metab. 92, 4686–4695 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Schweppe, R. E. et al. Distinct genetic alterations in the mitogen-activated protein kinase pathway dictate sensitivity of thyroid cancer cells to mitogen-activated protein kinase kinase 1/2 inhibition. Thyroid 19, 825–835 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Liu, D., Xing, J., Trink, B. & Xing, M. BRAF mutation-selective inhibition of thyroid cancer cells by the novel MEK inhibitor RDEA119 and genetic-potentiated synergism with the mTOR inhibitor temsirolimus. Int. J. Cancer 127, 2965–2973 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Salerno, P. et al. Cytostatic activity of adenosine triphosphate-competitive kinase inhibitors in BRAF mutant thyroid carcinoma cells. J. Clin. Endocrinol. Metab. 95, 450–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Xing, J., Liu, R., Xing, M. & Trink, B. The BRAFT1799A mutation confers sensitivity of thyroid cancer cells to the BRAFV600E inhibitor PLX4032 (RG7204). Biochem. Biophys. Res. Commun. 404, 958–962 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Janku, F. et al. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J. Clin. Oncol. 30, 777–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Jin, N., Jiang, T., Rosen, D. M., Nelkin, B. D. & Ball, D. W. Synergistic action of a RAF inhibitor and a dual PI3K/mTOR inhibitor in thyroid cancer. Clin. Cancer Res. 17, 6482–6489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Liu, R., Liu, D. & Xing, M. The Akt inhibitor MK2206 synergizes, but perifosine antagonizes, the BRAF(V600E) inhibitor PLX4032 and the MEK1/2 inhibitor AZD6244 in the inhibition of thyroid cancer cells. J. Clin. Endocrinol. Metab. 97, e173–e182 (2012).

    Article  CAS  PubMed  Google Scholar 

  206. Vasko, V. et al. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J. Clin. Endocrinol. Metab. 88, 2745–2752 (2003).

    Article  CAS  PubMed  Google Scholar 

  207. Nikiforova, M. N. et al. RAS point mutations and PAX8-PPARγ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 88, 2318–2326 (2003).

    Article  CAS  PubMed  Google Scholar 

  208. Rivera, M. et al. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated versus infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod. Pathol. 23, 1191–1200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Manenti, G., Pilotti, S., Re, F. C., Della, P. G. & Pierotti, M. A. Selective activation of ras oncogenes in follicular and undifferentiated thyroid carcinomas. Eur. J. Cancer 30A, 987–993 (1994).

    Article  CAS  PubMed  Google Scholar 

  210. Zhu, Z., Gandhi, M., Nikiforova, M. N., Fischer, A. H. & Nikiforov, Y. E. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am. J. Clin. Pathol. 120, 71–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  211. Santarpia, L. et al. Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer 116, 2974–2983 (2010).

    Article  CAS  PubMed  Google Scholar 

  212. Dahia, P. L. et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res. 57, 4710–4713 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the US National Institutes of Health (NIH) R01 grants CA113507 and CA134225 to the author. The author thanks A. K. Murugan, Y. Trink and D. Liu for their help in preparing the figures and references. The author also thanks the numerous colleagues and investigators in this field whose outstanding work made it an extremely enjoyable experience to write this Review. The author wishes to apologize to those whose work is not cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhao Xing.

Ethics declarations

Competing interests

M.X. receives royalty payments as co-holder of the United States of America patent on the initial discovery and clinical characterization of BRAFV600E mutation in thyroid cancer.

Related links

Glossary

Differentiated thyroid cancer

(DTC). Collectively includes both papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC), which are histologically differentiated, by comparison with poorly differentiated thyroid cancer (PDTC) and undifferentiated anaplastic thyroid cancer (ATC).

Radioiodine treatment

A classical treatment for patients with thyroid cancer. It is used after total thyroidectomy and consists of treating patients with the radioiodine isotope 131I, which emits high-energy β-particles and takes advantage of the unique function of thyroid follicular cells to accumulate iodide as a substrate for the synthesis of thyroid hormone.

MAPK pathway

This pathway has a fundamental role in the regulation of cell growth, proliferation, apoptosis and metabolic activities, through regulating the expression of various genes.

PI3K–AKT pathway

This pathway also has a fundamental role in the regulation of cell growth, proliferation, apoptosis and metabolic activities, through regulating the expression of various genes.

Pten

A tumour suppressor gene, the protein product of which converts phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to phosphatidylinositol (4,5)-trisphosphate (PIP2), counteracting the conversion of PIP2 to PIP3 by PI3K and thus terminating PI3K–AKT signalling.

Cowden's syndrome

Also known as Cowden's disease or multiple hamartoma syndrome. A rare, autosomally inherited disorder that is caused by mutations or defects in the tumour suppressor gene PTEN and is characterized by multiple tumour-like growths called hamartomas and an increased risk of certain cancers, such as breast cancer and follicular thyroid cancer.

Copy-number gain

A genetic abnormality in which the copy number of a chromosomal region or gene is more than the normal two copies (one paternal allele and one maternal allele), which occurs through the amplification of a local region of DNA within a chromosome, or through aneuploidy, in which multiple copies or fragments of identical chromosomes are present.

Receptor tyrosine kinases

(RTKs). These are typically growth-promoting transmembrane receptors that transduce extracellular signalling into intracellular signalling through the activation of their cytoplasmic kinase domain in response to extracellular signals such as ligand-binding.

Gene translocation

A genetic rearrangement in which a chromosomal fragment is translocated to another chromosome where it is not normally located, which may create a recombinant gene product with new function or uncontrolled function (compared with the original gene product).

Follicular thyroid tumours

Collectively includes follicular thyroid adenoma (FTA), follicular thyroid cancer (FTC) and follicular variant papillary thyroid cancer (FVPTC); they share common dense follicular cell architectures.

Gene methylation

An epigenetic covalent addition of a methyl group to the fifth carbon of the cytosine residue in a CpG dinucleotide, typically in CpG islands (that is, CpG-rich regions) in the 5′-flanking promoter regions of genes. Such methylation is usually closely associated with chromatin remodelling and silencing of the corresponding genes.

Capsular invasiveness

A phenomenon in which thyroid cancer invades the connective tissue capsule that surrounds the tumour, which is a defining feature of progression to malignancy from a benign thyroid tumour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 13, 184–199 (2013). https://doi.org/10.1038/nrc3431

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3431

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer