Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Rethinking ovarian cancer: recommendations for improving outcomes

Abstract

There have been major advances in our understanding of the cellular and molecular biology of the human malignancies that are collectively referred to as ovarian cancer. At a recent Helene Harris Memorial Trust meeting, an international group of researchers considered actions that should be taken to improve the outcome for women with ovarian cancer. Nine major recommendations are outlined in this Opinion article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Survival in ovarian cancer.
Figure 2: The origins of ovarian cancer.
Figure 3: Evolution of chemotherapy for ovarian cancer over the past 50 years.

Similar content being viewed by others

References

  1. McGuire, W. P. Maintenance therapy for ovarian cancer: of Helsinki and Hippocrates. J. Clin. Oncol. 27, 4633–4634 (2009).

    Article  PubMed  Google Scholar 

  2. Omura, G. et al. A randomized trial of cyclophosphamide and doxorubicin with or without cisplatin in advanced ovarian carcinoma. A Gynecologic Oncology Group Study. Cancer 57, 1725–1730 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Coleman, M. P. et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet 377, 127–138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kurman, R. J. & Shih Ie, M. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am. J. Surg. Pathol. 34, 433–443 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Piek, J. M. et al. Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J. Pathol. 195, 451–456 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, Y. et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J. Pathol. 211, 26–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Levanon, K. et al. Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis. Oncogene 29, 1103–1113 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Kuo, K. T. et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am. J. Pathol. 174, 1597–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, K. R. & Young, R. H. The distinction between primary and metastatic mucinous carcinomas of the ovary: gross and histologic findings in 50 cases. Am. J. Surg. Pathol. 27, 281–292 (2003).

    Article  PubMed  Google Scholar 

  12. Zaino, R. J. et al. Advanced stage mucinous adenocarcinoma of the ovary is both rare and highly lethal: a Gynecologic Oncology Group study. Cancer 117, 554–562 (2011).

    Article  PubMed  Google Scholar 

  13. Kelemen, L. E. & Kobel, M. Mucinous carcinomas of the ovary and colorectum: different organ, same dilemma. Lancet Oncol. 25 May 2011 (doi:10.1016/S1470-2045(11)70058-4).

  14. Kobel, M. et al. Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med. 5, e232 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kobel, M. et al. A limited panel of immunomarkers can reliably distinguish between clear cell and high-grade serous carcinoma of the ovary. Am. J. Surg. Pathol. 33, 14–21 (2009).

    Article  PubMed  Google Scholar 

  16. Madore, J. et al. Characterization of the molecular differences between ovarian endometrioid carcinoma and ovarian serous carcinoma. J. Pathol. 220, 392–400 (2010).

    PubMed  Google Scholar 

  17. Bowtell, D. D. The genesis and evolution of high-grade serous ovarian cancer. Nature Rev. Cancer 10, 803–808 (2010).

    Article  CAS  Google Scholar 

  18. Ho, C. L., Kurman, R. J., Dehari, R., Wang, T. L. & Shih Ie, M. Mutations of BRAF and KRAS precede the development of ovarian serous borderline tumors. Cancer Res. 64, 6915–6918 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Tothill, R. W. et al. Novel molecular subtypes of serous and endometroid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 14, 5198–5208 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Ahmed, A. A. et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J. Pathol. 221, 49–56 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zorn, K. K. et al. Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin. Cancer Res. 11, 6422–6430 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Anglesio, M. S. et al. IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer. Clin. Cancer Res. 17, 2538–2548 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Kobel, M. et al. Diagnosis of ovarian carcinoma cell type is highly reproducible: a transcanadian study. Am. J. Surg. Pathol. 34, 984–993 (2010).

    Article  PubMed  Google Scholar 

  24. Glimelius, B. & Lahn, M. Window-of-opportunity trials to evaluate clinical activity of new molecular entities in oncology. Ann. Oncol. 22, 1717–1725 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Kyriazi, S., Kaye, S. B. & deSouza, N. M. Imaging ovarian cancer and peritoneal metastases-current and emerging techniques. Nature Rev. Clin. Oncol. 7, 381–393 (2010).

    Article  Google Scholar 

  26. He, W. et al. Quantitation of circulating tumor cells in blood samples from ovarian and prostate cancer patients using tumor-specific fluorescent ligands. Int. J. Cancer 123, 1968–1973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shih Ie, M. & Kurman, R. J. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am. J. Pathol. 164, 1511–1518 (2004).

    Article  PubMed  Google Scholar 

  28. Menon, U. et al. Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Lancet Oncol. 10, 327–340 (2009).

    Article  PubMed  Google Scholar 

  29. Brown, P. O. & Palmer, C. The preclinical natural history of serous ovarian cancer: defining the target for early detection. PLoS Med. 6, e1000114 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Buys, S. S. et al. Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA 305, 2295–2303 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Hogg, R. & Friedlander, M. Biology of epithelial ovarian cancer: implications for screening women at high genetic risk. J. Clin. Oncol. 22, 1315–1327 (2004).

    Article  PubMed  Google Scholar 

  32. Domchek, S. M. et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 304, 967–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rebbeck, T. R., Kauff, N. D. & Domchek, S. M. Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J. Natl Cancer Inst. 101, 80–87 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dietl, J. & Wischhusen, J. The forgotten fallopian tube. Nature Rev. Cancer 11, 227; author reply 227 (2011).

    Article  CAS  Google Scholar 

  35. Bolton, K. L. et al. Common variants at 19p13 are associated with susceptibility to ovarian cancer. Nature Genet. 42, 880–884 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Song, H. et al. A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nature Genet. 41, 996–1000 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Gorringe, K. L. et al. Copy number analysis identifies novel interactions between genomic loci in ovarian cancer. PLoS ONE 5, e11408 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gorringe, K. L. et al. High-resolution single nucleotide polymorphism array analysis of epithelial ovarian cancer reveals numerous microdeletions and amplifications. Clin. Cancer Res. 13, 4731–4739 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  40. Farley, J. et al. Cyclin E expression is a significant predictor of survival in advanced, suboptimally debulked ovarian epithelial cancers: a Gynecologic Oncology Group study. Cancer Res. 63, 1235–1241 (2003).

    CAS  PubMed  Google Scholar 

  41. Etemadmoghadam, D. et al. Amplicon-dependent CCNE1 expression is critical for clonogenic survival after cisplatin treatment and is correlated with 20q11 gain in ovarian cancer. PLoS ONE 5, e15498 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tan, D. S. et al. Genomic analysis reveals the molecular heterogeneity of ovarian clear cell carcinomas. Clin. Cancer Res. 17, 1521–1534 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Shah, S. P. et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N. Engl. J. Med. 360, 2719–2729 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Press, J. Z. et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer 8, 17 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nature Rev. Cancer 4, 814–819 (2004).

    Article  CAS  Google Scholar 

  46. Banerjee, S., Kaye, S. B. & Ashworth, A. Making the best of PARP inhibitors in ovarian cancer. Nature Rev. Clin. Oncol. 7, 508–519 (2010).

    Article  CAS  Google Scholar 

  47. Ledermann, J. A. et al. Phase II randomized placebo-controlled study of olaparib (AZD2281) in patients with platinum-sensitive relapsed serous ovarian cancer (PSR SOC). J. Clin. Oncol. Abstr. 29, 5003 (2011).

    Article  Google Scholar 

  48. Mukhopadhyay, A. et al. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clin. Cancer Res. 16, 2344–2351 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Martin, S. A. et al. Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2. EMBO Mol. Med. 1, 323–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martin, S. A. et al. DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. Cancer Cell 17, 235–248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cooke, S. L. et al. Intra-tumour genetic heterogeneity and poor chemoradiotherapy response in cervical cancer. Br. J. Cancer 104, 361–368 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Cooke, S. L. et al. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma. Oncogene 29, 4905–4913 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. O'Malley, D. M. et al. Addition of bevacizumab to weekly paclitaxel significantly improves progression-free survival in heavily pretreated recurrent epithelial ovarian cancer. Gynecol. Oncol. 121, 269–272 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Ebos, J. M. & Kerbel, R. S. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nature Rev. Clin. Oncol. 8, 210–221 (2011).

    Article  CAS  Google Scholar 

  55. Jubb, A. M. & Harris, A. L. Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol. 11, 1172–1183 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Goodell, V. et al. Antibody immunity to the p53 oncogenic protein is a prognostic indicator in ovarian cancer. J. Clin. Oncol. 24, 762–768 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Schlienger, K. et al. TRANCE- and CD40 ligand-matured dendritic cells reveal MHC class I-restricted T cells specific for autologous tumor in late-stage ovarian cancer patients. Clin. Cancer Res. 9, 1517–1527 (2003).

    CAS  PubMed  Google Scholar 

  58. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Sato, E. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 18538–18543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kryczek, I. et al. Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res. 67, 8900–8905 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Kulbe, H. et al. The inflammatory cytokine TNF-a generates an autocrine tumour-promoting network in epithelial ovarian cancer cells. Cancer Res. 67, 585–592 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Facciabene, X. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Charles, K. A. et al. The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J. Clin. Invest. 119, 3011–3023 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hodi, F. S. et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl Acad. Sci. USA 100, 4712–4714 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hodi, F. S. et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc. Natl Acad. Sci. USA 105, 3005–3010 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Coward, J. et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin. Cancer Res. 27 Jul 2011 (doi:10.1158/1078-0432.CCR-11-0945).

  69. Balkwill, F. & Mantovani, A. Cancer and inflammation: implications for pharmacology and therapeutics. Clin. Pharmacol. Ther. 87, 401–406 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Choi, S. et al. Relapse in children with acute lymphoblastic leukemia involving selection of a preexisting drug-resistant subclone. Blood 110, 632–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100, 1014–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stronach, E. A. et al. HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer. Cancer Res. 71, 4412–4422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baggerly, K. A., Morris, J. S., Edmonson, S. R. & Coombes, K. R. Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J. Natl Cancer Inst. 97, 307–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Connolly, D. C. et al. Female mice chimeric for expression of the simian virus 40 TAg under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res. 63, 1389–1397 (2003).

    CAS  PubMed  Google Scholar 

  77. Wu, R. et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/B-catenin and P13K/Pten signaling pathways. Cancer Cell 11, 321–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Xing, D. & Orsulic, S. A genetically defined mouse ovarian carcinoma model for the molecular characterization of pathway-targeted therapy and tumor resistance. Proc. Natl Acad. Sci. USA 102, 6936–6941 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Orsulic, S. et al. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell 1, 53–62 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Karst, A. M., Levanon, K. & Drapkin, R. Modeling high-grade serous ovarian carcinogenesis from the fallopian tube. Proc. Natl Acad. Sci. USA 108, 7547–7552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kenny, H. A., Kaur, S., Coussens, L. M. & Lengyel, E. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J. Clin. Invest. 118, 1367–1379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Iwanicki, M. P. et al. Ovarian cancer spheroids use myosin-generated force to clear the mesothelium. Cancer Discov. 1, 144–157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Al-Barrak, J. et al. Exploring palliative treatment outcomes in women with advanced or recurrent ovarian clear cell carcinoma. Gynecol. Oncol. 122, 107–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Khalique, L. et al. The clonal evolution of metastases from primary serous epithelial ovarian cancers. Int. J. Cancer 124, 1579–1586 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Khalique, L. et al. Genetic intra-tumour heterogeneity in epithelial ovarian cancer and its implications for molecular diagnosis of tumours. J. Pathol. 211, 286–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Norquist, B. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol. 29, 3008–3015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ovarian Cancer Action, its Chair, A. Kaye, its staff and its many supporters, without whose drive and generosity the Helene Harris Memorial Trust meetings would not be possible. The authors also thank K. Swenerton, Cheryl Brown Outcomes Unit, British Columbia Cancer Agency, Canada, for providing some of the data in Figure 1 and for the concept of Figure 3. Further acknowledgements and sources of funding for some of the authors of this article can be found in the Supplementary information S1 (text) (see Further information).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Bowtell.

Ethics declarations

Competing interests

R.C.B. receives royalties for CA125 from Fujirebio Diagnostics Inc. He serves on external advisory boards for Vermillion and Illumina. S.B.K. is a member of the Astra Zeneca advisory board. C.J.L. is a named inventor on patents regarding the use of PARP inhibitor and stands to financially gain under the ICR 'Rewards to Inventors' scheme. U.M. has received grants from the Medical Research Council, Cancer Research UK, the European Union, the Eve Appeal and the NIHR, UK. U.M. holds stock in Abcodia Ltd, has received travel funds from the American Society of Clinical Oncology and Abbott, and has research collaborations with Becton Dickinson.

Supplementary information

Supplementary information S1 (text)

Funding acknowledgements (PDF 213 kb)

Supplementary information S2 (table)

Delegates in attendance at the Helene Harris Memorial Trust meeting in January 2011. (PDF 623 kb)

Related links

Related links

DATABASES

NCT00262847

NCT00434642

NCT00483782

FURTHER INFORMATION

David D. Bowtell's homepage

Frances R. Balkwill's homepage

Helene Harris Memorial Trust International Forum on Ovarian Cancer

Ovarian Cancer Action

Surveillance, Epidemiology and End Results

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughan, S., Coward, J., Bast, R. et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer 11, 719–725 (2011). https://doi.org/10.1038/nrc3144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3144

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer