Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the dynamic HSP90 complex in cancer

Key Points

  • Heat shock protein 90 (HSP90) is a molecular chaperone of numerous oncoproteins. Therefore, cancer cells can be considered to be 'addicted' to this molecule.

  • HSP90 is also a mediator of cellular homeostasis. As such, it facilitates numerous transient low-affinity protein–protein interactions that have only recently been identified using bioinformatic and proteomic techniques.

  • Although primarily a cytoplasmic protein, HSP90 affects diverse nuclear processes, including transcription, chromatin remodelling and DNA damage-induced mutation.

  • HSP90 is a conformationally dynamic protein. ATP binding to the amino (N) domain and its subsequent hydrolysis by HSP90 drive a conformational cycle that is essential for chaperone activity.

  • In eukaryotes, co-chaperones and post-translational modifications regulate both client interactions with HSP90 and HSP90 ATPase activity.

  • Co-chaperones and post-translational modifications can also affect the efficacy of HSP90 inhibitors.

  • HSP90 inhibitors currently under clinical evaluation interact with the N domain ATP-binding pocket, prevent ATP binding, and stop the chaperone cycle, leading to client protein degradation.

  • Because of the HSP90 client repertoire, HSP90 inhibitors may combat oncogene switching, which is an important mechanism of tumour escape from tyrosine kinase inhibitors.

  • Derivatives of the coumarin antibiotic novobiocin represent an alternative strategy for inhibiting HSP90 by targeting a unique carboxy-terminal (C) domain.

  • Optimal development of HSP90-directed therapeutics will depend on synthesizing information gained from careful genetic analysis of primary and metastatic tumours with an understanding of the unique environmental context in which the tumour is thriving at the expense of the host.

Abstract

The molecular chaperone heat shock protein 90 (HSP90) has been used by cancer cells to facilitate the function of numerous oncoproteins, and it can be argued that cancer cells are 'addicted' to HSP90. However, although recent reports of the early clinical efficacy of HSP90 inhibitors are encouraging, the optimal use of HSP90-targeted therapeutics will depend on understanding the complexity of HSP90 regulation and the degree to which HSP90 participates in both neoplastic and normal cellular physiology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The HSP90 chaperone cycle.
Figure 2: Co-chaperones and post-translational modifications modulate HSP90 chaperone activity.
Figure 3: HSP90 modulates nuclear events.

Similar content being viewed by others

References

  1. Wandinger, S. K., Richter, K. & Buchner, J. The Hsp90 chaperone machinery. J. Biol. Chem. 283, 18473–18477 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, R. et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715–727 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Pratt, W. B. & Toft, D. O. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood) 228, 111–133 (2003).

    Article  CAS  Google Scholar 

  4. Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer. Nature Rev. Cancer 5, 761–772 (2005).

    Article  CAS  Google Scholar 

  5. Dezwaan, D. C. & Freeman, B. C. HSP90: the Rosetta stone for cellular protein dynamics? Cell Cycle 7, 1006–1012 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Pratt, W. B., Morishima, Y. & Osawa, Y. The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J. Biol. Chem. 283, 22885–22889 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McClellan, A. J. et al. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131, 121–135 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Tsaytler, P. A., Krijgsveld, J., Goerdayal, S. S., Rudiger, S. & Egmond, M. R. Novel Hsp90 partners discovered using complementary proteomic approaches. Cell Stress Chaperones 14, 629–638 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Freeman, B. C. & Yamamoto, K. R. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296, 2232–2235 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, R. & Houry, W. A. Hsp90: a chaperone for protein folding and gene regulation. Biochem. Cell Biol. 83, 703–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Tariq, M., Nussbaumer, U., Chen, Y., Beisel, C. & Paro, R. Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proc. Natl Acad. Sci. USA 106, 1157–1162 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eccles, S. A. et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 68, 2850–2860 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Chiosis, G. & Tao, H. Purine-scaffold Hsp90 inhibitors. IDrugs 9, 778–782 (2006).

    CAS  PubMed  Google Scholar 

  14. Kim, Y. S. et al. Update on Hsp90 inhibitors in clinical trial. Curr. Top. Med. Chem. 9, 1479–1492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Workman, P., Burrows, F., Neckers, L. & Rosen, N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. N. Y. Acad. Sci. 1113, 202–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Pearl, L. H. & Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75, 271–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Donnelly, A. & Blagg, B. S. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr. Med. Chem. 15, 2702–2717 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ali, M. M. et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006). This paper describes the first crystal structure of a full-length HSP90–co-chaperone complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prodromou, C. & Pearl, L. H. Structure and functional relationships of Hsp90. Curr. Cancer Drug Targets 3, 301–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Wayne, N. & Bolon, D. N. Dimerization of Hsp90 is required for in vivo function. Design and analysis of monomers and dimers. J. Biol. Chem. 282, 35386–35395 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Onuoha, S. C., Coulstock, E. T., Grossmann, J. G. & Jackson, S. E. Structural studies on the co-chaperone Hop and its complexes with Hsp90. J. Mol. Biol. 379, 732–744 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Vaughan, C. K. et al. Structure of an Hsp90-Cdc37-Cdk4 complex. Mol. Cell 23, 697–707 (2006). This paper describes the first structure of an HSP90–co-chaperone–client protein complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Southworth, D. R. & Agard, D. A. Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol. Cell 32, 631–640 (2008). This paper reports the species-dependence of the conformational states sampled by HSP90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McLaughlin, S. H., Ventouras, L. A., Lobbezoo, B. & Jackson, S. E. Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J. Mol. Biol. 344, 813–826 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Meyer, P. et al. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J. 23, 1402–1410 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Mickler, M., Hessling, M., Ratzke, C., Buchner, J. & Hugel, T. The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nature Struct. Mol. Biol. 16, 281–286 (2009).

    Article  CAS  Google Scholar 

  27. Hessling, M., Richter, K. & Buchner, J. Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nature Struct. Mol. Biol. 16, 287–293 (2009). References 26 and 27 dissect the conformational intermediates of the HSP90 chaperone cycle.

    Article  CAS  Google Scholar 

  28. Panaretou, B. et al. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell 10, 1307–1318 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Forafonov, F. et al. p23/Sba1p protects against Hsp90 inhibitors independently of its intrinsic chaperone activity. Mol. Cell. Biol. 28, 3446–3456 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Retzlaff, M. et al. Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol. Cell 37, 344–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Koulov, A. V. et al. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol. Biol. Cell 21, 871–884 (2010). This paper describes how AHA1 interaction with HSP90 affects client interaction with the HSP90 complex and chaperone efficiency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miyata, Y. & Nishida, E. Evaluating CK2 activity with the antibody specific for the CK2-phosphorylated form of a kinase-targeting cochaperone Cdc37. Mol. Cell. Biochem. 316, 127–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Smith, J. R. & Workman, P. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Cell Cycle 8, 362–372 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Echeverria, P. C. et al. Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin β. Mol. Cell. Biol. 29, 4788–4797 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pratt, W. B., Morishima, Y., Murphy, M. & Harrell, M. Chaperoning of glucocorticoid receptors. Handb. Exp. Pharmacol. 172, 111–138 (2006).

    Article  CAS  Google Scholar 

  36. Wochnik, G. M. et al. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J. Biol. Chem. 280, 4609–4616 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, M. et al. Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO J. 27, 2789–2798 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boulon, S. et al. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J. Cell Biol. 180, 579–595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vaughan, C. K. et al. Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Mol. Cell 31, 886–895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McDowell, C. L., Bryan Sutton, R. & Obermann, W. M. Expression of Hsp90 chaperone [corrected] proteins in human tumor tissue. Int. J. Biol. Macromol. 45, 310–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Gray, P. J. Jr, Stevenson, M. A. & Calderwood, S. K. Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Cancer Res. 67, 11942–11950 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Holmes, J. L., Sharp, S. Y., Hobbs, S. & Workman, P. Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 68, 1188–1197 (2008).

    Article  PubMed  CAS  Google Scholar 

  43. Scroggins, B. T. & Neckers, L. Post-translational modification of heat shock protein 90: impact on chaperone function. Expert Opin. Drug Discov. 2, 1403–1414 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Mimnaugh, E. G., Worland, P. J., Whitesell, L. & Neckers, L. M. Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the hsp90 stress protein and the pp60v-src tyrosine kinase. J. Biol. Chem. 270, 28654–28659 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Wandinger, S. K., Suhre, M. H., Wegele, H. & Buchner, J. The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. EMBO J. 25, 367–376 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Duval, M., Le Boeuf, F., Huot, J. & Gratton, J. P. Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Mol. Biol. Cell 18, 4659–4668 (2007). This paper reports the tyrosine phosphorylation of HSP90 by a client kinase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kurokawa, M., Zhao, C., Reya, T. & Kornbluth, S. Inhibition of apoptosome formation by suppression of Hsp90β phosphorylation in tyrosine kinase-induced leukemias. Mol. Cell. Biol. 28, 5494–5506 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Old, W. M. et al. Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol. Cell 34, 115–131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lees-Miller, S. P. & Anderson, C. W. Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated in vitro by casein kinase II. J. Biol. Chem. 264, 2431–2437 (1989).

    CAS  PubMed  Google Scholar 

  50. Miyata, Y. Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Cell. Mol. Life Sci. 66, 1840–1849 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Harvey, S. L., Charlet, A., Haas, W., Gygi, S. P. & Kellogg, D. R. Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell 122, 407–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Mollapour, M. et al. Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function. Mol. Cell 37, 333–343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mollapour, M., Tsutsumi, S. & Neckers, L. Hsp90 phosphorylation, Wee1 and the cell cycle. Cell Cycle 9, 1–7 (2010).

    Article  Google Scholar 

  54. Yu, X. et al. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl Cancer Inst. 94, 504–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 18, 601–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Scroggins, B. T. et al. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol. Cell 25, 151–159 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, Y. et al. Role of acetylation and extracellular location of heat shock protein 90α in tumor cell invasion. Cancer Res. 68, 4833–4842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maloney, A. et al. Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 67, 3239–3253 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Martinez-Ruiz, A. et al. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc. Natl Acad. Sci. USA 102, 8525–8530 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morra, G., Verkhivker, G. & Colombo, G. Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full-length dimer. PLoS Comput. Biol. 5, e1000323 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Retzlaff, M. et al. Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep. 10, 1147–1153 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Compton, S. A., Elmore, L. W., Haydu, K., Jackson-Cook, C. K. & Holt, S. E. Induction of nitric oxide synthase-dependent telomere shortening after functional inhibition of Hsp90 in human tumor cells. Mol. Cell. Biol. 26, 1452–1462 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Toogun, O. A., Dezwaan, D. C. & Freeman, B. C. The hsp90 molecular chaperone modulates multiple telomerase activities. Mol. Cell. Biol. 28, 457–467 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z. & Nardai, G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 79, 129–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Conzen, S. D. Minireview: nuclear receptors and breast cancer. Mol. Endocrinol. 22, 2215–2228 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Echeverria, P. C. & Picard, D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta 1803, 641–649 (2009).

    Article  PubMed  CAS  Google Scholar 

  67. Zou, J., Guo, Y., Guettouche, T., Smith, D. F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Conde, R., Belak, Z. R., Nair, M., O'Carroll, R. F. & Ovsenek, N. Modulation of Hsf1 activity by novobiocin and geldanamycin. Biochem. Cell Biol. 87, 845–851 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Dai, C., Whitesell, L., Rogers, A. B. & Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005–1018 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Min, J. N., Huang, L., Zimonjic, D. B., Moskophidis, D. & Mivechi, N. F. Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene 26, 5086–5097 (2007). References 69 and 70 highlight the importance of HSF1 for carcinogenesis.

    Article  CAS  PubMed  Google Scholar 

  71. Au, Q., Zhang, Y., Barber, J. R., Ng, S. C. & Zhang, B. Identification of inhibitors of HSF1 functional activity by high-content target-based screening. J. Biomol. Screen. 14, 1165–1175 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Ci, W. et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood 113, 5536–5548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cerchietti, L. C. et al. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood 113, 3397–3405 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cerchietti, L. C. et al. A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas. Nature Med. 15, 1369–1376 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Choo, A. et al. The role of IRF1 and IRF2 transcription factors in leukaemogenesis. Curr. Gene Ther. 6, 543–550 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Narayan, V., Eckert, M., Zylicz, A., Zylicz, M. & Ball, K. L. Cooperative regulation of the interferon regulatory factor-1 tumor suppressor protein by core components of the molecular chaperone machinery. J. Biol. Chem. 284, 25889–25899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bach, C. & Slany, R. K. Molecular pathology of mixed-lineage leukemia. Future Oncol. 5, 1271–1281 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Pal, S., Vishwanath, S. N., Erdjument-Bromage, H., Tempst, P. & Sif, S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol. Cell. Biol. 24, 9630–9645 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hamamoto, R. et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nature Cell Biol. 6, 731–740 (2004). This paper reports that HSP90 inhibitor treatment suppresses SMYD3 activity in cancer cells.

    Article  CAS  PubMed  Google Scholar 

  80. Komatsu, S. et al. Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma. Carcinogenesis 30, 1139–1146 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Abu-Farha, M. et al. The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol. Cell. Proteomics 7, 560–572 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Sekimoto, T. et al. The molecular chaperone Hsp90 regulates accumulation of DNA polymerase η at replication stalling sites in UV-irradiated cells. Mol. Cell 37, 79–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Specchia, V. et al. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463, 662–665 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Nishida, K. M. et al. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J. 28, 3820–3831 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oh, W. K. et al. A single arm phase II trial of IPI-504 in patients with castration resistant prostate cancer (CRPC). Genitourinary Cancers Symp. Abstr. 219 (2009).

  87. Heath, E. I. et al. A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin. Cancer Res. 14, 7940–7946 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yano, A. et al. Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone. Proc. Natl Acad. Sci. USA 105, 15541–15546 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zoubeidi, A. et al. Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res. 67, 10455–10465 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Solit, D. B. et al. Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin. Cancer Res. 14, 8302–8307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Grbovic, O. M. et al. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl Acad. Sci. USA 103, 657–662 (2006).

    Article  CAS  Google Scholar 

  92. da Rocha Dias, S. et al. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 65, 10686–10691 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Mimnaugh, E. G., Chavany, C. & Neckers, L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J. Biol. Chem. 271, 22796–22801 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Modi, S. et al. Phase II trial of the Hsp90 inhibitor tanespimycin (Tan) + trastuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC). J. Clin. Oncol. Abstr. 26, 1027 (2008).

    Article  Google Scholar 

  95. Xu, W. et al. Sensitivity of epidermal growth factor receptor and ErbB2 exon 20 insertion mutants to Hsp90 inhibition. Br. J. Cancer 97, 741–744 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chandarlapaty, S. et al. Inhibitors of HSP90 block p95-HER2 signaling in Trastuzumab-resistant tumors and suppress their growth. Oncogene 29, 325–334 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Caldas-Lopes, E. et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc. Natl Acad. Sci. USA 106, 8368–8373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Richardson, P. G. et al. Tanespimycin + bortezomib demonstrates safety, activity, and effective target inhibition in relapsed/refractory myeloma patients: updated results of a phase 1/2 study. 51st Am. Soc. Hematogy Annu. Meet. Abstr. (2009).

  99. Mimnaugh, E. G., Xu, W., Vos, M., Yuan, X. & Neckers, L. Endoplasmic reticulum vacuolization and valosin-containing protein relocalization result from simultaneous hsp90 inhibition by geldanamycin and proteasome inhibition by velcade. Mol. Cancer Res. 4, 667–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Mitsiades, C. S. et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood 107, 1092–1100 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Frebel, K. & Wiese, S. Signalling molecules essential for neuronal survival and differentiation. Biochem. Soc. Trans. 34, 1287–1290 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Fionda, C. et al. Heat shock protein-90 inhibitors increase MHC class I-related chain A and B ligand expression on multiple myeloma cells and their ability to trigger NK cell degranulation. J. Immunol. 183, 4385–4394 (2009). This paper shows that HSP90 inhibitors enhance NK-dependent recognition and lysis of myleoma cells in an HSF1-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  103. Tse, A. N., Sheikh, T. N., Alan, H., Chou, T. C. & Schwartz, G. K. 90-kDa heat shock protein inhibition abrogates the topoisomerase I poison-induced G2/M checkpoint in p53-null tumor cells by depleting Chk1 and Wee1. Mol. Pharmacol. 75, 124–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Arlander, S. J. et al. Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J. Biol. Chem. 281, 2989–2998 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Tse, A. N. et al. A phase 1 dose-escalation study of irinotecan in combination with 17-allylamino-17-demethoxygeldanamycin in patients with solid tumors. Clin. Cancer Res. 14, 6704–6711 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hubbard, J. et al. Phase I study of 17-allylamino-17 demethoxygeldanamycin, gemcitabine and/or cisplatin in patients with refractory solid tumors. Invest. New Drugs 15 Jan 2010 [epub ahead of print].

  107. Hwang, M., Moretti, L. & Lu, B. HSP90 inhibitors: multi-targeted antitumor effects and novel combinatorial therapeutic approaches in cancer therapy. Curr. Med. Chem. 16, 3081–3092 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Reikvam, H., Ersvaer, E. & Bruserud, O. Heat shock protein 90 - a potential target in the treatment of human acute myelogenous leukemia. Curr. Cancer Drug Targets 9, 761–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Lancet, J. E. et al. Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022,17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia 24, 699–705 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Weisberg, E. et al. FLT3 inhibition and mechanisms of drug resistance in mutant FLT3-positive AML. Drug Resist. Updat. 12, 81–89 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shiotsu, Y. et al. Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G1 phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood 96, 2284–2291 (2000).

    CAS  PubMed  Google Scholar 

  112. Peng, C., Li, D. & Li, S. Heat shock protein 90: a potential therapeutic target in leukemic progenitor and stem cells harboring mutant BCR-ABL resistant to kinase inhibitors. Cell Cycle 6, 2227–2231 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. O'Hare, T., Eide, C. A. & Deininger, M. W. New Bcr-Abl inhibitors in chronic myeloid leukemia: keeping resistance in check. Expert Opin. Investig. Drugs 17, 865–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Peng, C. et al. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells. Blood 110, 678–685 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Castro, J. E. et al. ZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client: inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia. Blood 106, 2506–2512 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Elfiky, A. et al. BIIB021, an oral, synthetic non-ansamycin Hsp90 inhibitor: phase I experience. J. Clin. Oncol. Abstr. 26, 2503 (2008).

    Article  Google Scholar 

  117. Gallegos Ruiz, M. I. et al. Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target. PLoS ONE 3, e0001722 (2008).

    Article  PubMed  CAS  Google Scholar 

  118. Sequist, L. V. et al. A phase II trial of IPI-504 (retaspimycin hydrochloride), a novel Hsp90 inhibitor, in patients with relapsed and/or refractory stage IIIb or stage IV non-small cell lung cancer (NSCLC) stratified by EGFR mutation status. J. Clin. Oncol. Abstr. 27, 8073 (2009).

    Google Scholar 

  119. Shimamura, T. & Shapiro, G. I. Heat shock protein 90 inhibition in lung cancer. J. Thorac. Oncol. 3, S152–S159 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Shimamura, T. et al. Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance. Cancer Res. 68, 5827–5838 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Banerji, U. et al. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol. 23, 4152–4161 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Grem, J. L. et al. Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J. Clin. Oncol. 23, 1885–1893 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Ramanathan, R. K. et al. Phase I pharmacokinetic and pharmacodynamic study of 17-dimethylaminoethylamino-17-demethoxygeldanamycin, an inhibitor of heat-shock protein 90, in patients with advanced solid tumors. J. Clin. Oncol. 28, 1520–1526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Eiseman, J. L. et al. Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother. Pharmacol. 55, 21–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Vilenchik, M. et al. Targeting wide-range oncogenic transformation via PU24FCl, a specific inhibitor of tumor Hsp90. Chem. Biol. 11, 787–797 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Kummar, S. et al. Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies. Eur. J. Cancer 46, 340–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Dakappagari, N. et al. An investigation into the potential use of serum Hsp70 as a novel tumour biomarker for Hsp90 inhibitors. Biomarkers 15, 31–38 (2009).

    Article  CAS  Google Scholar 

  129. Demetri, G. D. et al. Inhibition of the heat shock protein 90 (Hsp90) chaperone with the novel agent IPI-504 to overcome resistance to tyrosine kinase inhibitors (TKIs) in metastatic GIST: updated results of a phase I trial. J. Clin. Oncol. Abstr. 25, 10024 (2007).

    Google Scholar 

  130. Smith-Jones, P. M., Solit, D., Afroze, F., Rosen, N. & Larson, S. M. Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J. Nucl. Med. 47, 793–796 (2006). This paper describes a new non-invasive imaging approach to monitor anti-tumour HSP90 inhibitor activity in vivo.

    CAS  PubMed  Google Scholar 

  131. Oude Munnink, T. H. et al. 89Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. Eur. J. Cancer 46, 678–684 (2009).

    Article  PubMed  CAS  Google Scholar 

  132. Kramer-Marek, G., Kiesewetter, D. O. & Capala, J. Changes in HER2 expression in breast cancer xenografts after therapy can be quantified using PET and 18F-labeled affibody molecules. J. Nucl. Med. 50, 1131–1139 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Holland, J. P. et al. Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using Zr-DFO-trastuzumab. PLoS ONE 5, e8859 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Le, H. C. et al. Proton MRS detects metabolic changes in hormone sensitive and resistant human prostate cancer models CWR22 and CWR22r. Magn. Reson. Med. 62, 1112–1119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chung, Y. L. et al. Magnetic resonance spectroscopic pharmacodynamic markers of the heat shock protein 90 inhibitor 17-allylamino, 17-demethoxygeldanamycin (17AAG) in human colon cancer models. J. Natl Cancer Inst. 95, 1624–1633 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, D. et al. Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin. Br. J. Cancer 87, 783–789 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kelland, L. R., Sharp, S. Y., Rogers, P. M., Myers, T. G. & Workman, P. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J. Natl Cancer Inst. 91, 1940–1949 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Guo, W. et al. Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:quinone oxidoreductase 1: role of 17-AAG hydroquinone in heat shock protein 90 inhibition. Cancer Res. 65, 10006–10015 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Gaspar, N. et al. Acquired resistance to 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) in glioblastoma cells. Cancer Res. 69, 1966–1975 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Erlichman, C. Tanespimycin: the opportunities and challenges of targeting heat shock protein 90. Expert Opin. Investig. Drugs 18, 861–868 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. McCollum, A. K., Teneyck, C. J., Sauer, B. M., Toft, D. O. & Erlichman, C. Up-regulation of heat shock protein 27 induces resistance to 17-allylamino-demethoxygeldanamycin through a glutathione-mediated mechanism. Cancer Res. 66, 10967–10975 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Powers, M. V., Clarke, P. A. & Workman, P. Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell 14, 250–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Evans, C. G., Chang, L. & Gestwicki, J. E. Heat shock protein 70 (Hsp70) as an emerging drug target. J. Med. Chem. 24 Mar 2010 (doi:10.1021/jm100054f).

  144. Powers, M. V. et al. Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone? Cell Cycle 9, 1542–1550 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Hadchity, E. et al. Heat shock protein 27 as a new therapeutic target for radiation sensitization of head and neck squamous cell carcinoma. Mol. Ther. 17, 1387–1394 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Roe, S. M. et al. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42, 260–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Prodromou, C. et al. Structural basis of the radicicol resistance displayed by a fungal hsp90. ACS Chem. Biol. 4, 289–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Matthews, S. B. et al. Characterization of a novel novobiocin analogue as a putative C-terminal inhibitor of heat shock protein 90 in prostate cancer cells. Prostate 70, 27–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Shelton, S. N. et al. KU135, a novel novobiocin-derived C-terminal inhibitor of the 90-kDa heat shock protein, exerts potent antiproliferative effects in human leukemic cells. Mol. Pharmacol. 76, 1314–1322 (2009). References 148 and 149 describe new C-terminal HSP90 inhibitors with potent anticancer activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Radanyi, C. et al. Antiproliferative and apoptotic activities of tosylcyclonovobiocic acids as potent heat shock protein 90 inhibitors in human cancer cells. Cancer Lett. 274, 88–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Zhang, T. et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol. Cancer Ther. 7, 162–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Sreeramulu, S., Gande, S. L., Gobel, M. & Schwalbe, H. Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol. Angew. Chem. Int. Ed. Engl. 48, 5853–5855 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Chakraborty, A. et al. HSP90 regulates cell survival via inositol hexakisphosphate kinase-2. Proc. Natl Acad. Sci. USA 105, 1134–1139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Voss, A. K., Thomas, T. & Gruss, P. Mice lacking HSP90β fail to develop a placental labyrinth. Development 127, 1–11 (2000).

    CAS  PubMed  Google Scholar 

  155. Dollins, D. E., Warren, J. J., Immormino, R. M. & Gewirth, D. T. Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol. Cell 28, 41–56 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Frey, S., Leskovar, A., Reinstein, J. & Buchner, J. The ATPase cycle of the endoplasmic chaperone Grp94. J. Biol. Chem. 282, 35612–35620 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Leskovar, A., Wegele, H., Werbeck, N. D., Buchner, J. & Reinstein, J. The ATPase cycle of the mitochondrial Hsp90 analog Trap1. J. Biol. Chem. 283, 11677–11688 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Immormino, R. M. et al. Different poses for ligand and chaperone in inhibitor-bound Hsp90 and GRP94: implications for paralog-specific drug design. J. Mol. Biol. 388, 1033–1042 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Felts, S. J. et al. The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 275, 3305–3312 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Hua, G., Zhang, Q. & Fan, Z. Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J. Biol. Chem. 282, 20553–20560 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Kang, B. H. et al. Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J. Clin. Invest. 119, 454–464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Leav, I. et al. Cytoprotective mitochondrial chaperone TRAP-1 as a novel molecular target in localized and metastatic prostate cancer. Am. J. Pathol. 176, 393–401 (2009).

    Article  PubMed  CAS  Google Scholar 

  163. Pridgeon, J. W., Olzmann, J. A., Chin, L. S. & Li, L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5, e172 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Sidera, K. & Patsavoudi, E. Extracellular HSP90: conquering the cell surface. Cell Cycle 7, 1564–1568 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Eustace, B. K. et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nature Cell Biol. 6, 507–514 (2004). This paper describes an important role for secreted HSP90 in cancer cell motility and invasion.

    Article  CAS  PubMed  Google Scholar 

  166. Becker, B. et al. Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp. Dermatol. 13, 27–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Tsutsumi, S. et al. A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene 27, 2478–2487 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Cheng, C. F. et al. Transforming growth factor alpha (TGFα)-stimulated secretion of HSP90alpha: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFβ-rich environment during wound healing. Mol. Cell. Biol. 28, 3344–3358 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Li, W. et al. Extracellular heat shock protein-90α: linking hypoxia to skin cell motility and wound healing. EMBO J. 26, 1221–1233 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tsutsumi, S. et al. Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain. Nature Struct. Mol. Biol. 16, 1141–1147 (2009).

    Article  CAS  Google Scholar 

  171. Sidera, K., Gaitanou, M., Stellas, D., Matsas, R. & Patsavoudi, E. A critical role for HSP90 in cancer cell invasion involves interaction with the extracellular domain of HER-2. J. Biol. Chem. 283, 2031–2041 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Annamalai, B., Liu, X., Gopal, U. & Isaacs, J. S. Hsp90 is an essential regulator of EphA2 receptor stability and signaling: implications for cancer cell migration and metastasis. Mol. Cancer Res. 7, 1021–1032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kawabe, M. et al. Heat shock protein 90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin enhances EphA2+ tumor cell recognition by specific CD8+ T cells. Cancer Res. 69, 6995–7003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wesa, A. K. et al. Enhancement in specific CD8+ T cell recognition of EphA2+ tumors in vitro and in vivo after treatment with ligand agonists. J. Immunol. 181, 7721–7727 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Stuehler, C. et al. Selective depletion of alloreactive T cells by targeted therapy of heat shock protein 90: a novel strategy for control of graft-versus-host disease. Blood 114, 2829–2836 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K. Beebe, Y. S. Kim, and all members of the Neckers and Trepel laboratories for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Len Neckers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

ClinicalTrials.gov

NCT00093496

NCT00431015

NCT00514371

NCT00526045

NCT00708292

NCT00964873

NCT01031225

NCT01063907

NCT01081600

NCT01081613

National Cancer Institute Drug Dictionary

bortezomib

FURTHER INFORMATION

Len Neckers's homepage

Jane Trepel's homepage

Guiseppe Giaccone's homepage

PhosphoSitePlus®

Picard laboratory

Glossary

Co-chaperone

Protein that assists or alters the function of other chaperones.

Oncogene addiction

The hypothesis that tumours arising as a result of a particular oncogenic lesion are dependent on the continued expression of that oncogene.

Kinetochore

Specialized assembly of proteins that binds to a region of the chromosome called the centromere and is essential for chromosome segregation during eukaryotic cell division.

Apoptosome

A caspase-activating complex that is formed when cytochrome c is released from mitochondria. It initiates oligomerization of APAF1, which binds procaspase-9 and thereby initiates the caspase cascade that leads to programmed cell death.

S-nitrosylation

The covalent attachment of a nitrogen monoxide group to the thiol side chain of cysteine.

Proteotoxic stress

Protein damage caused by physical or chemical agents such as heat, heavy metals, hypoxia and some anticancer drugs.

DNA polymerase-η

A member of the DNA polymerase Y family, a group of low-fidelity DNA polymerases that can replicate through damaged DNA.

Transposon

Mobile genetic element that can insert in different positions in the genome and cause mutations.

Piwi-interacting RNA (piRNA)

A class of germline-specific small RNA molecule that suppresses transposon mobility by RNA silencing.

Castrate-resistant prostate cancer

Prostate cancer that no longer responds to androgen deprivation therapy.

Prostate-specific antigen (PSA)

A protein produced by the prostate that is increased in the blood of men with prostate cancer, benign prostatic hyperplasia, or infection and inflammation of the prostate.

Pharmacodynamic

The relationship between drug concentration (pharmacokinetics) and its biological effects (what the drug does to the body).

Trastuzumab

A humanized monoclonal antibody that binds HER2 on tumour cells and prevents uncontrolled proliferation caused by aberrant HER2 signalling.

RECIST

A set of published rules that define when cancer patients improve ('respond'), stay the same ('stable') or worsen ('progression') during treatments.

Triple-negative breast cancer

Breast cancer that lacks expression of oestrogen, progesterone and HER2 receptors.

Neuropathy

Refers to any disease or injury affecting nerves or nerve cells.

Graft-versus-host disease

A common complication of allogeneic bone marrow transplantation in which functional immune cells in the transplanted marrow recognize the recipient as foreign and mount an immunological attack.

Alloreactive T cell

White blood cell that recognizes a complex composed of a major histocompatibility complex (MHC) molecule and a peptide in which the MHC or peptide are derived from a genetically different member of the same species.

FDG-PET

A radio-labelled imaging methodology for detecting cancers that relies on increased glucose uptake by the tumour — a characteristic of cancers and other pathologies.

Proton magnetic resonance

The resonance of protons to radiation in a magnetic field. Proton magnetic resonance spectra yield a great deal of information about molecular structure as most organic molecules contain hydrogen atoms that absorb energy of different wavelengths depending on their bonding environment.

Non-ansamycin HSP90 inhibitor

HSP90 inhibitor lacking the benzoquinone ansamycin backbone found in tanespimycin (17-AAG), alvespimycin (17-DMAG) and retaspimycin (IPI-504).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trepel, J., Mollapour, M., Giaccone, G. et al. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10, 537–549 (2010). https://doi.org/10.1038/nrc2887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing