Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biological determinants of endocrine resistance in breast cancer

Key Points

  • Endocrine therapies that target oestrogen action (anti-oestrogens and aromatase inhibitors) are widely used and successful breast cancer therapies, but many women treated with these therapies will relapse with endocrine-resistant disease.

  • Mechanisms of endocrine resistance in oestrogen receptor (ER)-positive breast cancers include loss of ERα expression and expression of truncated isoforms of ERα and ERβ, post-translational modifications of ERα, increased AP1 activity and deregulation of ER co-activators, increased receptor tyrosine kinase signalling leading to the activation of the Erk and PI3K pathways, and deregulation of the cell cycle and apoptotic machinery.

  • Gene expression signatures that are predictive of poor outcome in women treated with tamoxifen commonly contain ER target genes, as well as genes involved in proliferation, apoptosis, and invasion and metastasis. Many of these signatures are also predictive of outcome in women who have not been treated with tamoxifen and so are markers of intrinsic biology rather than specific to tamoxifen responsiveness.

  • Gene expression signatures representing particular biological processes (for example, cell cycle progression, cell death and invasion) or pathways (for example, RB deregulation, MYC overexpression and E2f activation) can also predict outcome in women treated with tamoxifen and point towards possible mechanisms for endocrine resistance.

  • Functional genetic screens have successfully identified several genes, the loss or overexpression of which can reduce anti-oestrogen sensitivity in cell lines and is associated with clinical endocrine resistance.

  • Insights into the mechanisms of resistance have suggested possible therapeutic approaches for endocrine-resistant ER-positive breast cancer, for example tyrosine kinase inhibitors. Further potential therapeutic targets may emerge from combining large-scale genomic and transcriptomic data with large-scale functional analyses.

Abstract

Endocrine therapies targeting oestrogen action (anti-oestrogens, such as tamoxifen, and aromatase inhibitors) decrease mortality from breast cancer, but their efficacy is limited by intrinsic and acquired therapeutic resistance. Candidate molecular biomarkers and gene expression signatures of tamoxifen response emphasize the importance of deregulation of proliferation and survival signalling in endocrine resistance. However, definition of the specific genetic lesions and molecular processes that determine clinical endocrine resistance is incomplete. The development of large-scale computational and genetic approaches offers the promise of identifying the mediators of endocrine resistance that may be exploited as potential therapeutic targets and biomarkers of response in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oestrogen action at the molecular level.
Figure 2: Anti-oestrogen action on the cell cycle and apoptotic pathways.
Figure 3: Molecular mechanisms of endocrine resistance.

Similar content being viewed by others

Nadia Harbeck, Frédérique Penault-Llorca, … Fatima Cardoso

References

  1. McDonnell, D. P. & Norris, J. D. Connections and regulation of the human estrogen receptor. Science 296, 1642–1644 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Colditz, G. A. Relationship between estrogen levels, use of hormone replacement therapy, and breast cancer. J. Natl Cancer Inst. 90, 814–823 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Hankinson, S. E., Colditz, G. A. & Willett, W. C. Towards an integrated model for breast cancer etiology: the lifelong interplay of genes, lifestyle, and hormones. Breast Cancer Res. 6, 213–218 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cuzick, J. Aromatase inhibitors for breast cancer prevention. J. Clin. Oncol. 23, 1636–1643 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Jordan, V. C. Chemoprevention of breast cancer with selective oestrogen-receptor modulators. Nature Rev. Cancer 7, 46–53 (2007).

    Article  CAS  Google Scholar 

  6. Howell, A. The endocrine prevention of breast cancer. Best Pract. Res. Clin. Endocrinol. Metab. 22, 615–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Harvey, J. M., Clark, G. M., Osborne, C. K. & Allred, D. C. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J. Clin. Oncol. 17, 1474–1481 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Jensen, E. V. & Jordan, V. C. The estrogen receptor: a model for molecular medicine. Clin. Cancer Res. 9, 1980–1989 (2003).

    CAS  PubMed  Google Scholar 

  9. Early Breast Cancer Triallists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  10. Johnston, S. R. & Dowsett, M. Aromatase inhibitors for breast cancer: lessons from the laboratory. Nature Rev. Cancer 3, 821–831 (2003).

    Article  CAS  Google Scholar 

  11. MacGregor, J. I. & Jordan, V. C. Basic guide to the mechanisms of antiestrogen action. Pharmacol. Rev. 50, 151–196 (1998).

    CAS  PubMed  Google Scholar 

  12. Ali, S. & Coombes, R. C. Endocrine-responsive breast cancer and strategies for combating resistance. Nature Rev. Cancer 2, 101–112 (2002).

    Article  Google Scholar 

  13. Hoskins, J. M., Carey, L. A. & McLeod, H. L. CYP2D6 and tamoxifen: DNA matters in breast cancer. Nature Rev. Cancer 9, 576–586 (2009).

    Article  CAS  Google Scholar 

  14. Clarke, R. et al. Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 22, 7316–7339 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Jordan, V. C. Selective estrogen receptor modulation: concept and consequences in cancer. Cancer Cell 5, 207–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ring, A. & Dowsett, M. Mechanisms of tamoxifen resistance. Endocr. Relat. Cancer 11, 643–658 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Riggins, R. B., Bouton, A. H., Liu, M. C. & Clarke, R. Antiestrogens, aromatase inhibitors, and apoptosis in breast cancer. Vitam. Horm. 71, 201–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Nicholson, R. I. et al. Growth factor signalling in endocrine and anti-growth factor resistant breast cancer. Rev. Endocr. Metab. Disord. 8, 241–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Jordan, V. C. & O'Malley, B. W. Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J. Clin. Oncol. 25, 5815–5824 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Riggins, R. B., Schrecengost, R. S., Guerrero, M. S. & Bouton, A. H. Pathways to tamoxifen resistance. Cancer Lett. 256, 1–24 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arpino, G., Wiechmann, L., Osborne, C. K. & Schiff, R. Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr. Rev. 29, 217–233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gutierrez, M. C. et al. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J. Clin. Oncol. 23, 2469–2476 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Herynk, M. H. & Fuqua, S. A. Estrogen receptor mutations in human disease. Endocr. Rev. 25, 869–898 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Shi, L. et al. Expression of ER-α36, a novel variant of estrogen receptor α, and resistance to tamoxifen treatment in breast cancer. J. Clin. Oncol. 27, 3423–3429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Honma, N. et al. Clinical importance of estrogen receptor-β evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J. Clin. Oncol. 26, 3727–3734 (2008).

    Article  PubMed  Google Scholar 

  26. Murphy, L. C. & Watson, P. H. Is oestrogen receptor-β a predictor of endocrine therapy responsiveness in human breast cancer? Endocr. Relat. Cancer 13, 327–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Riggins, R. B. et al. ERRγ mediates tamoxifen resistance in novel models of invasive lobular breast cancer. Cancer Res. 68, 8908–8917 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnston, S. R. et al. Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumors with acquired tamoxifen resistance. Clin. Cancer Res. 5, 251–256 (1999).

    CAS  PubMed  Google Scholar 

  29. Schiff, R. et al. Oxidative stress and AP-1 activity in tamoxifen-resistant breast tumors in vivo. J. Natl Cancer Inst. 92, 1926–1934 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, Y. et al. Enhanced NFκB and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer 7, 59 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gururaj, A. E., Rayala, S. K., Vadlamudi, R. K. & Kumar, R. Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations. Clin. Cancer Res. 12, 1001s–1007s (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Osborne, C. K. et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl Cancer Inst. 95, 353–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Le Romancer, M. et al. Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol. Cell 31, 212–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Sainsbury, J. R., Farndon, J. R., Sherbet, G. V. & Harris, A. L. Epidermal-growth-factor receptors and oestrogen receptors in human breast cancer. Lancet 1, 364–366 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Koga, M., Musgrove, E. A. & Sutherland, R. L. Modulation of the growth-inhibitory effects of progestins and the antiestrogen hydroxyclomiphene on human breast cancer cells by epidermal growth factor and insulin. Cancer Res. 49, 112–116 (1989).

    CAS  PubMed  Google Scholar 

  36. Carroll, J. S. et al. p27Kip1 induces quiescence and growth factor insensitivity in tamoxifen-treated breast cancer cells. Cancer Res. 63, 4322–4326 (2003). This paper shows that although cells treated with tamoxifen and other SERMs remain sensitive to growth factor stimulation, cells treated with 'pure' anti-oestrogens do not, implicating the CDK inhibitor p27 in modulating growth factor sensitivity in this context.

    CAS  PubMed  Google Scholar 

  37. Faridi, J., Wang, L., Endemann, G. & Roth, R. A. Expression of constitutively active Akt-3 in MCF-7 breast cancer cells reverses the estrogen and tamoxifen responsivity of these cells in vivo. Clin. Cancer Res. 9, 2933–2939 (2003).

    CAS  PubMed  Google Scholar 

  38. deGraffenried, L. A. et al. Eicosapentaenoic acid restores tamoxifen sensitivity in breast cancer cells with high Akt activity. Ann. Oncol. 14, 1051–1056 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. deGraffenried, L. A. et al. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt activity. Clin. Cancer Res. 10, 8059–8067 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Miller, T. W. et al. Loss of phosphatase and tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer. Cancer Res. 69, 4192–4201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McClelland, R. A. et al. Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex). Endocrinology 142, 2776–2788 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Knowlden, J. M. et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144, 1032–1044 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Hutcheson, I. R. et al. Oestrogen receptor-mediated modulation of the EGFR/MAPK pathway in tamoxifen-resistant MCF-7 cells. Breast Cancer Res. Treat. 81, 81–93 (2003). References 41–43 provide the first detailed mechanistic evidence that activation of EGFR and ERBB2 signalling leads to anti-oestrogen resistance.

    Article  CAS  PubMed  Google Scholar 

  44. Hua, G. et al. A negative feedback regulatory loop associates the tyrosine kinase receptor ERBB2 and the transcription factor GATA4 in breast cancer cells. Mol. Cancer Res. 7, 402–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Zuo, T. et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129, 1275–1286 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hurtado, A. et al. Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature 456, 663–666 (2008). This paper shows that the transcription factor PAX2 competes with the ER α co-activator AIB1, thereby modulating ER-mediated repression of ERBB2 and tamoxifen responsiveness, and that this mechanism of ERBB2 repression is of clinical significance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dorssers, L. C., van Agthoven, T., Dekker, A., van Agthoven, T. L. & Kok, E. M. Induction of antiestrogen resistance in human breast cancer cells by random insertional mutagenesis using defective retroviruses: identification of bcar-1, a common integration site. Mol. Endocrinol. 7, 870–878 (1993).

    CAS  PubMed  Google Scholar 

  48. van der Flier, S. et al. Bcar1/p130Cas protein and primary breast cancer: prognosis and response to tamoxifen treatment. J. Natl Cancer Inst. 92, 120–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Brinkman, A. et al. The substrate domain of BCAR1 is essential for anti-estrogen-resistant proliferation of human breast cancer cells. Breast Cancer Res. Treat. 3 May 2009 (doi: 10.1007/s10549-009-0403–0404).

  50. Riggins, R. B., Quilliam, L. A. & Bouton, A. H. Synergistic promotion of c-Src activation and cell migration by Cas and AND-34/BCAR3. J. Biol. Chem. 278, 28264–28273 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. van Agthoven, T. et al. Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J. 17, 2799–2808 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cai, D. et al. AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer Res. 63, 6802–6808 (2003).

    CAS  PubMed  Google Scholar 

  53. Rayala, S. K., Molli, P. R. & Kumar, R. Nuclear p21-activated kinase 1 in breast cancer packs off tamoxifen sensitivity. Cancer Res. 66, 5985–5988 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Dowsett, M. et al. Proliferation and apoptosis as markers of benefit in neoadjuvant endocrine therapy of breast cancer. Clin. Cancer Res. 12, 1024s–1030s (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Doisneau-Sixou, S. F. et al. Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr. Relat. Cancer 10, 179–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Prall, O. W. J., Rogan, E. M., Musgrove, E. A., Watts, C. K. W. & Sutherland, R. L. c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. Mol. Cell. Biol. 18, 4499–4508 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Venditti, M., Iwasiow, B., Orr, F. W. & Shiu, R. P. C-myc gene expression alone is sufficient to confer resistance to antiestrogen in human breast cancer cells. Int. J. Cancer 99, 35–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Hui, R. et al. Constitutive overexpression of cyclin D1 but not cyclin E confers acute resistance to antiestrogens in T-47D breast cancer cells. Cancer Res. 62, 6916–6923 (2002).

    CAS  PubMed  Google Scholar 

  59. Dhillon, N. K. & Mudryj, M. Ectopic expression of cyclin E in estrogen responsive cells abrogates antiestrogen mediated growth arrest. Oncogene 21, 4626–4634 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Cariou, S. et al. Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc. Natl Acad. Sci. USA 97, 9042–9046 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carroll, J. S., Prall, O. W. J., Musgrove, E. A. & Sutherland, R. L. A pure estrogen antagonist inhibits cyclin E-Cdk2 activity in MCF-7 breast cancer cells and induces accumulation of p130-E2F4 complexes characteristic of quiescence. J. Biol. Chem. 275, 38221–38229 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Bosco, E. E. et al. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J. Clin. Invest. 117, 218–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Varma, H., Skildum, A. J. & Conrad, S. E. Functional ablation of pRb activates Cdk2 and causes antiestrogen resistance in human breast cancer cells. PLoS ONE 2, e1256 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wang, Y. et al. Cyclin D1b is aberrantly regulated in response to therapeutic challenge and promotes resistance to estrogen antagonists. Cancer Res. 68, 5628–5638 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mukherjee, S. & Conrad, S. E. c-Myc suppresses p21WAF1/CIP1 expression during estrogen signaling and antiestrogen resistance in human breast cancer cells. J. Biol. Chem. 280, 17617–17625 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Caldon, C. E. et al. Estrogen regulation of cyclin E2 requires cyclin D1, but not c-Myc. Mol. Cell. Biol. 29 4623–4639 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Coqueret, O. Linking cyclins to transcriptional control. Gene 299, 35–55 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Ishii, Y., Waxman, S. & Germain, D. Tamoxifen stimulates the growth of cyclin D1-overexpressing breast cancer cells by promoting the activation of signal transducer and activator of transcription 3. Cancer Res. 68, 852–860 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Butt, A. J., McNeil, C. M., Musgrove, E. A. & Sutherland, R. L. Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr. Relat. Cancer 12, S47–S59 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Caldon, C. E., Daly, R. J., Sutherland, R. L. & Musgrove, E. A. Cell cycle control in breast cancer cells. J. Cell. Biochem. 97, 261–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Chu, I. M., Hengst, L. & Slingerland, J. M. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nature Rev. Cancer 8, 253–267 (2008).

    Article  CAS  Google Scholar 

  72. Miller, T. E. et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem. 283, 29897–29903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao, J. J. et al. MicroRNA-221/222 negatively regulates estrogen receptorα and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem. 283, 31079–31086 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, R. et al. FOXP3 up-regulates p21 expression by site-specific inhibition of histone deacetylase 2/histone deacetylase 4 association to the locus. Cancer Res. 69, 2252–2259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Perez-Tenorio, G. et al. Cytoplasmic p21WAF1/CIP1 correlates with Akt activation and poor response to tamoxifen in breast cancer. Int. J. Oncol. 28, 1031–1042 (2006).

    CAS  PubMed  Google Scholar 

  76. Mandlekar, S. & Kong, A. N. Mechanisms of tamoxifen-induced apoptosis. Apoptosis 6, 469–477 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Schoenlein, P. V., Periyasamy-Thandavan, S., Samaddar, J. S., Jackson, W. H. & Barrett, J. T. Autophagy facilitates the progression of ERα-positive breast cancer cells to antiestrogen resistance. Autophagy 5, 400–403 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Butt, A. J., Sutherland, R. L. & Musgrove, E. A. Live or let die: oestrogen regulation of survival signalling in endocrine response. Breast Cancer Res. 9, 306 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Riggins, R. B., Zwart, A., Nehra, R. & Clarke, R. The nuclear factor κB inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells. Mol. Cancer Ther. 4, 33–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Gu, Z. et al. Association of interferon regulatory factor-1, nucleophosmin, nuclear factor-κB, and cyclic AMP response element binding with acquired resistance to Faslodex (ICI 182,780). Cancer Res. 62, 3428–3437 (2002).

    CAS  PubMed  Google Scholar 

  81. Gomez, B. P. et al. Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J. 21, 4013–4027 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Davies, M. P. et al. Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. Int. J. Cancer 123, 85–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Zhu, Y. et al. Expression patterns among interferon regulatory factor-1, human X-box binding protein-1, nuclear factor kappa B, nucleophosmin, estrogen receptor-alpha and progesterone receptor proteins in breast cancer tissue microarrays. Int. J. Oncol. 28, 67–76 (2006).

    CAS  PubMed  Google Scholar 

  84. Sotiriou, C. & Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 360, 790–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Yu, J. X. et al. Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer 7, 182 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Musgrove, E. A. et al. Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer. PLoS ONE 3, e2987 (2008). This paper and reference 62 derive gene networks on the basis of biological function that are correlated with outcome in women treated with tamoxifen.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Fan, C. et al. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 355, 560–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Loi, S. et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J. Clin. Oncol. 25, 1239–1246 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Kok, M. et al. Comparison of gene expression profiles predicting progression in breast cancer patients treated with tamoxifen. Breast Cancer Res. Treat. 113, 275–283 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Wirapati, P. et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 10, R65 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Yu, K., Ganesan, K., Miller, L. D. & Tan, P. A modular analysis of breast cancer reveals a novel low-grade molecular signature in estrogen receptor-positive tumors. Clin. Cancer Res. 12, 3288–3296 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Helleman, J. et al. Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response. Clin. Cancer Res. 14, 5555–5564 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Ein-Dor, L., Kela, I., Getz, G., Givol, D. & Domany, E. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21, 171–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Oh, D. S. et al. Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J. Clin. Oncol. 24, 1656–1664 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Yu, J. et al. A transcriptional fingerprint of estrogen in human breast cancer predicts patient survival. Neoplasia 10, 79–88 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Lippman, M. E., Rae, J. M. & Chinnaiyan, A. M. An expression signature of estrogen-regulated genes predicts disease-free survival in tamoxifen-treated patients better than progesterone receptor status. Trans. Am. Clin. Climatol. Assoc. 119, 77–90 (2008). References 86 and 94–96 examine the relationship between networks of oestrogen-regulated genes and response to tamoxifen therapy.

    PubMed  PubMed Central  Google Scholar 

  97. Clark, G. M., McGuire, W. L., Hubay, C. A., Pearson, O. H. & Marshall, J. S. Progesterone receptors as a prognostic factor in Stage II breast cancer. N. Engl. J. Med. 309, 1343–1347 (1983).

    Article  CAS  PubMed  Google Scholar 

  98. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sotiriou, C. et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA 100, 10393–10398 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chin, K. et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10, 529–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Dowsett, M. et al. Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J. Natl Cancer Inst. 99, 167–170 (2007). A neoadjuvant study providing the first definitive evidence that a marker of proliferation, Ki67, predicts responsiveness to endocrine therapy in patients.

    Article  CAS  PubMed  Google Scholar 

  103. Ellis, M. J. et al. Outcome prediction for estrogen receptor-positive breast cancer based on postneoadjuvant endocrine therapy tumor characteristics. J. Natl Cancer Inst. 100, 1380–1388 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rhodes, D. R. et al. Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia 9, 443–454 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Acharya, C. R. et al. Gene expression signatures, clinicopathological features, and individualized therapy in breast cancer. JAMA 299, 1574–1587 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Bild, A. H., Potti, A. & Nevins, J. R. Linking oncogenic pathways with therapeutic opportunities. Nature Rev. Cancer 6, 735–471 (2006).

    Article  CAS  Google Scholar 

  107. van Agthoven, T. et al. Functional identification of genes causing estrogen independence of human breast cancer cells. Breast Cancer Res. Treat. 114, 23–30 (2009).

    Article  PubMed  CAS  Google Scholar 

  108. Dorssers, L. C. & Veldscholte, J. Identification of a novel breast-cancer-anti-estrogen-resistance (BCAR2) locus by cell-fusion-mediated gene transfer in human breast-cancer cells. Int. J. Cancer 72, 700–705 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Brinkman, A., van der Flier, S., Kok, E. M. & Dorssers, L. C. BCAR1, a human homologue of the adapter protein p130Cas, and antiestrogen resistance in breast cancer cells. J. Natl Cancer Inst. 92, 112–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Meijer, D., van Agthoven, T., Bosma, P. T., Nooter, K. & Dorssers, L. C. Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells. Mol. Cancer Res. 4, 379–386 (2006). This paper and references 47, 51 and 108 document the first genetic screens aimed at identifying genes that can confer resistance to anti-oestrogens in culture.

    Article  CAS  PubMed  Google Scholar 

  111. van Agthoven, T. et al. Relevance of breast cancer antiestrogen resistance genes in human breast cancer progression and tamoxifen resistance. J. Clin. Oncol. 27, 542–529 (2009).

    Article  PubMed  Google Scholar 

  112. Meijer, D. et al. TSC22D1 and PSAP predict clinical outcome of tamoxifen treatment in patients with recurrent breast cancer. Breast Cancer Res. Treat. 113, 253–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Dorssers, L. C. et al. The prognostic value of BCAR1 in patients with primary breast cancer. Clin. Cancer Res. 10, 6194–6202 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Iorns, E. et al. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13, 91–104 (2008). This publication describes the first RNA interference screen for anti-oestrogen resistance. It shows that decreased expression of CDK10 is associated with anti-oestrogen resistance in culture and in women treated with tamoxifen.

    Article  CAS  PubMed  Google Scholar 

  115. Iorns, E., Lord, C. J. & Ashworth, A. Parallel RNAi and compound screens identify the PDK1 pathway as a target for tamoxifen sensitization. Biochem. J. 417, 361–370 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Ta, H. Q., Thomas, K. S., Schrecengost, R. S. & Bouton, A. H. A novel association between p130Cas and resistance to the chemotherapeutic drug adriamycin in human breast cancer cells. Cancer Res. 68, 8796–8804 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kalish, L. H. et al. Deregulated cyclin D1 expression is associated with decreased efficacy of the selective epidermal growth factor receptor tyrosine kinase inhibitor gefitinib in head and neck squamous cell carcinoma cell lines. Clin. Cancer Res. 10, 7764–7774 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Planas-Silva, M. D. & Hamilton, K. N. Targeting c-Src kinase enhances tamoxifen's inhibitory effect on cell growth by modulating expression of cell cycle and survival proteins. Cancer Chemother. Pharmacol. 60, 535–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Soni, S., Lin, B. T., August, A., Nicholson, R. I. & Kirsch, K. H. Expression of a phosphorylated p130(Cas) substrate domain attenuates the phosphatidylinositol 3-kinase/Akt survival pathway in tamoxifen resistant breast cancer cells. J. Cell. Biochem. 107, 364–375 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kurokawa, H. et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 60, 5887–5894 (2000).

    CAS  PubMed  Google Scholar 

  121. Clark, A. S., West, K., Streicher, S. & Dennis, P. A. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol. Cancer Ther. 1, 707–717 (2002).

    CAS  PubMed  Google Scholar 

  122. deGraffenried, L. A. et al. NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann. Oncol. 15, 885–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Boulay, A. et al. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin. Cancer Res. 11, 5319–5328 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Leary, A. F., Sirohi, B. & Johnston, S. R. Clinical trials update: endocrine and biological therapy combinations in the treatment of breast cancer. Breast Cancer Res. 9, 112 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shapiro, G. I. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 24, 1770–1783 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Perissi, V. & Rosenfeld, M. G. Controlling nuclear receptors: the circular logic of cofactor cycles. Nature Rev. Mol. Cell Biol. 6, 542–554 (2005).

    Article  CAS  Google Scholar 

  128. Couse, J. F. & Korach, K. S. Estrogen receptor null mice: what have we learned and where will they lead us. Endocr. Rev. 20, 358–417 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Strom, A. et al. Estrogen receptor β inhibits 17β-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc. Natl Acad. Sci. USA 101, 1566–1571 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Murphy, L. C., Niu, Y., Snell, L. & Watson, P. Phospho-serine-118 estrogen receptor-α expression is associated with better disease outcome in women treated with tamoxifen. Clin. Cancer Res. 10, 5902–5906 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Zhou, Y., Eppenberger-Castori, S., Eppenberger, U. & Benz, C. C. The NFκB pathway and endocrine-resistant breast cancer. Endocr. Relat. Cancer 12 (Suppl. 1), S37–S46 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Redmond, A. M. et al. Coassociation of estrogen receptor and p160 proteins predicts resistance to endocrine treatment; SRC-1 is an independent predictor of breast cancer recurrence. Clin. Cancer Res. 15, 2098–2106 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Harigopal, M. et al. Estrogen receptor co-activator (AIB1) protein expression by automated quantitative analysis (AQUA) in a breast cancer tissue microarray and association with patient outcome. Breast Cancer Res. Treat. 115, 77–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Green, A. R. et al. The prognostic significance of steroid receptor co-regulators in breast cancer: co-repressor NCOR2/SMRT is an independent indicator of poor outcome. Breast Cancer Res. Treat. 110, 427–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Arpino, G. et al. HER-2 amplification, HER-1 expression, and tamoxifen response in estrogen receptor-positive metastatic breast cancer: a southwest oncology group study. Clin. Cancer Res. 10, 5670–5676 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Creighton, C. J. et al. Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis. J. Clin. Oncol. 26, 4078–4085 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Meijer, D. et al. Fibroblast growth factor receptor 4 predicts failure on tamoxifen therapy in patients with recurrent breast cancer. Endocr. Relat. Cancer 15, 101–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Bergqvist, J. et al. Activated ERK1/2 and phosphorylated oestrogen receptor α are associated with improved breast cancer survival in women treated with tamoxifen. Eur. J. Cancer 42, 1104–1112 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Kirkegaard, T. et al. AKT activation predicts outcome in breast cancer patients treated with tamoxifen. J. Pathol. 207, 139–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Tokunaga, E. et al. Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer 13, 137–144 (2006).

    Article  PubMed  Google Scholar 

  141. Shoman, N. et al. Reduced PTEN expression predicts relapse in patients with breast carcinoma treated by tamoxifen. Mod. Pathol. 18, 250–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Millar, E. K. et al. Cyclin D1b protein expression in breast cancer is independent of cyclin D1a and associated with poor disease outcome. Oncogene 28, 1812–1820 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Span, P. N., Tjan-Heijnen, V. C., Manders, P., Beex, L. V. & Sweep, C. G. Cyclin-E is a strong predictor of endocrine therapy failure in human breast cancer. Oncogene 22, 4898–4904 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Denning, S. L., Nass, S. J., Dickson, R. B. & Trock, B. J. C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br. J. Cancer 83, 1688–1695 (2000).

    Article  Google Scholar 

  145. Pohl, G. et al. High p27Kip1 expression predicts superior relapse-free and overall survival for premenopausal women with early-stage breast cancer receiving adjuvant treatment with tamoxifen plus goserelin. J. Clin. Oncol. 21, 3594–3600 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Callagy, G. M. et al. Bcl-2 is a prognostic marker in breast cancer independently of the Nottingham Prognostic Index. Clin. Cancer Res. 12, 2468–2475 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Gasparini, G. et al. Expression of bcl-2 protein predicts efficacy of adjuvant treatments in operable node-positive breast cancer. Clin. Cancer Res. 1, 189–198 (1995).

    CAS  PubMed  Google Scholar 

  148. Cannings, E. et al. Bad expression predicts outcome in patients treated with tamoxifen. Breast Cancer Res. Treat. 102, 173–179 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Ma, X. J. et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5, 607–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Jansen, M. P. et al. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J. Clin. Oncol. 23, 732–740 (2005). References 149–151 were the first studies to use clinical material to derive gene expression signatures that were specifically aimed at predicting response to endocrine therapy.

    Article  CAS  PubMed  Google Scholar 

  152. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Sotiriou, C. et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl Cancer Inst. 98, 262–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Chanrion, M. et al. A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer. Clin. Cancer Res. 14, 1744–1752 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Harvell, D. M. et al. Estrogen regulated gene expression in response to neoadjuvant endocrine therapy of breast cancers: tamoxifen agonist effects dominate in the presence of an aromatase inhibitor. Breast Cancer Res. Treat. 112, 489–501 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Harvell, D. M. et al. Molecular signatures of neoadjuvant endocrine therapy for breast cancer: characteristics of response or intrinsic resistance. Breast Cancer Res. Treat. 112, 475–488 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Loi, S. et al. Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 9, 239 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Vendrell, J. A. et al. A candidate molecular signature associated with tamoxifen failure in primary breast cancer. Breast Cancer Res. 10, R88 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. J. Daly, C. E. Caldon and A. J. Butt for helpful discussions and comments, and C. E. Caldon for expert assistance with the figures. Research in the authors' laboratories is supported by the National Health and Medical Research Council of Australia, the Cancer Institute New South Wales, the Australian Cancer Research Foundation, the Petre Foundation and the RT Hall Trust.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

adriamycin

erlotinib

everolimus

gefitinib

lapatinib

tamoxifen

temsirolimus

FURTHER INFORMATION

Elizabeth A. Musgrove's homepage

Robert L. Sutherland's homepage

Glossary

Aromatase inhibitors

Drugs that function by blocking aromatase, the enzyme that converts androgens to oestrogens in tissues including the breast and adipose tissue. Examples include anastrazole, letrozole and exemestane.

ER-positive breast cancers

In current clinical practice, ERpositive breast cancers are those with immunohistochemically detectable ERα levels.

Adjuvant therapy

A drug treatment (for example, chemotherapy or endocrine therapy) that is given after the primary therapy (for example, surgery and/or radiotherapy), with the aim of increasing the overall effectiveness of treatment.

SERMs

Drugs such as tamoxifen that bind the oestrogen receptor and thereby block the effects of oestrogen on tissues such as the breast but that function similarly to oestrogen in other tissues such as bone. Unlike oestrogen, these drugs are not steroidal in structure.

'Pure' anti-oestrogens

Drugs that bind the oestrogen receptor, thereby blocking the effect of oestrogen, but have no detectable oestrogen-like effects. Most have a steroidal structure.

Intrinsic resistance

The failure to respond to initial drug therapy.

Cytochrome P450 2D6 (CYP2D6)

A member of the large and diverse superfamily of cytochrome P450 enzymes. CYP2D6 catalyses the conversion of tamoxifen into its active metabolites, endoxifen and 4-hydroxytamoxifen. It is highly polymorphic, so its activity is variable between individuals.

Acquired resistance

In contrast to intrinsic resistance, an initial response to drug therapy followed by subsequent disease progression.

Neoadjuvant

A drug treatment that is given weeks to months before surgery, often to reduce the size of tumours before surgery.

Cyclin E1

Cyclin E1 and cyclin E2 are regulatory subunits of kinase complexes that contain CDK2 as their catalytic subunit and regulate the G1 to S phase cell cycle transition.

Cyclin D1

The regulatory subunit of a kinase complex that functions as a growth factor sensor to regulate G1 phase cell cycle progression. The catalytic subunits of cyclin D1-dependent kinases are CDK4 and CDK6.

Bcl-2 family

A protein family of up to 25 members that are classified according to their structure and function as anti-apoptotic (BCL2-like) or pro-apoptotic (multidomain BAX-like and 'BH3-only') proteins.

Autophagy

A cellular response in which the cell metabolizes its own contents and organelles to maintain energy production, often in response to stressful stimuli. Although such a process can eventually result in cell death, it can also be used to maintain cell survival.

Unfolded protein response

A cellular response to stress that senses the misfolding of proteins in the endoplasmic reticulum. It activates a series of pathways that help the cells survive proteotoxicity that is caused by unfolded proteins or activate mechanisms of cell death.

Concordant

Clinical biomarkers and signatures are concordant if they classify the same patients as 'high risk'.

Multivariate analysis

A statistical analysis of the relationship between multiple parameters (variables) to identify those that have a dominant effect on outcome (termed independent predictors of outcome) and those that are dependant or redundant.

Biological concepts analysis

A bioinformatic approach in which related information is grouped together into a 'biological concept', and associations between different 'concepts' are sought.

Synthetic lethal

In genetics, a phenomenon in which the combination of two otherwise non-lethal mutations results in an inviable cell. Used in the context of functional screens to indicate a screen in which the end point is apparent in only some conditions, for example in the presence of a specific genetic lesion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musgrove, E., Sutherland, R. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9, 631–643 (2009). https://doi.org/10.1038/nrc2713

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing