Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging roles of E2Fs in cancer: an exit from cell cycle control

Key Points

  • A long-standing paradigm has been that E2F activity is tightly regulated by the RB tumour suppressor and that the disruption of this regulation leads to unscheduled progression through the cell cycle.

  • Based on structure–function studies in vitro, the mammalian E2F family of transcription factors has been artificially subdivided into activators (E2F1–E2F3) and repressors (E2F4–E2F8).

  • E2F1–E2F3 activators are highly redundant during development.

  • Tumour models using RB–E2F compound-mutant mice and E2F-transgenic mice show dual roles for E2Fs in tumour promotion and suppression. These results suggest tissue-specific functions and argue against a uniform role for E2Fs in cancer.

  • Mice lacking E2F1, E2F2 or E2F3 survive to mid gestation without global defects in the cell cycle, suggesting that the activators are not essential for normal mammalian cell proliferation. We propose that under normal conditions E2Fs do not substantially contribute to the proliferative potential of a cell.

  • Deregulated expression or activity of most members of the E2F family has been detected in many human cancers. We propose that the requirement for certain E2F family members in proliferation under oncogenic conditions represents a recent evolutionary adaptation.

  • RB inactivation and E2F amplification coexist in cancer. RB inactivation leads to inappropriate cell cycle progression through the deregulation of E2F function. We propose that the additional increase in E2F activity caused by amplification has cell proliferation-independent functions in cancer.

Abstract

Mutations of the retinoblastoma tumour suppressor gene (RB1) or components regulating the RB pathway have been identified in almost every human malignancy. The E2F transcription factors function in cell cycle control and are intimately regulated by RB. Studies of model organisms have revealed conserved functions for E2Fs during development, suggesting that the cancer-related proliferative roles of E2F family members represent a recent evolutionary adaptation. However, given that some human tumours have concurrent RB1 inactivation and E2F amplification and overexpression, we propose that there are alternative tumour-promoting activities for the E2F family, which are independent of cell cycle regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mammalian E2F family of transcription factors.
Figure 2: The expression and activity of mammalian E2F family members during the cell cycle.
Figure 3: The paradigm of RB–E2F function in human cancer.

Similar content being viewed by others

References

  1. Attwooll, C., Lazzerini Denchi, E. & Helin, K. The E2F family: specific functions and overlapping interests. EMBO J. 23, 4709–4716 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol. 3, 11–20 (2002).

    Article  CAS  Google Scholar 

  3. Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Nevins, J. R. The Rb/E2F pathway and cancer. Hum. Mol. Genet. 10, 699–703 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Burkhart, D. L. & Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nature Rev. Cancer 8, 671–682 (2008).

    Article  CAS  Google Scholar 

  6. DeGregori, J. & Johnson, D. G. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr. Mol. Med. 6, 739–748 (2006).

    CAS  PubMed  Google Scholar 

  7. Iaquinta, P. J. & Lees, J. A. Life and death decisions by the E2F transcription factors. Curr. Opin. Cell Biol. 19, 649–657 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dimova, D. K. & Dyson, N. J. The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810–2826 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Ren, B. et al. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev. 16, 245–256 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cam, H. et al. A common set of gene regulatory networks links metabolism and growth inhibition. Mol. Cell 16, 399–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Dimova, D. K., Stevaux, O., Frolov, M. V. & Dyson, N. J. Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway. Genes Dev. 17, 2308–2320 (2003). By coupling RNA interference with gene expression arrays, this study shows that E2F family members can control the transcription of genes other than those associated with the cell cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wells, J., Graveel, C. R., Bartley, S. M., Madore, S. J. & Farnham, P. J. The identification of E2F1-specific target genes. Proc. Natl Acad. Sci. USA 99, 3890–3895 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takahashi, Y., Rayman, J. B. & Dynlacht, B. D. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 14, 804–816 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wells, J., Boyd, K. E., Fry, C. J., Bartley, S. M. & Farnham, P. J. Target gene specificity of E2F and pocket protein family members in living cells. Mol. Cell. Biol. 20, 5797–5807 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jin, V. X., Rabinovich, A., Squazzo, S. L., Green, R. & Farnham, P. J. A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data — a case study using E2F1. Genome Res. 16, 1585–1595 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zalmas, L. P. et al. DNA-damage response control of E2F7 and E2F8. EMBO Rep. 9, 252–259 (2008).

    Article  PubMed  CAS  Google Scholar 

  17. Li, J. et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev. Cell 14, 62–75 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buttitta, L. A. & Edgar, B. A. Mechanisms controlling cell cycle exit upon terminal differentiation. Curr. Opin. Cell Biol. 19, 697–704 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeGregori, J. E2F and cell survival: context really is key. Dev. Cell 9, 442–444 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Bieda, M., Xu, X., Singer, M. A., Green, R. & Farnham, P. J. Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res. 16, 595–605 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McClellan, K. A. & Slack, R. S. Specific in vivo roles for E2Fs in differentiation and development. Cell Cycle 6, 2917–2927 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Kovesdi, I., Reichel, R. & Nevins, J. R. Identification of a cellular transcription factor involved in E1A trans-activation. Cell 45, 219–228 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Yee, A. S., Reichel, R., Kovesdi, I. & Nevins, J. R. Promoter interaction of the E1A-inducible factor E2F and its potential role in the formation of a multi-component complex. EMBO J. 6, 2061–2068 (1987). References 22 and 23 describe the identification of E2F (from the nuclear extracts of adenovirus-infected cells) as the cellular factor responsible for binding and activating the adenovirus early E2 promoter, which drives viral DNA replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Helin, K. et al. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70, 337–350 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Kaelin, W. G. et al. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70, 351–364 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Johnson, D. G., Schwarz, J. K., Cress, W. D. & Nevins, J. R. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365, 349–352 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Murray, A. W. Recycling the cell cycle: cyclins revisited. Cell 116, 221–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Arias, E. E. & Walter, J. C. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 21, 497–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Malumbres, M. & Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 30, 630–641 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Blain, S. W. Switching cyclin D-Cdk4 kinase activity on and off. Cell Cycle 7, 892–898 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Tsai, S.-Y. et al. Mouse development with a single E2F activator. Nature 454, 1137–1141 (2008). This study shows in vivo that the activators E2F1, E2F3a and E2F3b have interchangeable roles in the control of mammalian development and provides the first genetic and molecular evidence of their functional plasticity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Danielian, P. S. et al. E2f3a and E2f3b make overlapping but different contributions to total E2f3 activity. Oncogene 27, 6561–6570 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaubatz, S. et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol. Cell 6, 729–735 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Duronio, R. J., O'Farrell, P. H., Xie, J. E., Brook, A. & Dyson, N. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev. 9, 1445–1455 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Frolov, M. V. et al. Functional antagonism between E2F family members. Genes Dev. 15, 2146–2160 (2001). References 34 and 35 are classic studies in D. melanogaster that have contributed to the understanding of fundamental principles of E2F-mediated cell cycle control.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ambrus, A., Nicolay, B., Rasheva, V., Suckling, R. & Frolov, M. dE2F2-independent rescue of proliferation in cells lacking an activator dE2F1. Mol. Cell. Biol. 27, 8561–8570 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lammens, T., Li, J., Leone, G. & De Veylder, L. Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol. 3, 111–118 (2009).

    Article  CAS  Google Scholar 

  38. Lammens, T. et al. Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc. Natl Acad. Sci. USA. 105, 14721–14726 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramirez-Parra, E. et al. Role of an atypical E2F transcription factor in the control of Arabidopsis cell growth and differentiation. Plant Cell 16, 2350–2363 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Christensen, J. et al. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription. Nucleic Acids Res. 33, 5458–5470 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Di Stefano, L., Jensen, M. R. & Helin, K. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J. 22, 6289–6298 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsai, K. Y. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Ziebold, U., Reza, T., Caron, A. & Lees, J. A. E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev. 15, 386–391 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wenzel, P. L. et al. Rb is critical in a mammalian tissue stem cell population. Genes Dev. 21, 85–97 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Clarke, A. R. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Chong, J.-L. et al. E2f3a and E2f3b contribute to the control of cell proliferation and mouse development. Mol. Cell. Biol. 2, 414–424 (2009).

    Article  CAS  Google Scholar 

  49. Aslanian, A., Iaquinta, P. J., Verona, R. & Lees, J. A. Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev. 12, 1413–1422 (2004).

    Article  Google Scholar 

  50. Miki, J., Fujimura, Y., Koseki, H. & Kamijo, T. Polycomb complexes regulate cellular senescence by repression of ARF in cooperation with E2F3. Genes Cells 12, 1371–1382 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Leone, G. et al. Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol. Cell. Biol. 10, 3626–3632 (2000).

    Article  Google Scholar 

  52. Blais, A. & Dynlacht, B. D. E2F-associated chromatin modifiers and cell cycle control. Curr. Opin. Cell Biol. 19, 658–662 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, X. et al. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res. 17, 1550–1561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Young, A. P., Nagarajan, R. & Longmore, G. D. Mechanisms of transcriptional regulation by Rb-E2F segregate by biological pathway. Oncogene 22, 7209–7217 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Lim, C. A. et al. Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-κB upon TLR4 activation. Mol. Cell 27, 622–635 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Leung, J. Y., Ehmann, G. L., Giangrande, P. H. & Nevins, J. R. A role for Myc in facilitating transcription activation by E2F1. Oncogene 27, 4172–4179 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Timchenko, N. A., Wilde, M. & Darlington, G. J. C/EBPα regulates formation of S-phase-specific E2F–p107 complexes in livers of newborn mice. Mol. Cell. Biol. 19, 2936–2945 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Iakova, P., Awad, S. S. & Timchenko, N. A. Aging reduces proliferative capacities of liver by switching pathways of C/EBPα growth arrest. Cell 113, 495–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nature Rev. Cancer 9, 153–166 (2009).

    Article  CAS  Google Scholar 

  60. Yu, Q. et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell 9, 23–32 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Reddy, H. K. et al. Cyclin-dependent kinase 4 expression is essential for neu-induced breast tumorigenesis. Cancer Res. 65, 10174–10178 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Williams, B. O. et al. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nature Genet. 7, 480–484 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Hu, N. et al. Heterozygous Rb-1 delta 20/+mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 9, 1021–1027 (1994).

    CAS  PubMed  Google Scholar 

  64. Yamasaki, L. et al. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1+/− mice. Nature Genet. 18, 360–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Opavsky, R. et al. CpG island methylation in a mouse model of lymphoma is driven by the genetic configuration of tumor cells. PLoS Genet. 3, 1757–1769 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Ziebold, U., Lee, E. Y., Bronson, R. T. & Lees, J. A. E2F3 loss has opposing effects on different pRB-deficient tumors, resulting in suppression of pituitary tumors but metastasis of medullary thyroid carcinomas. Mol. Cell. Biol. 23, 6542–6552 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maandag, E. C. et al. Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J. 13, 4260–4268 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Williams, B. O. et al. Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO J. 13, 4251–4259 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Parisi, T. et al. Selective requirements for E2f3 in the development and tumorigenicity of Rb-deficient chimeric tissues. Mol. Cell. Biol. 6, 2283–2293 (2007).

    Article  CAS  Google Scholar 

  70. Ceol, C. J. & Horvits, H. R. dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development. Mol. Cell 7, 461–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Myers, T. R. & Greenwald, I. lin-35 Rb acts in the major hypodermis to oppose ras-mediated vulval induction in C. elegans. Dev. Cell 8, 117–123 (2005). References 70 and 71 represent just two in a series of elegant studies demonstrating a role for RB–E2F in the regulation of cell fate specification in C. elegans .

    Article  CAS  PubMed  Google Scholar 

  72. de Bruin, A. et al. Rb function in extraembryonic lineages suppresses apoptosis in the CNS of Rb-deficient mice. Proc. Natl Acad. Sci. USA 100, 6546–6551 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu, L. et al. Extra-embryonic function of Rb is essential for embryonic development and viability. Nature 421, 942–947 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Opavsky, R. et al. Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis. Proc. Natl Acad. Sci. USA 104, 15400–15405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Saenz-Robles, M. T. et al. Intestinal hyperplasia induced by simian virus 40 large tumor antigen requires E2F2. J. Virol. 81, 13191–13199 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, E. Y. et al. E2F4 loss suppresses tumorigenesis in Rb mutant mice. Cancer Cell 2, 463–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Parisi, T. Bronson, R. T. & Lees, J. A. Inhibition of pituitary tumors in Rb mutant chimeras through E2f4 loss reveals a key suppressive role for the pRB/E2F pathway in urothelium and ganglionic carcinogenesis. Oncogene 28, 500–508 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Infante, A. et al. E2F2 represses cell cycle regulators to maintain quiescence. Cell Cycle 7, 3915–3927 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Pagano, M. & Jackson, P. K. Wagging the dogma; tissue-specific cell cycle control in the mouse embryo. Cell 118, 535–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Sherr, C. J. & Roberts, J. M. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 18, 2699–2711 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Santamaria, D. et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448, 811–815 (2007). This landmark study shows that interphase CDKs — CDK2, CDK4 and CDK6 — are not essential for cell division in the mammal as their combined genetic ablation does not alter the cell cycle of most cell types.

    Article  CAS  PubMed  Google Scholar 

  82. Satyanarayana, A. et al. Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2. Development 135, 3389–3400 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Firestein, R. et al. CDK8 is a colorectal cancer oncogene that regulates β-catenin activity. Nature 455, 547–551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu, L. et al. The E2F1–3 transcription factors are essential for cellular proliferation. Nature 414, 457–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Yamasaki, L. et al. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85, 537–548 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Field, S. J. et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549–561 (1996). Contrary to expectations, references 85 and 86 provide in vivo evidence of a role for E2F1 in the suppression of cell proliferation and tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  87. Humbert, P. O. et al. E2f3 is critical for normal cellular proliferation. Genes Dev. 14, 690–703 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Murga, M. et al. Mutation of E2F2 in mice causes enhanced T lymphocyte proliferation, leading to the development of autoimmunity. Immunity 15, 959–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Humbert, P. O. et al. E2F4 is essential for normal erythrocyte maturation and neonatal viability. Mol. Cell 6, 281–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Rempel, R. E. et al. Loss of E2F4 activity leads to abnormal development of multiple cellular lineages. Mol. Cell 6, 293–306 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Lindeman, G. J. et al. A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting. Genes Dev. 12, 1092–1098 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pohlers, M. et al. A role for E2F6 in the restriction of male-germ-cell-specific gene expression. Curr. Biol. 15, 1051–1057 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Timmers, C. et al. E2f1, E2f2, and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol. Cell. Biol. 27, 65–78 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sharma, N. et al. Control of the p53-p21CIP1 axis by E2f1, E2f2, and E2f3 is essential for G1/S progression and cellular transformation. J. Biol. Chem. 281, 36124–36131 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Nicolay, B. N. & Frolov, M. V. Context-dependent requirement for dE2F during oncogenic proliferation. PLoS Genet. 4, e1000205 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Midorikawa, Y., Makuuchi, M., Tang, W. & Aburatani, H. Microarray-based analysis for hepatocellular carcinoma: from gene expression profiling to new challenges. World J. Gastroenterol. 13, 1487–1492 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Midorikawa, Y. et al. Distinct chromosomal bias of gene expression signatures in the progression of hepatocellular carcinoma. Cancer Res. 64, 7263–7270 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Zondervan, P. E. et al. Molecular cytogenetic evaluation of virus-associated and non-viral hepatocellular carcinoma: analysis of 26 carcinomas and 12 concurrent dysplasias. J. Pathol. 192, 207–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, G. et al. Genetic aberration in primary hepatocellular carcinoma: correlation between p53 gene mutation and loss-of-heterozygosity on chromosome 16q21-q23 and 9p21-p23. Cell Res. 10, 311–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Hovey, R. M. et al. Genetic alterations in primary bladder cancers and their metastases. Cancer Res. 58, 3555–3560 (1998).

    CAS  PubMed  Google Scholar 

  101. Yu, D. S., Hsieh, D. S. & Chang, S. Y. Detection of chromosomal alterations in bladder cancer by comparative genomic hybridization. BJU Int. 87, 889–893 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Veltman, J. A. et al. Array-based comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors. Cancer Res. 63, 2872–2880 (2003).

    CAS  PubMed  Google Scholar 

  103. Feber, A. et al. Amplification and overexpression of E2F3 in human bladder cancer. Oncogene 23, 1627–1630 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Hurst, C. D., Tomlinson, D. C., Williams, S. V., Platt, F. M. & Knowles, M. A. Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumours with 6p22 amplification. Oncogene 27, 2716–2727 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Grasemann, C. et al. Gains and overexpression identify DEK and E2F3 as targets of chromosome 6p gains in retinoblastoma. Oncogene 24, 6441–6449 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Orlic, M., Spencer, C. E., Wang, L. & Gallie, B. L. Expression analysis of 6p22 genomic gain in retinoblastoma. Genes Chromosom. Cancer 45, 72–82 (2006). References 103–106 report the curious observation that amplification and/or overexpression of E2F3 occurs in human tumours with RB inactivation.

    Article  CAS  PubMed  Google Scholar 

  107. Szymanska, J. et al. Gains and losses of DNA sequences in liposarcomas evaluated by comparative genomic hybridization. Genes Chromosom. Cancer 15, 89–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Szymanska, J. et al. Overrepresentation of 1q21–23 and 12q13–21 in lipoma-like liposarcomas but not in benign lipomas: a comparative genomic hybridization study. Cancer Genet. Cytogenet. 99, 14–18 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Alonso, M. M. et al. Expression of transcription factor E2F1 and telomerase in glioblastomas: mechanistic linkage and prognostic significance. J. Natl Cancer Inst. 97, 1589–1600 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Wikenheiser-Brokamp, K. A. Retinoblastoma regulatory pathway in lung cancer. Curr. Mol. Med. 6, 783–793 (2006).

    CAS  PubMed  Google Scholar 

  111. Imai, M. A., Oda, Y., Oda, M., Nakanishi, I. & Kawahara, E. Overexpression of E2F1 associated with LOH at RB locus and hyperphosphorylation of RB in non-small cell lung carcinoma. J. Cancer Res. Clin. Oncol. 130, 320–326 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Eymin, B., Gazzeri, S., Brambilla, C. & Brambilla, E. Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small cell lung carcinoma. Oncogene 20, 1678–1687 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Cooper, C. S. et al. Nuclear overexpression of the E2F3 transcription factor in human lung cancer. Lung Cancer 54, 155–162 (2006).

    Article  PubMed  Google Scholar 

  114. Reimer, D. et al. Expression of the E2F family of transcription factors and its clinical relevance in ovarian cancer. Ann. NY Acad. Sci. 1091, 270–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Reimer, D. et al. Clinical relevance of E2F family members in ovarian cancer — an evaluation in a training set of 77 patients. Clin. Cancer Res. 13, 144–151 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Han, S. et al. E2F1 expression is related with the poor survival of lymph node-positive breast cancer patients treated with fluorouracil, doxorubicin and cyclophosphamide. Breast Cancer Res. Treat. 82, 11–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Rakha, E. A., Pinder, S. E., Paish, E. C., Robertson, J. F. & Ellis, I. O. Expression of E2F-4 in invasive breast carcinomas is associated with poor prognosis. J. Pathol. 203, 754–761 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Gauthier, M. L. et al. Abrogated response to cellular stress identifies DCIS associated with subsequent tumor events and defines basal-like breast tumors. Cancer Cell 12, 479–491 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee, J. et al. Impact of E2F-1 expression on clinical outcome of gastric adenocarcinoma patients with adjuvant chemoradiation therapy. Clin. Cancer Res. 14, 82–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Bramis, J. et al. E2F-1 transcription factor immunoexpression is inversely associated with tumor growth in colon adenocarcinomas. Anticancer Res. 24, 3041–3047 (2004).

    CAS  PubMed  Google Scholar 

  121. Haller, F. et al. Prognostic role of E2F1 and members of the CDKN2A network in gastrointestinal stromal tumors. Clin. Cancer Res. 11, 6589–6597 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Bagchi, A. & Mills, A. A. The quest for the 1p36 tumor suppressor. Cancer Res. 68, 2551–2556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Janoueix-Lerosey, I. et al. Gene expression profiling of 1p35–36 genes in neuroblastoma. Oncogene 23, 5912–5922 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Furukawa, T., Sunamura, M. & Horii, A. Molecular mechanisms of pancreatic carcinogenesis. Cancer Sci. 97, 1–7 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Rigaud, G. et al. Allelotype of pancreatic acinar cell carcinoma. Int. J. Cancer 88, 772–777 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Bindra, R. S. & Glazer, P. M. Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia. Oncogene 26, 2048–2057 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Bindra, R. S. & Glazer, P. M. Basal repression of BRCA1 by multiple E2Fs and pocket proteins at adjacent E2F sites. Cancer Biol. Ther. 5, 1400–1407 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Polanowska, J. et al. Human E2F5 gene is oncogenic in primary rodent cells and is amplified in human breast tumors. Genes Chromosom. Cancer 28, 126–130 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Umemura, S. et al. Overexpression of E2F-5 correlates with a pathological basal phenotype and a worse clinical outcome. Br. J. Cancer 100, 764–771 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Reimer, D. et al. Expression of the E2F family of transcription factors and its clinical relevance in ovarian cancer. Ann. NY Acad. Sci. 1091, 270–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Reimer, D. et al. Clinical relevance of E2F family members in ovarian cancer – an evaluation in a training set of 77 patients. Clin. Cancer Res. 13, 144–151 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Endo-Munoz, L. et al. E2F7 can regulate proliferation, differentiation, and apoptotic responses in human keratinocytes: implications for cutaneous squamous cell carcinoma formation. Cancer Res. 69, 1800–1808 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Chen, D., Gallie, B. L. & Squire, J. A. Minimal regions of chromosomal imbalance in retinoblastoma detected by comparative genomic hybridization. Cancer Genet. Cytogenet. 129, 57–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Lindblad-Toh, K. et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nature Biotechnol. 18, 1001–1005 (2000).

    Article  CAS  Google Scholar 

  135. Karakaidos, P. et al. Overexpression of the replication licensing regulators hCdt1 and hCdc6 characterizes a subset of non-small-cell lung carcinomas: synergistic effect with mutant p53 on tumor growth and chromosomal instability — evidence of E2F-1 transcriptional control over hCdt1. Am. J. Pathol. 165, 1351–1365 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Qin, G. et al. Cell cycle regulator E2F1 modulates angiogenesis via p53-dependent transcriptional control of VEGF. Proc. Natl Acad. Sci. USA 103, 11015–11020 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fajas, L. et al. E2Fs regulate adipocyte differentiation. Dev. Cell 3, 39–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Muller, H. et al. Induction of S-phase entry of E2F transcription factors depends on their nuclear localization. Mol. Cell. Biol. 17, 5508–5520 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signaling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  141. Hynes, N. E. & Lane, H. A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Rev. Cancer 5, 341–354 (2005).

    Article  CAS  Google Scholar 

  142. Harbour, J. W. et al. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer 1, 222–231 (2001).

    Article  CAS  Google Scholar 

  144. Magae, J. et al. Nuclear localization of DP and E2F transcription factors by heterodimeric partners and retinoblastoma protein family members. J. Cell Sci. 109, 1717–1726 (1996).

    CAS  PubMed  Google Scholar 

  145. Verona, R. et al. E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol. Cell. Biol. 17, 7268–7282 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gaubatz, S., Lees, J. A., Lindeman, G. J. & Livingston, D. M. E2F4 is exported from the nucleus in a CRM1-dependent manner. Mol. Cell. Biol. 21, 1384–1392 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cartwright, P. et al. E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. Oncogene 17, 611–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Gaubatz, S., Wood, J. G. & Livingston, D. M. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6. Proc. Natl Acad. Sci. USA 95, 9190–9195 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Trimarchi, J. M., Farichild, B., Wen, J. & Lees, J. A. The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc. Natl Acad. Sci. USA 98, 1519–1524 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Leone, G. et al. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 12, 2120–2130 (1998). This paper and reference 87 show that E2F3 has a central role in the control of cell proliferation in vitro by mediating activation of most of the classic E2F target genes in response to mitogenic stimulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhu, W., Giangrande, P. H. & Nevins, J. R. E2Fs link the control of G1/S and G2/M transcription. EMBO J. 23, 4615–4626 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tyagi, S., Chabes, A. L., Wysocka, J. & Herr, W. E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol. Cell 27, 107–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D. M. & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296, 1132–1136 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Rayman, J. B. et al. E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev. 16, 933–947 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Taubert, S. et al. E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1. Mol. Cell. Biol. 24, 4546–4556 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nicolas, E., Roumillac, C. & Trouche, D. Balance between acetylation and methylation of histone H3 lysine 9 on the E2F-responsive dihydrofolate reductase promoter. Mol. Cell. Biol. 23, 1614–1622 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lang, S. E., McMahon, S. B., Cole, M. D. & Hearing, P. E2F transcriptional activation requires TRRAP and GCN5 cofactors. J. Biol. Chem. 276, 32627–32634 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Li, F. X. et al. The development of diabetes in E2f1/E2f2 mutant mice reveals important roles for bone marrow-derived cells in preventing islet cell loss. Proc. Natl Acad. Sci. USA 100, 12935–12940 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Iglesias, A. et al. Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice. J. Clin. Invest. 113, 1398–1407 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cloud, J. E. et al. Mutant mouse models reveal the relative roles of E2F1 and E2F3 in vivo. Mol. Cell. Biol. 22, 2663–2672 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kinross, K. M., Clark, A. J., Iazzolino, R. M. & Humbert, P. O. E2f4 regulates fetal erythropoiesis through the promotion of cellular proliferation. Blood 108, 886–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Olson, M. V. et al. Transgenic E2F1 expression in the mouse brain induces a human-like bimodal pattern of tumors. Cancer Res. 67, 4005–4009 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Conner, E. A. et al. Dual functions of E2F-1 in transgenic mouse model of liver carcinogenesis. Oncogene 19, 5054–5062 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Chen, Q., Hung, F. C., Fromm, L. & Overbeek, P. A. Induction of cell cycle entry and cell death in postmitotic lens fiber cells by overexpression of E2F1 or E2F2. Invest. Ophthalmol. Vis. Sci. 41, 4223–4231 (2000).

    CAS  PubMed  Google Scholar 

  166. Guy, C. T., Zhou, W., Kaufman, S. & Robinson, M. O. E2F-1 blocks terminal differentiation and causes proliferation in transgenic megakaryocytes. Mol. Cell. Biol. 16, 685–693 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Holmberg, C., Helin, K., Sehested, M. & Karlstrom, O. E2F-1-induced p53-independent apoptosis in transgenic mice. Oncogene 17, 143–155 (1998).

    Article  CAS  PubMed  Google Scholar 

  168. Pierce, A. M., Fisher, S. M., Conti, C. J. & Johnson, D. G. Deregulated expression of E2F1 induces hyperplasia and cooperates with ras in skin tumor development. Oncogene 16, 1267–1276 (1998).

    Article  CAS  PubMed  Google Scholar 

  169. Pierce, A. M. et al. E2F1 has both oncogenic and tumor-suppressive properties in a transgenic model. Mol. Cell. Biol. 19, 6408–6414 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Scheijen, B., Bronk, M., van der Meer, T., De Jong, D. & Bernards, R. High incidence of thymic epithelial tumors in E2F2 transgenic mice. J. Biol. Chem. 279, 10476–10483 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Paulson, Q. X., McArthur, M. J. & Johnson, D. G. E2F3a stimulates proliferation, p53-independent apoptosis and carcinogenesis in a transgenic mouse model. Cell Cycle 5, 184–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Chen, Q., Liang, D. Yang, T., Leone, G. & Overbeek, P. A. Distinct capacities of individual E2Fs to induce cell cycle re-entry in postmitotic lens fiber cells of transgenic mice. Dev. Neurosci. 26, 435–445 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Wang, D., Russell, J. L. & Johnson, D. G. E2F4 and E2F1 have similar proliferative properties but different apoptotic and oncogenic properties in vivo. Mol. Cell. Biol. 20, 3417–3424 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chen, Q., Liang, D. & Overbeek, P. A. Overexpression of E2F5/p130, not E2F5 alone, can inhibit E2F-induced cell cycle entry in transgenic mice. Mol. Vis. 25, 602–614 (2008).

    CAS  Google Scholar 

  175. Fujita, Y. et al. Chromosome arm 20q gains and other genomic alterations in esophageal squamous cell carcinoma, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Hepatogastroenterology 50, 1857–1863 (2003).

    CAS  PubMed  Google Scholar 

  176. Tonon, G. et al. High-resolution genomic profiles of human lung cancer. Proc. Natl Acad. Sci. USA 102, 9625–9630 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wilting, S. M. et al. Integrated genomic and transcriptional profiling identifies chromosomal loci with altered gene expression in cervical cancer. Genes Chromosom. Cancer 47, 890–905 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Wilting, S. M. et al. Increased gene copy numbers at chromosome 20q are frequent in both squamous cell carcinomas and adenocarcinomas of the cervix. J. Pathol. 209, 220–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Huang, C. L. et al. E2F1 overexpression correlates with thymidylate synthase and survivin gene expressions and tumor proliferation in non small-cell lung cancer. Clin. Cancer Res. 13, 6938–6946 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Gorgoulis, V. G. et al. Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J. Pathol. 198, 142–156 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. Mega, S. et al. Cyclin D1, E2F1 expression levels are associated with characteristics and prognosis of esophageal squamous cell carcinoma. Dis. Esophagus 18, 109–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Ebihara, Y. et al. Over-expression of E2F-1 in esophageal squamous cell carcinoma correlates with tumor progression. Dis. Esophagus 17, 150–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Xu, X. R. et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc. Natl Acad. Sci. USA 98, 15089–15094 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Llovet, J. M. & Bruix, J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48, 1312–1327 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Yamazaki, K. et al. Expression of transcription factor E2F-1 in pancreatic ductal carcinoma: an immunohistochemical study. Pathol. Res. Pract. 199, 23–28 (2003).

    Article  PubMed  Google Scholar 

  186. Haller, F. et al. Prognostic role of E2F1 and members of the CDKN2A network in gastrointestinal stromal tumors. Clin. Cancer Res. 11, 6589–6597 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Han, S. et al. E2F1 expression is related with the poor survival of lymph node-positive breast cancer patients treated with fluorouracil, doxorubicin and cyclophosphamide. Breast Cancer Res. Treat 82, 11–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  188. De Meyer, T. et al. E2Fs mediate a fundamental cell-cycle deregulation in high-grade serous ovarian carcinomas. J. Pathol. 217, 14–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Lee, J. et al. Impact of E2F-1 expression on clinical outcome of gastric adenocarcinoma patients with adjuvant chemoradiation therapy. Clin. Cancer Res. 14, 82–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. Kwong, R. A. et al. Overexpression of E2F-1 is associated with increased disease-free survival in squamous cell carcinoma of the anterior tongue. Clin. Cancer Res. 9, 3705–3711 (2003).

    CAS  PubMed  Google Scholar 

  191. Bramis, J. et al. E2F-1 transcription factor immunoexpression is inversely associated with tumor growth in colon adenocarcinomas. Anticancer Res. 24, 3041–3047 (2004).

    CAS  PubMed  Google Scholar 

  192. Rabbani, F. et al. Prognostic significance of transcription factor E2F-1 in bladder cancer: genotypic and phenotypic characterization. J. Natl Cancer Inst. 91, 874–881 (1999).

    Article  CAS  PubMed  Google Scholar 

  193. Ried, T. et al. Mapping of multiple DNA gains and losses in primary small cell lung carcinomas by comparative genomic hybridization. Cancer Res. 54, 1801–1806 (1994).

    CAS  PubMed  Google Scholar 

  194. Weber-Hall, S. et al. Gains, losses, and amplification of genomic material in rhabdomyosarcoma analyzed by comparative genomic hybridization. Cancer Res. 56, 3220–3224 (1996).

    CAS  PubMed  Google Scholar 

  195. Tarkkanen, M. et al. DNA sequence copy number increase at 8q: a potential new prognostic marker in high-grade osteosarcoma. Intl J. Cancer 84, 114–121 (1999).

    Article  CAS  Google Scholar 

  196. Janoueix-Lerosey, I. et al. Gene expression profiling of 1p35–36 genes in neuroblastoma. Oncogene 23, 5912–5922 (2004).

    Article  CAS  PubMed  Google Scholar 

  197. Aarts, M. et al. Microarray-based CGH of sporadic and syndrome-related pheochromocytomas using a 0.1–02 Mb bacterial artificial chromosome array spanning chromosome arm 1p. Genes Chromosom. Cancer 45, 83–93 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Bieche, I., Khodja, A. & Lidereau, R. Deletion mapping of chromosomal region 1p32-pter in primary breast cancer. Genes Chromosom. Cancer 24, 255–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  199. Speicher, M. R. et al. Chromosomal gains and losses in uveal melanomas detected by comparative genomic hybridization. Cancer Res. 54, 3817–3823 (1994).

    CAS  PubMed  Google Scholar 

  200. Kallioniemi, A. et al. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc. Natl Acad. Sci. USA 91, 2156–2160 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Nishizaki, T. et al. Genetic alterations in primary breast cancers and their metastases: direct comparison using modified comparative genomic hybridization. Genes Chromosom. Cancer 19, 267–272 (1997).

    Article  CAS  PubMed  Google Scholar 

  202. Foster, C. S. et al. Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene 23, 5871–5879 (2004).

    Article  CAS  PubMed  Google Scholar 

  203. Sakai, K., Nagahara, H., Abe, K. & Obata, H. Loss of heterozygosity on chromosome 16 in hepatocellular carcinoma. J. Gastroenterol. Hepatol. 7, 288–292 (1992).

    Article  CAS  PubMed  Google Scholar 

  204. Cleton-Jansen, A. M. et al. Loss of heterozygosity mapping at chromosome arm 16q in 712 breast tumors reveals factors that influence delineation of candidate regions. Cancer Res. 61, 1171–1177 (2001).

    CAS  PubMed  Google Scholar 

  205. Rakha, E. A., Armour, J. A., Pinder, S. E., Paish, C. E. & Ellis, I. O. High-resolution analysis of 16q22.1 in breast carcinoma using DNA amplifiable probes (multiplex amplifiable probe hybridization technique) and immunohistochemistry. Int. J. Cancer 114, 720–729 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. Mady, H. H., Hasso, S. & Melhem, M. F. Expression of E2F-4 gene in colorectal adenocarcinoma and corresponding covering mucosa: an immunohistochemistry, image analysis, and immunoblot study. Appl. Immunohistochem. Mol. Morphol. 10, 225–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  207. Ogata, S. et al. Microsatellite alterations and target gene mutations in the early stages of multiple gastric cancer. J. Pathol. 194, 334–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  208. Schwemmle, S. & Pfeifer, G. P. Genomic structure and mutation screening of the E2F4 gene in human tumors. Int. J. Cancer 86, 672–677 (2000).

    Article  CAS  PubMed  Google Scholar 

  209. Souza, R. F. et al. Frequent mutation of the E2F-4 cell cycle gene in primary human gastrointestinal tumors. Cancer Res. 57, 2350–2353 (1997).

    CAS  PubMed  Google Scholar 

  210. Lassmann, S. et al. Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas. J. Mol. Med. 85, 293–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Fix, A. et al. Characterization of amplicons in neuroblastoma: High-resolution mapping using DNA microarrays, relationship with outcome, and identification of overexpressed genes. Genes Chromosom. Cancer 47, 819–834 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Toraman, A. D., Keser, I., Luleci, G., Tunali, N. & Gelen, T. Comparative genomic hybridization in ganglioneuroblastomas. Cancer Genet. Cytogenet. 132, 36–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  213. Yin, X. L. et al. Analysis of loss of heterozygosity on chromosomes 10q, 11, and 16 in medulloblastomas. J. Neurosurg. 94, 799–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  214. Chen, D. et al. Division and apoptosis of E2f-deficient retinal progenitors. Nature (in the press).

  215. Chong, J-L. et al. A switch of E2F1-3 function from activators in progenitor cells to repressors in differentiating cells. Nature (in the press).

Download references

Acknowledgements

This work was funded by National Institutes of Health grants to G.L. (R01CA85619, R01CA82259, R01HD04470 and P01CA097189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Leone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Evolution of the E2F family (PDF 134 kb)

Related links

Related links

FURTHER INFORMATION

Gustavo Leone's homepage

Glossary

Endocycle

A specialized type of cell cycle, consisting of alternating S and G phases, that is widely used by both plants and animals. For example, mammalian cells using the endocycle include trophoblast giant cells, hepatocytes and megakaryocytes. Cells achieve greater than 2N genomes by uncoupling DNA replication from mitosis.

Chimera

An animal produced by mixing wild-type cells with mutant cells at the pre-implantation stages of embryonic development to overcome embryonic lethal mutations and facilitate the identification of the primary site of action or the function of a gene in later lineages.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HZ., Tsai, SY. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 9, 785–797 (2009). https://doi.org/10.1038/nrc2696

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2696

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing