Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemoprevention of lung carcinogenesis in addicted smokers and ex-smokers

Key Points

  • Lung cancer kills more than 3,000 people every day, and most of this toll is due to cigarette smoking. Although tobacco control is clearly the most desirable way to prevent lung cancer, cigarette smoking is addictive and, despite considerable success to date, there are still more than 1 billion smokers in the world who, along with ex-smokers, are at high risk for lung cancer. Chemoprevention of lung carcinogenesis is one way forward in the control of this devastating disease.

  • In considering chemoprevention, it is crucial that we focus on treating lung carcinogenesis, not lung cancer. The disease process is carcinogenesis.

  • Lung carcinogenesis is caused by numerous carcinogens in cigarette smoke, along with tumour promoters, co-carcinogens, toxicants and inflammatory agents. In devising chemoprevention strategies, these agents should be our targets. Targeting a single pathway in lung carcinogenesis is not likely to be successful.

  • Because there are numerous carcinogenic and toxic constituents of tobacco smoke, we need to develop a mixture of chemopreventive agents to counteract them. This mixture should be developed from the ground up, using animal models to demonstrate efficacy without appreciable toxicity.

  • Well-established animal models are available for evaluating chemopreventive efficacy against lung carcinogenesis. The most commonly used model by far is the carcinogen-treated A/J mouse, which develops similar adenocarcinoma to that seen in humans.

  • Many agents have shown chemopreventive efficacy against lung carcinogenesis in animal models. Examples include phenethyl isothiocyanate, indole-3-carbinol, myo-inositol, green and black tea and its constituents, silibinin, glucocorticoids, difluoromethylornithine, oleanane and ursane triterpenoids, non-steroidal anti-inflammatory drugs, farnesyltransferase inhibitors, organoselenium compounds and others. Some mixtures of these agents also demonstrate efficacy.

  • There have been no successful lung carcinogenesis clinical trials. Current trials include examinations of some of the agents listed above, but no mixtures.

  • In chemoprevention of lung carcinogenesis, we must target current smokers, smokers transitioning to quitting and ex-smokers. Although cessation is clearly the best way to decrease the probability of the onset of lung cancer, most smokers cannot quit, even after many tries. It would be unethical not to offer these people effective agents.

Abstract

Chemoprevention of lung carcinogenesis is one approach to controlling the epidemic of lung cancer caused by cigarette smoking. The target for chemoprevention should be the activities of the multiple carcinogens, toxicants, co-carcinogens, tumour promoters and inflammatory compounds in cigarette smoke. At present there are many agents, both synthetic and naturally occurring, that prevent lung tumour development in well-established animal models. It seems likely that logically constructed mixtures of these agents, developed from the ground up, will be necessary for the prevention of lung carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A design for evaluating chemopreventive agents against lung tumorigenesis in A/J mice.
Figure 2: Structures of diverse inhibitors of lung carcinogenesis.
Figure 3: Chemoprevention of lung cancer in a mouse model using a mixture of preventive agents.

Similar content being viewed by others

References

  1. Gilpin, E. A. & Pierce, J. P. Demographic differences in patterns in the incidence of smoking cessation: United States 1950–1990 Ann. Epidemiol. 12, 141–150 (2002).

    Article  PubMed  Google Scholar 

  2. Fiore, M. C. et al. Treating tobacco use and dependence: 2008 update. US Department of Health and Human Services. Public Health Service. Clinical Practice Guideline (Department of Health and Human Services, Rockville, 2008).

    Google Scholar 

  3. Giovino, G. A. Epidemiology of tobacco use in the United States. Oncogene 21, 7326–7340 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Giovino, G. A. The tobacco epidemic in the United States. Am. J. Prev. Med. 33, S318–S326 (2007).

    Article  PubMed  Google Scholar 

  5. Warner, K. E. Charting the science of the future where tobacco-control research must go. Am. J. Prev. Med. 33, S314–S317 (2007).

    Article  PubMed  Google Scholar 

  6. Warner, K. E. & Burns, D. M. Hardening and the hard-core smoker: concepts, evidence, and implications. Nicotine Tob. Res. 5, 37–48 (2003).

    Article  PubMed  Google Scholar 

  7. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Sporn, M. B., Dunlop, N. M., Newton, D. L. & Smith, J. M. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed. Proc. 35, 1332–1338 (1976).

    CAS  PubMed  Google Scholar 

  9. Hecht, S. S. Tobacco smoke carcinogens and lung cancer. J. Natl Cancer Inst. 91, 1194–1210 (1999). This paper summarizes the role of individual tobacco smoke carcinogens as causative agents for lung cancer in smokers.

    Article  CAS  PubMed  Google Scholar 

  10. Hecht, S. S. Tobacco carcinogens, their biomarkers, and tobacco-induced cancer. Nature Rev. Cancer 3, 733–744 (2003). This paper discusses a conceptual model for understanding tobacco carcinogenesis, and reviews tobacco carcinogen biomarkers.

    Article  CAS  Google Scholar 

  11. Vogel, G. Breakthrough of the year. Reprogramming cells. Science 322, 1766–1767 (2008).

    CAS  PubMed  Google Scholar 

  12. International Agency for Research on Cancer. in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 83, 53–119 (IARC, Lyon, 2004). This monograph provides a comprehensive review of tobacco smoke carcinogens and other relevant information.

  13. Hecht, S. S. Carcinogenicity studies of inhaled cigarette smoke in laboratory animals: old and new. Carcinogenesis 26, 1488–1492 (2005). This review discusses progress and problems in inhalation studies of tobacco smoke carcinogenesis.

    Article  CAS  PubMed  Google Scholar 

  14. International Agency for Research on Cancer. in IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans Vol. 38., 127–198 (IARC, Lyon, 1986).

  15. Hoffmann, D., Schmeltz, I., Hecht, S. S. & Wynder, E. L. Polycyclic Hydrocarbons and Cancer (eds Gelboin, H. & Ts'o, P. O. P.) 85–117 (Academic, New York, 1978).

    Google Scholar 

  16. Hecht, S. S., Thorne, R. L., Maronpot, R. R. & Hoffmann, D. Tumor-promoting subfractions of the weakly acidic fraction. J. Natl Cancer Inst. 55, 1329–1336 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Kensler, C. J. & Battista, S. P. Components of cigarette smoke with ciliary-depressant activity. Their selective removal by filters containing activated charcoal granules. N. Engl. J. Med. 269, 1161–1166 (1963).

    Article  CAS  PubMed  Google Scholar 

  18. Chung, F. L., Young, R. & Hecht, S. S. Formation of cyclic 1, N2-propanodeoxyguanosine adducts in DNA upon reaction with acrolein or crotonaldehyde. Cancer Res. 44, 990–995 (1984).

    CAS  PubMed  Google Scholar 

  19. Feng, Z., Hu, W., Hu, Y. & Tang, M.-S. Acrolein is a major cigarette-related lung cancer agent. Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc. Natl Acad. Sci. USA 103, 15404–15409 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thompson, C. A. & Burcham, P. C. Genome-wide transcriptional responses to acrolein. Chem. Res. Toxicol. 21, 2245–2256 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Smith, C. J., Perfetti, T. A. & King, J. A. Perspectives on pulmonary inflammation and lung cancer risk in cigarette smokers. Inhal. Toxicol. 18, 667–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, J. M. et al. Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit. Rev. Oncol. Hematol. 66, 208–217 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Malkinson, A. M. Role of inflammation in mouse lung tumorigenesis: a review. Exp. Lung Res. 31, 57–82 (2005). This review discusses the role of inflammation in lung tumorigenesis in mice.

    Article  CAS  PubMed  Google Scholar 

  24. Fischer, S. M. in Comprehensive Toxicology Vol. 12 (eds Bowden, G. T. & Fischer, S. M.) 349–381 (Elsevier Science, New York, 1997).

    Google Scholar 

  25. Kim, V., Rogers, T. J. & Criner, G. J. Frontiers in emphysema research. Semin. Thorac. Cardiovasc. Surg. 19, 135–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Turner, M. C., Chen, Y., Krewski, D., Calle, E. E. & Thun, M. J. Chronic obstructive pulmonary disease is associated with lung cancer mortality in a prospective study of never smokers. Am. J. Respir. Crit. Care Med. 176, 285–290 (2007).

    Article  PubMed  Google Scholar 

  27. Wattenberg, L. W. Chemoprevention of cancer. Cancer Res. 45, 1–8 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Witschi, H. A/J mouse as a model for lung tumorigenesis caused by tobacco smoke: strengths and weaknesses. Exp. Lung Res. 31, 3–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Stoner, G. D. & Shimkin, M. B. Strain A mouse lung tumor bioassay. J. Am. Coll. Toxicol. 1, 145–169 (1982).

    Article  CAS  Google Scholar 

  30. Stoner, G. D. Lung tumors in strain A mice as a bioassay for carcinogenicity of environmental chemicals. Exp. Lung Res. 17, 405–423 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. De Flora, S. et al. Induction and modulation of lung tumors: genomic and transcriptional alterations in cigarette smoke-exposed mice. Exp. Lung Res. 31, 19–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Malkinson, A. M. Primary lung tumors in mice as an aid for understanding, preventing, and treating human adenocarcinoma of the lung. Lung Cancer 32, 265–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. O'Donnell, E. P., Zerbe, L. K., Dwyer-Nield, L. D., Kisley, L. R. & Malkinson, A. M. Quantitative analysis of early chemically-induced pulmonary lesions in mice of varying susceptibilities to lung tumorigenesis. Cancer Lett. 241, 197–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Shimkin, M. B. & Stoner, G. D. Lung tumors in mice: application to carcinogenesis bioassay. Adv. Cancer Res. 21, 1–58 (1975). This classic paper reviews the older literature on the A/J mouse lung tumour bioassay.

    Article  CAS  PubMed  Google Scholar 

  35. Hecht, S. S., Isaacs, S. & Trushin, N. Lung tumor induction in A/J mice by the tobacco smoke carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene: a potentially useful model for evaluation of chemopreventive agents. Carcinogenesis 15, 2721–2725 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Hecht, S. S. et al. Inhibition of lung tumorigenesis in A/J mice by N-acetyl-S-(N-2-phenethylthiocarbamoyl)-L-cysteine and myo-inositiol, individually and in combination. Carcinogenesis 23, 1455–1461 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Kassie, F. et al. Combinations of N-acetyl-S-(N-2-phene-thylthiocarbamoyl)-L-cysteine and myo-inositol inhibit tobacco smoke carcinogen-induced lung adenocarcinoma in A/J mice. Cancer Prev. Res. 1, 285–297 (2008).

    Article  CAS  Google Scholar 

  38. Lijinsky, W. & Reuber, M. D. Neoplasms of the skin and other organs observed in Swiss mice treated with nitrosoalkylureas. J. Cancer Res. Clin. Oncol. 114, 245–249 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y. et al. A chemically induced model for squamous cell carcinoma of the lung in mice: histopathology and strain susceptibility. Cancer Res. 64, 1647–1654 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Hecht, S. S. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem. Res. Toxicol. 11, 559–603 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Ye, B. et al. Induction of lung lesions in Wistar rats by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its inhibition by aspirin and phenethyl isothiocyanate. BMC Cancer 7, 90 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schuller, H. M., Porter, B., Riechert, A., Walker, K. & Schmoyer, R. Neuroendocrine lung carcinogenesis in hamsters is inhibited by green tea or theophylline while the development of adenocarcinomas is promoted: implications for chemoprevention in smokers. Lung Cancer 45, 11–18 (2004).

    Article  PubMed  Google Scholar 

  43. Hecht, S. S. Approaches to chemoprevention of lung cancer based on carcinogens in tobacco smoke. Environ. Health Perspect. 105 (Suppl. 4), 955–963 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. van Zandwijk, N. Chemoprevention in lung carcinogenesis — an overview. Eur. J. Cancer 41, 1990–2002 (2005). This paper provides a useful overview of chemoprevention of lung carcinogenesis.

    Article  CAS  PubMed  Google Scholar 

  45. Hecht, S. S. Cancer Chemoprevention Volume 1: Promising Cancer Chemopreventive Agents (eds Kelloff, G. J., Hawk, E. T. & Sigman, C. C.) 21–35 (Humana, Totowa, New Jersey, 2004).

    Book  Google Scholar 

  46. Morse, M. A. et al. Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced DNA adduct formation and tumorigenicity in lung of F344 rats by dietary phenethyl isothiocyanate. Cancer Res. 49, 549–553 (1989).

    CAS  PubMed  Google Scholar 

  47. Jiao, D. et al. Chemopreventive activity of thiol conjugates of isothiocyanates for lung tumorigenesis. Carcinogenesis 18, 2143–2147 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Hecht, S. S. et al. Complete inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induced rat lung tumorigenesis and favorable modification of biomarkers by phenethyl isothiocyanate. Cancer Epidemiol. Biomarkers Prev. 5, 645–652 (1996).

    CAS  PubMed  Google Scholar 

  49. Hecht, S. S., Kenney, P. M. J., Wang, M. & Upadhyaya, P. Benzyl isothiocyanate: an effective inhibitor of polycyclic aromatic hydrocarbon tumorigenesis in A/J mouse lung. Cancer Lett. 187, 87–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. von Weymarn, L. B., Chun, J. A. & Hollenberg, P. F. Effects of benzyl and phenethyl isothiocyanate on P450s 2A6 and 2A13: potential for chemoprevention in smokers. Carcinogenesis 27, 782–790 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Xiao, D. et al. Caspase-dependent apoptosis induction by phenethyl isothiocyanate, a cruciferous vegetable-derived cancer chemopreventive agent, is mediated by Bak and Bax. Clin. Cancer Res. 11, 2670–2679 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Takeuchi, H. et al. Pretreatment with 8-methoxypsoralen, a potent human CYP2A6 inhibitor, strongly inhibits lung tumorigenesis induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in female A/J mice. Cancer Res. 63, 7581–7583 (2003).

    CAS  PubMed  Google Scholar 

  53. Miyazaki, M. et al. Mechanisms of chemopreventive effects of 8-methoxypsoralen against 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced mouse lung adenomas. Carcinogenesis 26, 1947–1955 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Takeuchi, H. et al. Dose dependent inhibitory effects of dietary 8-methoxypsoralen on NNK-induced lung tumorigenesis in female A/J mice. Cancer Lett. 234, 232–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Estensen, R. D. & Wattenberg, L. W. Studies of chemopreventive effects of myo-inositol on benzo[a]pyrene-induced neoplasia of the lung and forestomach of female A/J mice. Carcinogenesis 14, 1975–1977 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Wattenberg, L. W. & Estensen, R. D. Chemopreventive effects of myo-mositol and dexamethasone on benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced pulmonary carcinogenesis in female A/J mice. Cancer Res. 56, 5132–5135 (1996).

    CAS  PubMed  Google Scholar 

  57. Hecht, S. S., Kenney, P. M. J., Wang, M. & Upadhyaya, P. Dose-response study of myo-inositol as an inhibitor of lung tumorigenesis induced in A/J mice by benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Lett. 167, 1–6 (2000).

    Article  Google Scholar 

  58. Lam, S. et al. A phase I study of myo-inositol for lung cancer chemoprevention. Cancer Epidemiol. Biomarkers Prev. 15, 1526–1531 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Lam, T. K. et al. Cruciferous vegetable consumption and lung cancer risk: a systematic review. Cancer Epidemiol. Biomarkers Prev. 18, 184–195 (2009). This paper gives a current update on vegetable consumption and lung cancer risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fahey, J. W., Zalcmann, A. T. & Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Hecht, S. S. et al. Effects of cruciferous vegetable consumption on urinary metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in Singapore Chinese. Cancer Epidemiol. Biomarkers Prev. 13, 997–1004 (2004).

    CAS  PubMed  Google Scholar 

  62. International Agency for Research on Cancer. IARC Handbooks of Cancer Prevention Vol. 9., 25–42 (IARC, Lyon, 2004).

  63. Morse, M. A., LaGreca, S. D., Amin, S. G. & Chung, F. L. Effects of indole-3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and on the metabolism and disposition of NNK in A/J mice. Cancer Res. 50, 2613–2617 (1990).

    CAS  PubMed  Google Scholar 

  64. Kassie, F. et al. Indole-3-carbinol inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone plus benzo[a]pyrene-induced lung tumorigenesis in A/J mice and modulates carcinogen-induced alterations in protein levels. Cancer Res. 67, 6502–6511 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Kassie, F., Matise, I., Negia, M., Upadhyaya, P. & Hecht, S. S. Dose-dependent inhibition of tobacco smoke carcinogen-induced lung tumorigenesis in A/J mice by indole-3-carbinol. Cancer Prev. Res. 1, 568–576 (2008).

    Article  CAS  Google Scholar 

  66. Kassie, F. et al. Chemopreventive agents modulate the protein expression profile of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone plus benzo[a]pyrene-induced lung tumors in A/J mice. Carcinogenesis 29, 610–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Orita, H., Coulter, J., Tully, E., Kuhajda, F. P. & Gabrielson, E. Inhibiting fatty acid synthase for chemoprevention of chemically induced lung tumors. Clin. Cancer Res. 14, 2458–2464 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, C. S., Liao, J., Yang, G. Y. & Lu, G. Inhibition of lung tumorigenesis by tea. Exp. Lung Res. 31, 135–144 (2005).

    Article  PubMed  CAS  Google Scholar 

  69. Clark, J. & You, M. Chemoprevention of lung cancer by tea. Mol. Nutr. Food Res. 50, 144–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Lu, G. et al. Inhibition of adenoma progression to adenocarcinoma in a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis model in A/J mice by tea polyphenols and caffeine. Cancer Res. 66, 11494–11501 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Anderson, M. W. et al. Effect of dietary green tea extract and aerosolized difluoromethylornithine during lung tumor progression in A/J strain mice. Carcinogenesis 29, 1594–1600 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lu, G. et al. Synergistic inhibition of lung tumorigenesis by a combination of green tea polyphenols and atorvastatin. Clin. Cancer Res. 14, 4981–4988 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Johnson, T. E. et al. Chemopreventive effect of kava on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone plus benzo[a]pyrene-induced lung tumorigenesis in A/J mice. Cancer Prev. Res. 1, 430–438 (2008).

    Article  CAS  Google Scholar 

  74. Zhang, Z. et al. Cancer chemopreventive activity of a mixture of Chinese herbs (antitumor B) in mouse lung tumor models. Oncogene 23, 3841–3850 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Yan, Y. et al. Efficacy of polyphenon E, red ginseng, and rapamycin on benzo(a)pyrene-induced lung tumorigenesis in A/J mice. Neoplasia 8, 52–58 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Khan, N., Afaq, F., Kweon, M. H., Kim, K. & Mukhtar, H. Oral consumption of pomegranate fruit extract inhibits growth and progression of primary lung tumors in mice. Cancer Res. 67, 3475–3482 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Singh, R. P. et al. Effect of silibinin on the growth and progression of primary lung tumors in mice. J. Natl Cancer Inst. 98, 846–855 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Yan, Y., Wang, Y., Tan, Q., Lubet, R. A. & You, M. Efficacy of deguelin and silibinin on benzo(a)pyrene-induced lung tumorigenesis in A/J mice. Neoplasia 7, 1053–1057 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gunning, W. T., Kramer, P. M., Lubet, R. A., Steele, V. E. & Pereira, M. A. Chemoprevention of vinyl carbamate-induced lung tumors in strain A mice. Exp. Lung Res. 26, 757–772 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, Z. et al. A germ-line p53 mutation accelerates pulmonary tumorigenesis: p53- independent efficacy of chemopreventive agents green tea or dexamethasone/myo-inositol and chemotherapeutic agents taxol or adriamycin. Cancer Res. 60, 901–907 (2000).

    CAS  PubMed  Google Scholar 

  81. Witschi, H. Successful and not so successful chemoprevention of tobacco smoke-induced lung tumors. Exp. Lung Res. 26, 743–755 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Pereira, M. A. et al. Prevention of mouse lung tumors by budesonide and its modulation of biomarkers. Carcinogenesis 23, 1185–1192 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, Y., Zhang, Z., Kastens, E., Lubet, R. A. & You, M. Mice with alterations in both p53 and INK4a/ARF display a striking increase in lung tumor multiplicity and progression: differential chemopreventive effect of budesonide in wild-type and mutant A/J mice. Cancer Res. 63, 4389–4395 (2003).

    CAS  PubMed  Google Scholar 

  84. Lubet, R., Wang, Y., Zhang, Z. & You, M. Mouse models incorporating alterations in the major tumor suppressor genes P53 and P16: their use in screening for potential carcinogens, developing further relevant mouse models, and screening for potential chemopreventive and chemotherapeutic agents. Exp. Lung Res. 31, 117–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Alyaqoub, F. S. et al. Prevention of mouse lung tumors and modulation of DNA methylation by combined treatment with budesonide and R115777 (ZarnestraMT). Carcinogenesis 28, 124–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Wattenberg, L. W. et al. Chemoprevention of pulmonary carcinogenesis by brief exposures to aerosolized budesonide or beclomethasone dipropionate and by the combination of aerosolized budesonide and dietary myo-inositol. Carcinogenesis 21, 179–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Wattenberg, L. W., Wiedmann, T. S. & Estensen, R. D. Chemoprevention of cancer of the upper respiratory tract of the Syrian golden hamster by aerosol administration of difluoromethylornithine and 5-fluorouracil. Cancer Res. 64, 2347–2349 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Honda, T. et al. Synthetic oleanane and ursane triterpenoids with modified rings A and C: a series of highly active inhibitors of nitric oxide production in mouse macrophages. J. Med. Chem. 43, 4233–4246 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Liby, K. T., Yore, M. M. & Sporn, M. B. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nature Rev. Cancer 7, 357–369 (2007).

    Article  CAS  Google Scholar 

  90. Liby, K. et al. The synthetic triterpenoids CDDO-methyl ester and CDDO-ethyl amide prevent lung cancer induced by vinyl carbamate in A/J mice. Cancer Res. 67, 2414–2419 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Liby, K. et al. A new rexinoid, NRX194204, prevents carcinogenesis in both the lung and mammary gland. Clin. Cancer Res. 13, 6237–6243 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Pereira, M. A. et al. Prevention of mouse lung tumors by targretin. Int. J. Cancer 118, 2359–2362 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Bauer, A. K., Dwyer-Nield, L. D. & Malkinson, A. M. High cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2) contents in mouse lung tumors. Carcinogenesis 21, 543–550 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Wardlaw, S. A., March, T. H. & Belinsky, S. A. Cyclooxygenase-2 expression is abundant in alveolar type II cells in lung cancer-sensitive mouse strains and in premalignant lesions. Carcinogenesis 21, 1371–1377 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Rioux, N. & Castonguay, A. Prevention of NNK-induced lung tumorigenesis in A/J mice by acetylsalicyclic acid and NS-398. Cancer Res. 58, 5354–6360 (1998).

    CAS  PubMed  Google Scholar 

  96. Duperron, C. & Castonguay, A. Chemoprevention efficacies of aspirin and sulindac against lung tumorigenesis in A/J mice. Carcinogenesis 18, 1001–1006 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Malkinson, A. M. et al. Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced mouse lung tumor formation by FGN-1 (sulindac sulfone). Carcinogenesis 19, 1353–1356 (1979).

    Article  Google Scholar 

  98. Jalbert, G. & Castonguay, A. Effects of NSAIDs on NNK-induced pulmonary and gastric tumorigenesis in A/J mice. Cancer Lett. 66, 21–28 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Kisley, L. R. et al. Celecoxib reduces pulmonary inflammation but not lung tumorigenesis in mice. Carcinogenesis 23, 1653–1660 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Rioux, N. & Castonguay, A. Inhibitors of lipoxygenase: a new class of cancer chemopreventive agents. Carcinogenesis 19, 1393–1400 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Gunning, W. T., Kramer, P. M., Steele, V. E. & Pereira, M. A. Chemoprevention by lipoxygenase and leukotriene pathway inhibitors of vinyl carbamate-induced lung tumors in mice. Cancer Res. 62, 4199–4201 (2002).

    CAS  PubMed  Google Scholar 

  102. Ahrendt, S. A. et al. Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung. Cancer 92, 1525–1530 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Lantry, L. E. et al. Chemopreventive efficacy of promising farnesyltransferase inhibitors. Exp. Lung Res. 26, 773–790 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Gunning, W. T. et al. Chemoprevention of benzo(a)pyrene-induced lung tumors in mice by the farnesyltransferase inhibitor R115777. Clin. Cancer Res. 9, 1927–1930 (2003).

    CAS  PubMed  Google Scholar 

  105. Prokopczyk, B. et al. Chemoprevention of lung tumorigenesis induced by a mixture of benzo(a)pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by the organoselenium compound 1,4-phenylenebis(methylene)selenocyanate. Cancer Lett. 161, 35–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Richie, J. P. Jr et al. The organoselenium compound 1,4-phenylenebis(methylene)selenocyanate inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorgenesis and enhances glutathione-related antioxidant levels in A/J mouse lung. Chem. Biol. Interact. 161, 93–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. El Bayoumy, K. et al. Molecular targets of the chemopreventive agent 1,4-phenylenebis (methylene)-selenocyanate in human non-small cell lung cancer. Carcinogenesis 27, 1369–1376 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Das, A., Desai, D., Pittman, B., Amin, S. & El Bayoumy, K. Comparison of the chemopreventive efficacies of 1,4-phenylenebis(methylene)selenocyanate and selenium-enriched yeast on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induced lung tumorigenesis in A/J mouse. Nutr. Cancer 46, 179–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Franklin, M. R., Moos, P. J., El Sayed, W. M., Aboul-Fadl, T. & Roberts, J. C. Pre- and post-initiation chemoprevention activity of 2-alkyl/aryl selenazolidine-4(R)-carboxylic acids against tobacco-derived nitrosamine (NNK)-induced lung tumors in the A/J mouse. Chem. Biol. Interact. 168, 211–220 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, L. et al. Chemopreventive activity of selenocysteine prodrugs against tobacco-derived nitrosamine (NNK) induced lung tumors in the A/J mouse. J. Biochem. Mol. Toxicol. 19, 396–405 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Lee, H. Y. et al. Chemopreventive effects of deguelin, a novel AKT inhibitor, on tobacco-induced lung tumorigenesis. J. Natl Cancer Inst. 97, 1695–1699 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Kim, W.-Y. et al. A novel derivative of the natural agent deguelin for cancer chemoprevention and therapy. Cancer Prev. Res. 1, 577–587 (2008).

    Article  CAS  Google Scholar 

  113. Lantry, L. E. et al. 5-aza-2′-deoxycytidine is chemopreventive in a 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone-induced primary mouse lung tumor model. Carcinogenesis 20, 343–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Belinsky, S. A. et al. Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res. 63, 7089–7093 (2003).

    CAS  PubMed  Google Scholar 

  115. Soria, J. C. et al. Chemoprevention of lung cancer. Lancet Oncol. 4, 659–669 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Cohen, V. & Khuri, F. R. Chemoprevention of lung cancer. Curr. Opin. Pulm. Med. 10, 279–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Winterhalder, R. C., Hirsch, F. R., Kotantoulas, G. K., Franklin, W. A. & Bunn, P. A. Jr. Chemoprevention of lung cancer — from biology to clinical reality. Ann. Oncol. 15, 185–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Hirsch, F. R. & Lippman, S. M. Advances in the biology of lung cancer chemoprevention. J. Clin. Oncol. 23, 3186–3197 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Keith, R. L. & Miller, Y. E. Lung cancer: genetics of risk and advances in chemoprevention. Curr. Opin. Pulm. Med. 11, 265–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Gray, J. et al. Lung cancer chemoprevention: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132, S56–S68 (2007).

    Article  CAS  Google Scholar 

  121. Szabo, E. Selecting targets for cancer prevention: where do we go from here? Nature Rev. Cancer 6, 867–874 (2006). This paper presents a good review of target selection in cancer prevention.

    Article  CAS  Google Scholar 

  122. Church, T. R. et al. A prospectively measured serum biomarker for a tobacco-specific carcinogen and lung cancer in smokers. Cancer Epidemiol. Biomarkers Prev. 18, 260–266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yuan, J. M. et al. Urinary levels of tobacco-specific nitrosamine metabolites in relation to lung cancer development in two prospective cohorts of cigarette smokers. Cancer Res. 69, 2990–2995 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gerner, E. W. & Meyskens, F. L. Jr. Combination chemoprevention for colon cancer targeting polyamine synthesis and inflammation. Clin. Cancer Res. 15, 758–761 (2009). This paper demonstrates the clinical efficacy of a mixture of agents in chemoprevention of colon cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. US Department of Health and Human Services. The Health Consequences of Smoking: A Report of the Surgeon General (US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, Atlanta, 2004).

  126. Luo, S., Crainiceanu, C. M., Louis, T. A. & Chatterjee, N. Analysis of smoking cessation patterns using a stochastic mixed-effects model with a latent cured state. J. Am. Stat. Assoc. 103, 1002–1013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hoving, E. F., Mudde, A. N. & de Vries, H. Smoking and the O pattern; predictors of transitions through the stages of change. Health Educ. Res. 21, 305–314 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Joseph, A. M., Hennrikus, D., Thoele, M. J., Krueger, R. & Hatsukami, D. Community tobacco control leaders' perceptions of harm reduction. Tob. Control 13, 108–113 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kass, N. E. An ethics framework for public health. Am. J. Public Health 91, 1776–1782 (2001). This paper provides a framework for ethics analysis of public health programmes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Childress, J. F. et al. Public health ethics: mapping the terrain. J. Law Med. Ethics 30, 170–178 (2002).

    Article  PubMed  Google Scholar 

  131. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mauderly, J. L. et al. Chronic inhalation exposure to mainstream cigarette smoke increases lung and nasal tumor incidence in rats. Toxicol. Sci. 81, 280–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Hutt, J. A. et al. Life-span inhalation exposure to mainstream cigarette smoke induces lung cancer in B6C3F1 mice through genetic and epigenetic pathways. Carcinogenesis 26, 1999–2099 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Hecht, S. S. et al. Rapid single-dose model for lung tumor induction in A/J mice by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and the effect of diet. Carcinogenesis 10, 1901–1904 (1989).

    Article  CAS  PubMed  Google Scholar 

  135. Morse, M. A. et al. Structure–activity relationships for inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone lung tumorigenesis by arylalkyl isothiocyanates in A/J mice. Cancer Res. 51, 1846–1850 (1991).

    CAS  PubMed  Google Scholar 

  136. Belinsky, S. A., Devereux, T. R., Foley, J. F., Maronpot, R. R. & Anderson, M. W. Role of the alveolar type II cell in the development and progression of pulmonary tumors induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in the A/J mouse. Cancer Res. 52, 3164–3173 (1992).

    CAS  PubMed  Google Scholar 

  137. Chung, F. L. Chemoprevention of lung cancer by isothiocyanates and their conjugates in A/J mouse. Exp. Lung Res. 27, 319–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Wattenberg, L. W. Chemoprevention of pulmonary carcinogenesis by myo-inositol. Anticancer Res. 19, 3659–3661 (1999).

    CAS  PubMed  Google Scholar 

  139. Chung, F. L. et al. Inhibition of lung carcinogenesis by black tea in Fischer rats treated with a tobacco-specific carcinogen: caffeine as an important constituent. Cancer Res. 58, 4096–4101 (1998).

    CAS  PubMed  Google Scholar 

  140. Yan, Y. et al. Chemopreventive effect of aerosolized polyphenon E on lung tumorigenesis in A/J mice. Neoplasia. 9, 401–405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tyagi, A. et al. Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-κβ and signal transducers and activators of transcription 3. Cancer Prev. Res. 2, 74–83 (2009).

    Article  CAS  Google Scholar 

  142. Witschi, H., Espiritu, I., Ly, M. & Uyeminami, D. The chemopreventive effects of orally administered dexamethasone in Strain A/J mice following cessation of smoke exposure. Inhal. Toxicol. 17, 119–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Estensen, R. D. et al. Effect of chemopreventive agents on separate stages of progression of benzo[a]pyrene induced lung tumors in A/J mice. Carcinogenesis 25, 197–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Liby, K. et al. The rexinoid LG100268 and the synthetic triterpenoid CDDO-methyl amide are more potent than erlotinib for prevention of mouse lung carcinogenesis. Mol. Cancer Ther. 7, 1251–1257 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pepin, P., Bouchard, L., Nicole, P. & Castonguay, A. Effects of sulindac and oltipraz on the tumorigenicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mouse lung. Carcinogenesis 13, 341–348 (1992).

    Article  CAS  PubMed  Google Scholar 

  146. Castonguay, A. & Rioux, N. Inhibition of lung tumorigenesis by sulindac: comparision of two protocols. Carcinogenesis 18, 491–496 (1997).

    Article  CAS  PubMed  Google Scholar 

  147. Moody, T. W. et al. Indomethacin reduces lung adenoma number in A/J mice. Anticancer Res. 21, 1749–1755 (2001).

    CAS  PubMed  Google Scholar 

  148. Zerbe, L. K. et al. Inhibition by erlotinib of primary lung adenocarcinoma at an early stage in male mice. Cancer Chemother. Pharmacol. 62, 605–620 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research on chemoprevention of lung carcinogenesis is supported in part by grants number CA-81301, CA-102502, CA-128801 and DA-13333 from the US National Institutes of Health and grant number RP-00-138 from the American Cancer Society. We thank B. Carlson for outstanding assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen S. Hecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

atorvastatin

budesonide

celecoxib

dexamethasone

difluoromethylornithine

myo-inositol

PEITC

polyphenon E

rapamycin

Sulindac

Targretin

FURTHER INFORMATION

Stephen S. Hecht's homepage

National Cancer Institute Clinical Trials

Glossary

Chronic obstructive pulmonary disease

(COPD). An umbrella term used to describe chronic bronchitis, emphysema or both. COPD is usually caused by smoking, and symptoms include coughing and breathlessness.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hecht, S., Kassie, F. & Hatsukami, D. Chemoprevention of lung carcinogenesis in addicted smokers and ex-smokers. Nat Rev Cancer 9, 476–488 (2009). https://doi.org/10.1038/nrc2674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2674

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing