Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulating the p53 pathway: in vitro hypotheses, in vivo veritas

Key Points

  • In vitro and transfection studies have suggested a p53 regulation model that emphasizes the importance of phosphorylation to produce structural changes in p53 to enable competition between MDM2 and p300 for binding the N-terminal p53 transactivation domain and inducing competing modifications in the p53 C-terminal regulatory domain. In unstressed cells, MDM2 binding in the N terminus would inhibit p53 activity and the MDM2-mediated ubiquitylation of the C terminus would promote p53 degradation; after stress, the phosphorylation of the p53 N terminus increases p300 binding, and the p300-mediated acetylation of the C terminus stabilizes and activates p53.

  • The above model is not supported by recent in vivo studies, because mouse mutants that express different point mutations in the N terminus and C terminus of p53 do not have the predicted phenotypes. Analysis of mutations found in human tumours also suggest that modifiable serine, threonine and lysine residues in the N-terminal and C-terminal domains do not provide on–off switches for p53.

  • Recent mouse mutants confirm the importance of MDM2 in p53 regulation, and show the separate contribution of the MDM2-related protein, MDM4 (also called MDMX) for p53 regulation: in vivo data now indicate that MDM2 mainly regulates p53 stability, whereas MDM4 contributes significantly to regulating p53 activity. These and other data suggest that a switch from MDM2 degradation of p53 to degradation of itself and MDM4 is responsible for p53 accumulation and activation after stress.

  • These results indicate the importance of developing drugs that antagonize MDM2–p53 and MDM4–p53 interactions. Candidate MDM2 antagonists have been developed, but not MDM4 antagonists.

  • Importantly, MDM2 and MDM4 antagonists could cooperate to activate p53 in two to three million patients diagnosed with cancer each year.

  • As p53, MDM2 and MDM4 interact with many proteins, further analyses of these interactions might also lead to new and broadly useful anticancer strategies.

Abstract

Mutations in TP53, the gene that encodes the tumour suppressor p53, are found in 50% of human cancers, and increased levels of its negative regulators MDM2 and MDM4 (also known as MDMX) downregulate p53 function in many of the rest. Understanding p53 regulation remains a crucial goal to design broadly applicable anticancer strategies based on this pathway. This Review of in vitro studies, human tumour data and recent mouse models shows that p53 post-translational modifications have modulatory roles, and MDM2 and MDM4 have more profound roles for regulating p53. Importantly, MDM4 emerges as an independent target for drug development, as its inactivation is crucial for full p53 activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model for p53 regulation based on in vitro and transfection data.
Figure 2: Comparative maps from in vitrohuman p53 and in vivo mouse p53 studies.
Figure 3: The distribution of codons mutated in human tumours and their effect on p53 transcriptional activity.
Figure 4: p53 regulation by MDM2 and MDM4: a dynamic model of the p53 response.

Similar content being viewed by others

References

  1. Harms, K., Nozell, S. & Chen, X. The common and distinct target genes of the p53 family transcription factors. Cell. Mol. Life Sci. 61, 822–842 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Green, D. R. & Chipuk, J. E. p53 and metabolism: inside the TIGAR. Cell 126, 30–32 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Chipuk, J. E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D. D. & Green, D. R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309, 1732–1735 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Ito, A. et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20, 1331–1340 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    Article  CAS  Google Scholar 

  7. Momand, J., Jung, D., Wilczynski, S. & Niland, J. The MDM2 gene amplification database. Nucleic Acids Res. 26, 3453–3459 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ashcroft, M., Kubbutat, M. H. & Vousden, K. H. Regulation of p53 function and stability by phospho-rylation. Mol. Cell Biol. 19, 1751–1758 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brooks, C. L. & Gu, W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr. Opin. Cell Biol. 15, 164–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nature Rev. Cancer 4, 793–805 (2004).

    Article  CAS  Google Scholar 

  11. Ou, Y. H., Chung, P. H., Sun, T. P. & Shieh, S. Y. p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation. Mol. Biol. Cell 16, 1684–1695 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stavridi, E. S., Chehab, N. H., Malikzay, A. & Halazonetis, T. D. Substitutions that compromise the ionizing radiation-induced association of p53 with 14–3-3 proteins also compromise the ability of p53 to induce cell cycle arrest. Cancer Res. 61, 7030–7033 (2001).

    CAS  PubMed  Google Scholar 

  13. Liu, Q. et al. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J. Biol. Chem. 279, 52175–52182 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Bischof, O. et al. The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol. Cell 22, 783–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Di Stefano, V., Soddu, S., Sacchi, A. & D'Orazi, G. HIPK2 contributes to PCAF-mediated acetylation and selective transactivation of p21af1 after nonapoptotic DNA damage. Oncogene 24, 5431–5442 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Knights, C. D. et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J. Cell Biol. 173, 533–544 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. LeCam, L. et al. E4F1 is an atypical ubiquitin E3-ligase that modulates p53 effector functions independent of degradation. Cell (in the press).

  18. Sakaguchi, K. et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12, 2831–2841 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chuikov, S. et al. Regulation of p53 activity through lysine methylation. Nature 432, 353–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Jimenez, G. et al. A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Nature Genet. 26, 37–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Chao, C. et al. p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. EMBO J. 19, 4967–4975 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, J., Chen, J., Elenbaas, B. & Levine, A. J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235–1246 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Johnson, T. M., Hammond, E. M., Giaccia, A. & Attardi, L. D. The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nature Genet. 37, 145–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Wahl, G. M. Mouse bites dogma: how mouse models are changing our views of how P53 is regulated in vivo. Cell Death Differ. 13, 973–983 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Tang, M., Wahl, G. M. & Nister, M. Explaining the biological activity of transactivation-deficient p53 variants. Nature Genet. 38, 395–396; author reply 396–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Chao, C. et al. Cell type- and promoter-specific roles of Ser18 phosphorylation in regulating p53 responses. J. Biol. Chem. 278, 41028–41033 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sluss, H. K., Armata, H., Gallant, J. & Jones, S. N. Phosphorylation of serine 18 regulates distinct p53 functions in mice. Mol. Cell Biol. 24, 976–984 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, Z. et al. Mutation of mouse p53 Ser23 and the response to DNA damage. Mol. Cell Biol. 22, 2441–2449 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. MacPherson, D. et al. Defective apoptosis and B-cell lymphomas in mice with p53 point mutation at Ser 23. EMBO J. 23, 3689–3699 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chao, C., Herr, D., Chun, J. & Xu, Y. Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J. 25, 2615–2622 (2006). This article showed that in vivo , phosphorylation events at p53 serine 18 and 23 might have synergistic effects that remain, however, more modest than suggested by transfection studies.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404, 897–900 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Nakamura, S., Roth, J. A. & Mukhopadhyay, T. Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Mol. Cell Biol. 20, 9391–9398 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodriguez, M. S., Desterro, J. M., Lain, S., Lane, D. P. & Hay, R. T. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell Biol. 20, 8458–8467 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krummel, K. A., Lee, C. J., Toledo, F. & Wahl, G. M. The C-terminal lysines fine-tune p53 stress responses in a mouse model, but are not required for stability control or transactivation. Proc. Natl Acad. Sci. USA 102, 10188–10193 (2005). This article showed that in vivo , the mutation of the 7 C-terminal lysines of p53 has little phenotypic consequence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feng, L., Lin, T., Uranishi, H., Gu, W. & Xu, Y. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol. Cell Biol. 25, 5389–5395 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dumaz, N., Milne, D. M., Jardine, L. J. & Meek, D. W. Critical roles for the serine 20, but not the serine 15, phosphorylation site and for the polyproline domain in regulating p53 turnover. Biochem J. 359, 459–464 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berger, M., Vogt Sionov, R., Levine, A. J. & Haupt, Y. A role for the polyproline domain of p53 in its regulation by Mdm2. J. Biol. Chem. 276, 3785–3790 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Berger, M., Stahl, N., Del Sal, G. & Haupt, Y. Mutations in proline 82 of p53 impair its activation by Pin1 and Chk2 in response to DNA damage. Mol. Cell Biol. 25, 5380–5388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dornan, D., Shimizu, H., Burch, L., Smith, A. J. & Hupp, T. R. The proline repeat domain of p53 binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53. Mol. Cell Biol. 23, 8846–8861 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Toledo, F. et al. A mouse p53 mutant lacking the proline rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network. Cancer Cell 9, 273–285 (2006). Together with reference 77, this article showed that MDM2 and MDM4 regulate p53 in distinct ways. In addition, it disclosed MDM4 as a relevant therapeutic target, and indicated that MDM2 and MDM4 inhibitors could cooperate to activate p53.

    Article  CAS  PubMed  Google Scholar 

  41. Sakamuro, D., Sabbatini, P., White, E. & Prendergast, G. C. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15, 887–898 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Venot, C. et al. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J. 17, 4668–4679 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, J., Jiang, J., Zhou, W., Zhu, K. & Chen, X. Differential regulation of cellular target genes by p53 devoid of the PXXP motifs with impaired apoptotic activity. Oncogene 18, 2149–2155 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Roth, J., Koch, P., Contente, A. & Dobbelstein, M. Tumor-derived mutations within the DNA-binding domain of p53 that phenotypically resemble the deletion of the proline-rich domain. Oncogene 19, 1834–1842 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Baptiste, N., Friedlander, P., Chen, X. & Prives, C. The proline-rich domain of p53 is required for cooperation with anti-neoplastic agents to promote apoptosis of tumor cells. Oncogene 21, 9–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Edwards, S. J., Hananeia, L., Eccles, M. R., Zhang, Y. F. & Braithwaite, A. W. The proline-rich region of mouse p53 influences transactivation and apoptosis but is largely dispensable for these functions. Oncogene 22, 4517–4523 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Chipuk, J. E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Kapoor, M. & Lozano, G. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc. Natl Acad. Sci. USA 95, 2834–2837 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu, H., Taya, Y., Ikeda, M. & Levine, A. J. Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc. Natl Acad. Sci. USA 95, 6399–6402 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bruins, W. et al. Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389. Mol. Cell Biol. 24, 8884–8894 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Olivier, M. et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 19, 607–614 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Kato, S. et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl Acad. Sci. USA 100, 8424–8429 (2003). This article has provided a logical explanation for the distribution of p53 mutations in human tumours, which suggests that transactivation is essential for p53 to suppress tumour formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004). This article (and reference 54) showed that mouse p53 mutants of hot-spots frequently found in human tumours acquire oncogenic properties.

    Article  CAS  PubMed  Google Scholar 

  54. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, G. et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nature Genet. 36, 63–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Kakudo, Y., Shibata, H., Otsuka, K., Kato, S. & Ishioka, C. Lack of correlation between p53-dependent transcriptional activity and the ability to induce apoptosis among 179 mutant p53s. Cancer Res. 65, 2108–2114 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Renzing, J. & Lane, D. P. p53-dependent growth arrest following calcium phosphate-mediated transfection of murine fibroblasts. Oncogene 10, 1865–1868 (1995).

    CAS  PubMed  Google Scholar 

  59. Landers, J. E., Cassel, S. L. & George, D. L. Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Cancer Res. 57, 3562–3568 (1997).

    CAS  PubMed  Google Scholar 

  60. Danovi, D. et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol. Cell Biol. 24, 5835–5843 (2004). Although MDM4 amplification was shown before in a subset of gliomas (reference 117), this article is the first to document the frequent overexpression of MDM4 in many different cancer sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bourdon, J. C. et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19, 2122–2137 (2005). This article shows the previously unsuspected existence of several p53 isoforms, and suggests their relevance to p53 tumour suppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Shvarts, A. et al. MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J. 15, 5349–5357 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jackson, M. W. & Berberich, S. J. MdmX protects p53 from Mdm2-mediated degradation. Mol. Cell Biol. 20, 1001–1007 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marine, J. C. & Jochemsen, A. G. Mdmx as an essential regulator of p53 activity. Biochem. Biophys. Res. Commun. 331, 750–760 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Stad, R. et al. Hdmx stabilizes Mdm2 and p53. J. Biol. Chem. 275, 28039–28044 (2000).

    CAS  PubMed  Google Scholar 

  69. Parant, J. et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nature Genet. 29, 92–95 (2001). This article (and references 70 and 71) showed that MDM4 is a p53 regulator essential to mouse embryonic development.

    Article  CAS  PubMed  Google Scholar 

  70. Migliorini, D. et al. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol. Cell Biol. 22, 5527–5538 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Finch, R. A. et al. mdmx is a negative regulator of p53 activity in vivo. Cancer Res. 62, 3221–3225 (2002).

    CAS  PubMed  Google Scholar 

  72. Chavez-Reyes, A. et al. Switching mechanisms of cell death in mdm2- and mdm4-null mice by deletion of p53 downstream targets. Cancer Res. 63, 8664–8669 (2003).

    CAS  PubMed  Google Scholar 

  73. Steinman, H. A., Sluss, H. K., Sands, A. T., Pihan, G. & Jones, S. N. Absence of p21 partially rescues Mdm4 loss and uncovers an antiproliferative effect of Mdm4 on cell growth. Oncogene 23, 303–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Marine, J. C. et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ. 13, 927–934 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Gu, J. et al. Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J. Biol. Chem. 277, 19251–19254 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Linares, L. K., Hengstermann, A., Ciechanover, A., Muller, S. & Scheffner, M. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc. Natl Acad. Sci. USA 100, 12009–12014 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Francoz, S. et al. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc. Natl Acad. Sci. USA 103, 3232–3237 (2006). This article (and reference 40) showed that MDM2 and MDM4 regulate p53 in distinct and complementary ways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xiong, S., Van Pelt, C. S., Elizondo-Fraire, A. C., Liu, G. & Lozano, G. Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system develop-ment. Proc. Natl Acad. Sci. USA 103, 3226–3231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kawai, H. et al. DNA damage-induced MDMX degradation is mediated by MDM2. J. Biol. Chem. 278, 45946–45953 (2003). This article showed the MDM2-dependent degradation of MDM4 after DNA damage.

    Article  CAS  PubMed  Google Scholar 

  80. Stommel, J. M. & Wahl, G. M. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J. 23, 1547–1556 (2004). This article showed that after DNA damage, MDM2 self-destruction is important to induce a p53 response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, L., Gilkes, D. M., Pan, Y., Lane, W. S. & Chen, J. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J. 24, 3411–3422 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pereg, Y. et al. Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc. Natl Acad. Sci. USA 102, 5056–5061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meulmeester, E. et al. Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol. Cell 18, 565–576 (2005). This article showed that HAUSP regulates the stability of MDM2 and MDM4.

    Article  CAS  PubMed  Google Scholar 

  84. Okamoto, K. et al. DNA damage-induced phosphorylation of MdmX at serine 367 activates p53 by targeting MdmX for Mdm2-dependent degradation. Mol. Cell Biol. 25, 9608–9620 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Steinman, H. A., Hoover, K. M., Keeler, M. L., Sands, A. T. & Jones, S. N. Rescue of Mdm4-deficient mice by Mdm2 reveals functional overlap of Mdm2 and Mdm4 in development. Oncogene 24, 7935–7940 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Doorbar, J. Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. (Lond.) 110, 525–541 (2006).

    Article  CAS  Google Scholar 

  87. Berk, A. J. Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24, 7673–7685 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Bond, G. L. et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119, 591–602 (2004). This article showed that a SNP in the MDM2 promoter can accelerate tumour onset in humans. SNPs in other promoters might also affect p53 regulation.

    Article  CAS  PubMed  Google Scholar 

  89. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004). This article describes the Nutlins, small molecules that antagonize MDM2–p53 interactions to limit tumour growth.

    Article  CAS  PubMed  Google Scholar 

  90. Brummelkamp, T. R. et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nature Chem. Biol. 2, 202–206 (2006).

    Article  CAS  Google Scholar 

  91. Arjona, D. et al. Real-time quantitative PCR analysis of regions involved in gene amplification reveals gene overdose in low-grade astrocytic gliomas. Diagn. Mol. Pathol. 14, 224–229 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Patton, J. T. et al. Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res. 66, 3169–3176 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Wade, M., Wong, E. T., Tang, M., Vassilev, L. T. & Wahl, G. M. Hdmx modulates the outcome of p53 activation in human tumor cells. J. Biol. Chem. (13 August 2006, doi 10.1074/jcb.M605405200).

  94. Hu, B., Gilkes, D. M., Farooqi, B., Sebti, S. M. & Chen, J. MDMX overexpression prevents P53 activation by the MDM2 inhibitor nutlin. J. Biol. Chem. (11 August 2006, doi 10.1074/jcb.C600147200).

  95. Bottger, V. et al. Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene 18, 189–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Soussi, T., Kato, S., Levy, P. P. & Ishioka, C. Reassessment of the TP53 mutation database in human disease by data mining with a library of TP53 missense mutations. Hum. Mutat. 25, 6–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Tang, J. et al. Critical role for Daxx in regulating Mdm2. Nature Cell Biol. 8, 855–862 (2006). This article disclosed Daxx as an adaptor protein that would direct HAUSP to its targets.

    Article  CAS  PubMed  Google Scholar 

  98. Cummins, J. M. et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428, 1 p following 486 (2004). This article showed that the targeted disruption of the HAUSP gene in human fibroblasts unexpectedly stabilizes p53, which suggested that MDM2 could also be regulated by HAUSP.

    Article  Google Scholar 

  99. Leng, R. P. et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112, 779–791 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Dornan, D. et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429, 86–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Chen, D. et al. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121, 1071–1083 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Toledo, F., Liu, C. W., Lee, C. J. & Wahl, G. M. RMCE-ASAP: a gene targeting method for ES and somatic cells to accelerate phenotype analyses. Nucleic Acids Res. 34, e92 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Walker, K. & Levine, A. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci. USA 93, 15335–15340 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chang, J., Kim, D. H., Lee, S. W., Choi, K. Y. & Sung, Y. C. Transactivation ability of p53 transcriptional activation domain is directly related to the binding affinity to TATA-binding protein. J. Biol. Chem. 270, 25014–25019 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. McKinney, K., Mattia, M., Gottifredi, V. & Prives, C. p53 linear diffusion along DNA requires its C terminus. Mol. Cell 16, 413–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Weinberg, R. L., Freund, S. M., Veprintsev, D. B., Bycroft, M. & Fersht, A. R. Regulation of DNA binding of p53 by its C-terminal domain. J. Mol. Biol. 342, 801–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Oliner, J. D. et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362, 857–860 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Craig, A. L. et al. Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers. Biochem. J. 342, 133–141 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, Y. & Xiong, Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292, 1910–1915 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Lambert, P. F., Kashanchi, F., Radonovich, M. F., Shiekhattar, R. & Brady, J. N. Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem. 273, 33048–33053 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Laptenko, O. & Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13, 951–961 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Ichimura, K. et al. Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1–S transition control gene abnormalities. Cancer Res. 60, 417–424 (2000).

    CAS  PubMed  Google Scholar 

  115. Alonso, M. E. et al. Real-time quantitative PCR analysis of gene dosages reveals gene amplification in low-grade oligodendrogliomas. Am. J. Clin. Pathol. 123, 900–906 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Bello, M. J. & Rey, J. A. The p53/Mdm2/p14ARF cell cycle control pathway genes may be inactivated by genetic and epigenetic mechanisms in gliomas. Cancer Genet. Cytogenet. 164, 172–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Riemenschneider, M. J. et al. Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res. 59, 6091–6096 (1999).

    CAS  PubMed  Google Scholar 

  118. Actor, B. et al. Comprehensive analysis of genomic alterations in gliosarcoma and its two tissue components. Genes Chromosomes Cancer 34, 416–427 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Riemenschneider, M. J., Knobbe, C. B. & Reifenberger, G. Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification target. Int. J. Cancer 104, 752–757 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Iwato, M. et al. Molecular analysis for p53 and mdm2 in intracranial germ cell tumors. Acta Neuropathol. (Berl.) 99, 21–25 (2000).

    Article  CAS  Google Scholar 

  121. Herrlinger, U. et al. Gliomatosis cerebri: molecular pathology and clinical course. Ann. Neurol. 52, 390–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Binh, M. B. et al. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am. J. Surg. Pathol. 29, 1340–1347 (2005).

    Article  PubMed  Google Scholar 

  123. Ho, G. H. et al. Genetic alterations of the p14ARF-hdm2-p53 regulatory pathway in breast carcinoma. Breast Cancer Res. Treat. 65, 225–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Seki, A. et al. Amplification of the mdm-2 gene and p53 abnormalities in uterine sarcomas. Int. J. Cancer 73, 33–37 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Ittmann, M. et al. Alterations in the p53 and MDM-2 genes are infrequent in clinically localized, stage B prostate adenocarcinomas. Am. J. Pathol. 145, 287–293 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Gisselsson, D., Mandahl, N., Palsson, E., Gorunova, L. & Hoglund, M. Locus-specific multifluor FISH analysis allows physical characterization of complex chromosome abnormalities in neoplasia. Genes Chromosomes Cancer 28, 347–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Jin, C. et al. Characterization of chromosome aberrations in salivary gland tumors by FISH, including multicolor COBRA-FISH. Genes Chromosomes Cancer 30, 161–167 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Roijer, E. et al. Translocation, deletion/amplification, and expression of HMGIC and MDM2 in a carcinoma ex pleomorphic adenoma. Am. J. Pathol. 160, 433–440 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Taniere, P. et al. TP53 mutations and MDM2 gene amplification in squamous-cell carcinomas of the esophagus in south Thailand. Int. J. Cancer 88, 223–227 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Ishizuka, T. et al. Gene amplification profiling of esophageal squamous cell carcinomas by DNA array CGH. Biochem Biophys Res Commun 296, 152–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Miller, C. T. et al. Amplification and overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regul-ated kinase 2 (DYRK2) gene in esophageal and lung adenocarcinomas. Cancer Res. 63, 4136–4143 (2003).

    CAS  PubMed  Google Scholar 

  132. Jablkowski, M., Bocian, A., Bialkowska, J. & Bartkowiak, J. A comparative study of P53/MDM2 genes alterations and P53/MDM2 proteins immunoreactivity in liver cirrhosis and hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 24, 117–125 (2005).

    CAS  PubMed  Google Scholar 

  133. Gunther, T. et al. Mdm2 gene amplification in gastric cancer correlation with expression of Mdm2 protein and p53 alterations. Mod. Pathol. 13, 621–626 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Oliva, M. R. et al. Genetic alterations and oxidative metabolism in sporadic colorectal tumors from a Spanish community. Mol. Carcinog. 18, 232–243 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Simon, R. et al. Amplification pattern of 12q13-q15 genes (MDM2, CDK4, GLI) in urinary bladder cancer. Oncogene 21, 2476–2483 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Bode-Lesniewska, B. et al. Gains of 12q13–14 and overexpression of mdm2 are frequent findings in intimal sarcomas of the pulmonary artery. Virchows Arch. 438, 57–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Dworakowska, D. et al. MDM2 gene amplification: a new independent factor of adverse prognosis in non-small cell lung cancer (NSCLC). Lung Cancer 43, 285–295 (2004).

    Article  PubMed  Google Scholar 

  138. Yokoyama, R., Schneider-Stock, R., Radig, K., Wex, T. & Roessner, A. Clinicopathologic implications of MDM2, p53 and K-ras gene alterations in osteosarcomas: MDM2 amplification and p53 mutations found in progressive tumors. Pathol. Res. Pract. 194, 615–621 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Gisselsson, D., Hoglund, M., Mertens, F., Mitelman, F. & Mandahl, N. Chromosomal organization of amplified chromosome 12 sequences in mesenchymal tumors detected by fluorescence in situ hybridization. Genes Chromosomes Cancer 23, 203–212 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Tarkkanen, M. et al. Comparative genomic hybridization of low-grade central osteosarcoma. Mod. Pathol. 11, 421–426 (1998).

    CAS  PubMed  Google Scholar 

  141. Ragazzini, P. et al. Analysis of SAS gene and CDK4 and MDM2 proteins in low-grade osteosarcoma. Cancer Detect Prev. 23, 129–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Wei, G. et al. CDK4 gene amplification in osteosarcoma: reciprocal relationship with INK4A gene alterations and mapping of 12q13 amplicons. Int J Cancer 80, 199–204 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Wunder, J. S. et al. Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene 18, 783–788 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Lopes, M. A., Nikitakis, N. G., Ord, R. A. & Sauk, J., Jr. Amplification and protein expression of chromosome 12q13–15 genes in osteosarcomas of the jaws. Oral Oncol. 37, 566–571 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Gisselsson, D. et al. Differentially amplified chromosome 12 sequences in low- and high-grade osteosarcoma. Genes Chromosomes Cancer 33, 133–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Kawaguchi, K. et al. Molecular analysis of p53, MDM2, and H-ras genes in osteosarcoma and malignant fibrous histiocytoma of bone in patients older than 40 years. Mod. Pathol. 15, 878–888 (2002).

    Article  PubMed  Google Scholar 

  147. Man, T. K. et al. Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma. BMC Cancer 4, 45 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Heidenblad, M. et al. Genomic profiling of bone and soft tissue tumors with supernumerary ring chromosomes using tiling resolution bacterial artificial chromosome microarrays. Oncogene (2006).

  149. Bartel, F. et al. Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int. J. Cancer 117, 469–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Pedeutour, F. et al. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 24, 30–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Pilotti, S. et al. The expression of MDM2/CDK4 gene product in the differential diagnosis of well differentiated liposarcoma and large deep-seated lipoma. Br. J. Cancer 82, 1271–1275 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dei Tos, A. P. et al. Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J. Pathol. 190, 531–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Forus, A. et al. Dedifferentiation of a well-differentiated liposarcoma to a highly malignant metastatic osteosarcoma: amplification of 12q14 at all stages and gain of 1q22-q24 associated with metastases. Cancer Genet. Cytogenet. 125, 100–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Palmer, J. L., Masui, S., Pritchard, S., Kalousek, D. K. & Sorensen, P. H. Cytogenetic and molecular genetic analysis of a pediatric pleomorphic sarcoma reveals similarities to adult malignant fibrous histiocytoma. Cancer Genet. Cytogenet. 95, 141–147 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Chibon, F. et al. The use of clustering software for the classification of comparative genomic hybridization data. an analysis of 109 malignant fibrous histiocytomas. Cancer Genet. Cytogenet. 141, 75–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Schmidt, H. et al. Gains of 12q are the most frequent genomic imbalances in adult fibrosarcoma and are correlated with a poor outcome. Genes Chromosomes Cancer 34, 69–77 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Bartel, F. et al. Amplification of the MDM2 gene, but not expression of splice variants of MDM2 MRNA, is associated with prognosis in soft tissue sarcoma. Int. J. Cancer 95, 168–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Taubert, H. et al. Loss of heterozygosity at 12q14–15 often occurs in stage I soft tissue sarcomas and is associated with MDM2 amplification in tumors at various stages. Mod. Pathol. 16, 1109–1116 (2003).

    Article  PubMed  Google Scholar 

  159. Preudhomme, C. et al. Absence of amplification of MDM2 gene, a regulator of p53 function, in myelodys-plastic syndromes. Leukemia 7, 1291–1293 (1993).

    CAS  PubMed  Google Scholar 

  160. Sugimoto, K. J., Kawamata, N., Sakajiri, S. & Oshimi, K. Molecular analysis of oncogenes, ras family genes (N-ras, K-ras, H-ras), myc family genes (c-myc, N-myc) and mdm2 in natural killer cell neoplasms. Jpn J. Cancer Res. 93, 1270–1277 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hernandez, L. et al. CDK4 and MDM2 gene alterations mainly occur in highly proliferative and aggressive mantle cell lymphomas with wild-type INK4a/ARF locus. Cancer Res. 65, 2199–2206 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Wojcik, I. et al. Abnormalities of the P53, MDM2, BCL2 and BAX genes in acute leukemias. Neoplasma 52, 318–324 (2005).

    CAS  PubMed  Google Scholar 

  163. Kupper, M. et al. MDM2 gene amplification and lack of p53 point mutations in Hodgkin and Reed-Sternberg cells: results from single-cell polymerase chain reaction and molecular cytogenetic studies. Br. J. Haematol. 112, 768–775 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Polsky, D. et al. HDM2 protein overexpression, but not gene amplification, is related to tumorigenesis of cuta-neous melanoma. Cancer Res. 61, 7642–7646 (2001).

    CAS  PubMed  Google Scholar 

  165. Muthusamy, V. et al. Amplification of CDK4 and MDM2 in malignant melanoma. Genes Chromosomes Cancer 45, 447–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mark Wade for critical comments on the manuscript. We would like to apologize for the many studies that could not be cited in the present review due to space constraints. Please refer to the review by Bode and Dong (reference 10) for earlier references on p53 post-translational modifications, to the review by Momand et al. (reference 7) for early evidence of MDM2 gene amplification in tumours, and to the BIND and HPRD databases (Table 3) for more references on proteins that interact with p53, MDM2 and MDM4. Also, we acknowledge the functional and clinical importance of the numerous p53 target genes (reviewed in references 1,2), but were unable to discuss them in detail here, again due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Franck Toledo or Geoffrey M. Wahl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary table S1 (PDF 231 kb)

Related links

Related links

FURTHER INFORMATION

Author's homepage

Human Protein Reference Database

Biomolecular Interaction Network Database

IARC TP53 Mutation Database

Glossary

Prolyl isomerase

An enzyme that catalyses the cis-trans interconversion of prolines in specific amino-acid motifs. For example, PIN1 binds to motifs containing a phosphorylated serine or threonine preceding a proline, and catalyses the isomerization of the proline residue.

Sumoylation

Conjugation with a small ubiquitin-like modifier protein (SUMO) of one or several lysines within the protein, which might regulate protein function. The 3D structure of SUMO1 is very similar to that of ubiquitin, although they share only 18% amino-acid sequence identity.

Neddylation

Conjugation with NEDD8 (neural precursor cell expressed developmentally downregulated 8) of one or several lysines within the protein, which might regulate protein function. NEDD8 is an 81 amino-acid protein that shares 60% amino-acid sequence identity with ubiquitin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledo, F., Wahl, G. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6, 909–923 (2006). https://doi.org/10.1038/nrc2012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing