Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia

Key Points

  • T-cell acute lymphoblastic leukaemia (T-ALL) is an aggressive blood cancer that affects about 1,500 people per year in the United States. Significant advances have been made in the development of effective therapies for this otherwise rapidly fatal disease, which is most common in children and adolescents.

  • T-ALL can be classified into at least five different subtypes based on the activation of specific T-ALL oncogenes and associated gene-expression profiles that correlate with the stage of arrest in T-cell development.

  • The NOTCH1 gene is expressed in haematopoietic stem cells (HSCs) and controls several steps in thymocyte specification and differentiation. Chromosomal alterations that juxtapose a truncated, activated form of Notch1 (TAN1) with the T-cell receptor-β (TCRB) locus occur in less than 1% of all T-ALL cases.

  • Somatic activating mutations of Notch1 have been identified in more than 50% of all T-ALL cases and are found in all previously defined T-ALL subtypes. One set of mutations destabilizes the Notch heterodimerization domain, probably facilitating ligand-independent pathway activation, whereas mutations that disrupt the intracellular PEST (polypeptide enriched in proline, glutamate, serine and threonine) domain might function by increasing the half-life of transcriptionally active intracellular Notch 1 (ICN1).

  • The high prevalence of Notch1 mutations in T-ALL, and the dependence of T-ALL cases on Notch-1-pathway activation for unrestricted proliferation render this protein an excellent candidate for pharmacological intervention with γ-secretase inhibitors.

  • Studies of Notch 1 in the induction of T-ALL, using murine and zebrafish T-ALL models, might lead to the discovery of pharmacological inhibitors that specifically target other components in the Notch 1 pathway.

  • Emerging knowledge of the specific gene-expression profiles associated with T-ALL subtypes, the important function of Notch 1 in T-cell leukaemogenesis, and the development of novel, specific inhibitors should stimulate the development of disease-specific treatments that increase survival rates and improve the quality of life of patients with T-ALL.

Abstract

The chromosomal translocation t(7;9) in human T-cell acute lymphoblastic leukaemia (T-ALL) results in deregulated expression of a truncated, activated form of Notch 1 (TAN1) under the control of the T-cell receptor-β (TCRB) locus. Although TAN1 efficiently induces T-ALL in mouse models, t(7;9) is present in less than 1% of human T-ALL cases. The recent discovery of novel activating mutations in NOTCH1 in more than 50% of human T-ALL samples has made it clear that Notch 1 is far more important in human T-ALL pathogenesis than previously suspected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of genomic aberrations and Notch1 mutations in paediatric T-ALL.
Figure 2: The Notch signalling pathway.
Figure 3: Notch 1 receptors in T-cell development.
Figure 4: Notch 1 receptor mutations in human T-cell acute lymphoblastic leukaemia.
Figure 5: Correlation between gene-expression profiles and stage of thymocyte differentiation.

Similar content being viewed by others

References

  1. Pui, C. H., Relling, M. V. & Downing, J. R. Acute lymphoblastic leukemia. N. Engl. J. Med. 350, 1535–1548 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Thomas, X. et al. Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J. Clin. Oncol. 22, 4075–4086 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Annino, L. et al. Treatment of adult acute lymphoblastic leukemia (ALL): long-term follow-up of the GIMEMA ALL 0288 randomized study. Blood 99, 863–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Linker, C., Damon, L., Ries, C. & Navarro, W. Intensified and shortened cyclical chemotherapy for adult acute lymphoblastic leukemia. J. Clin. Oncol. 20, 2464–2471 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Hunault, M. et al. Better outcome of adult acute lymphoblastic leukemia after early genoidentical allogeneic bone marrow transplantation (BMT) than after late high-dose therapy and autologous BMT: a GOELAMS trial. Blood 104, 3028–3037 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong, S. A. & Look, A. T. Molecular genetics of acute lymphoblastic leukemia. J. Clin. Oncol. 23, 6306–6315 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Erikson, J. et al. Deregulation of c-myc by translocation of the α-locus of the T-cell receptor in T-cell leukemias. Science 232, 884–886 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Meng, Y. S., Khoury, H., Dick, J. E. & Minden, M. D. Oncogenic potential of the transcription factor LYL1 in acute myeloblastic leukemia. Leukemia 19, 1941–1947 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Baer, R. TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia. Semin. Cancer Biol. 4, 341–347 (1993).

    CAS  PubMed  Google Scholar 

  10. Bain, G. et al. E2A deficiency leads to abnormalities in αβ T-cell development and to rapid development of T-cell lymphomas. Mol. Cell. Biol. 17, 4782–4791 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan, W. et al. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol. Cell. Biol. 17, 7317–7327 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O'Neil, J., Billa, M., Oikemus, S. & Kelliher, M. The DNA binding activity of TAL-1 is not required to induce leukemia/lymphoma in mice. Oncogene 20, 3897–3905 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Chervinsky, D. S. et al. Disordered T-cell development and T-cell malignancies in SCL LMO1 double-transgenic mice: parallels with E2A-deficient mice. Mol. Cell. Biol. 19, 5025–5035 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrando, A. A. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1, 75–87 (2002). This study represents one of the first attempts to use gene-expression profiling for the classification of T-ALL subtypes, identification of novel oncogenic factors and the prognostic relevance of gene profiles.

    Article  CAS  PubMed  Google Scholar 

  15. Ferrando, A. A. et al. Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet 363, 535–536 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ferrando, A. A. et al. Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood 103, 1909–1911 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Wadman, I. et al. Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J. 13, 4831–4839 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Valge-Archer, V. E. et al. The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Proc. Natl Acad. Sci. USA 91, 8617–8621 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Look, A. T. Oncogenic transcription factors in the human acute leukemias. Science 278, 1059–1064 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Speleman, F. et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 19, 358–366 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Soulier, J. et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 106, 274–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Taghon, T. et al. HOX-A10 regulates hematopoietic lineage commitment: evidence for a monocyte-specific transcription factor. Blood 99, 1197–1204 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Taghon, T. et al. Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development. Leukemia 17, 1157–1163 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Ferrando, A. A. et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 102, 262–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Roberts, C. W., Shutter, J. R. & Korsmeyer, S. J. Hox11 controls the genesis of the spleen. Nature 368, 747–749 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Berger, R. et al. t(5;14)/HOX11L2-positive T-cell acute lymphoblastic leukemia. A collaborative study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Leukemia 17, 1851–1857 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Ballerini, P. et al. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood 100, 991–997 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Cave, H. et al. Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL–TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood 103, 442–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Dreyling, M. H. et al. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc. Natl Acad. Sci. USA 93, 4804–4809 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Asnafi, V. et al. CALMAF10 is a common fusion transcript in T-ALL and is specific to the TCRγδ lineage. Blood 102, 1000–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Wechsler, D. S. et al. A novel chromosomal inversion at 11q23 in infant acute myeloid leukemia fuses MLL to CALM, a gene that encodes a clathrin assembly protein. Genes Chromosomes Cancer 36, 26–36 (2003).

    CAS  Google Scholar 

  32. Chaplin, T. et al. The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. Blood 86, 2073–2076 (1995).

    CAS  PubMed  Google Scholar 

  33. Graux, C. et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nature Genet. 36, 1084–1089 (2004).

    CAS  Google Scholar 

  34. De Keersmaecker, K. et al. Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). Blood 105, 4849–4852 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Van Limbergen, H. et al. Molecular cytogenetic and clinical findings in ETV6ABL1-positive leukemia. Genes Chromosomes Cancer 30, 274–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Pear, W. S. et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcrabl-transduced bone marrow. Blood 92, 3780–3792 (1998).

    CAS  PubMed  Google Scholar 

  37. Lacronique, V. et al. A TEL–JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Carron, C. et al. TELJAK2 transgenic mice develop T-cell leukemia. Blood 95, 3891–3899 (2000).

    CAS  PubMed  Google Scholar 

  39. Tycko, B., Smith, S. D. & Sklar, J. Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia. J. Exp. Med. 174, 867–873 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Wright, D. D., Sefton, B. M. & Kamps, M. P. Oncogenic activation of the Lck protein accompanies translocation of the LCK gene in the human HSB2 T-cell leukemia. Mol. Cell. Biol. 14, 2429–2437 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lubbert, M. et al. N-ras gene point mutations in childhood acute lymphocytic leukemia correlate with a poor prognosis. Blood 75, 1163–1169 (1990).

    CAS  PubMed  Google Scholar 

  42. Yokota, S. et al. Mutational analysis of the N-ras gene in acute lymphoblastic leukemia: a study of 125 Japanese pediatric cases. Int. J. Hematol. 67, 379–387 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Kawamura, M. et al. Mutations of the p53 and ras genes in childhood t(1;19)-acute lymphoblastic leukemia. Blood 85, 2546–2552 (1995).

    CAS  PubMed  Google Scholar 

  44. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991). Describes the identification of the first human Notch gene ( NOTCH1 ). It also indicates, for the first time, a causative role of activated Notch signalling in human neoplasms.

    Article  CAS  PubMed  Google Scholar 

  45. Morgan, T. H. The theory of the gene. Am. Nat. 51, 513–544 (1917).

    Article  Google Scholar 

  46. Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43, 567–581 (1985).

    Article  CAS  PubMed  Google Scholar 

  47. Lai, E. C. Notch signaling: control of cell communication and cell fate. Development 131, 965–973 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Radtke, F., Wilson, A., Mancini, S. J. & MacDonald, H. R. Notch regulation of lymphocyte development and function. Nature Immunol. 5, 247–253 (2004).

    Article  CAS  Google Scholar 

  49. Reizis, B. & Leder, P. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev. 16, 295–300 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wolfer, A. et al. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Tanigaki, K. et al. Regulation of αβ/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Ciofani, M. et al. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J. Immunol. 172, 5230–5239 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999). Documents the requirement for Notch 1 activity in T-cell development. A lack of Notch 1 function results in B-cell specification at the expense of T-cells.

    Article  CAS  PubMed  Google Scholar 

  54. Wilson, A., MacDonald, H. R. & Radtke, F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J. Exp. Med. 194, 1003–1012 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet. 33, 416–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Gallahan, D. & Callahan, R. Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J. Virol. 61, 66 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Weijzen, S. et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nature Med. 8, 979–986 (2002). Shows that the sustained presence of activated Notch 1 signalling is required for the manifestation of neoplastic properties in culture.

    Article  CAS  PubMed  Google Scholar 

  58. Zagouras, P. et al. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl Acad. Sci. USA 92, 6414–6418 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fre, S. et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature 435, 964–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Joutel, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genet. 16, 243–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Oda, T. et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genet. 16, 235–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Taghon, T. et al. Developmental and molecular characterization of emerging β- and γδ-selected pre-T cells in the adult mouse thymus. Immunity 24, 53–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Sambandam, A. et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nature Immunol. 6, 663–670 (2005).

    Article  CAS  Google Scholar 

  66. Berghmans, S. et al. Making waves in cancer research: new models in the zebrafish. Biotechniques 39, 227–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Lehar, S. M., Dooley, J., Farr, A. G. & Bevan, M. J. Notch ligands Delta1 and Jagged1 transmit distinct signals to T-cell precursors. Blood 105, 1440–1447 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol. 14, 637–645 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Izon, D. J. et al. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity 16, 231–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Maillard, I. et al. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104, 1696–1702 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Radtke, F. et al. Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells. J. Exp. Med. 191, 1085–1094 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pui, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Jaleco, A. C. et al. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J. Exp. Med. 194, 991–1002 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schmitt, T. M. & Zuniga-Pflucker, J. C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Jiang, R. et al. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev. 12, 1046–1057 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Washburn, T. et al. Notch activity influences the αβ versus γδ T cell lineage decision. Cell 88, 833–843 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Wong, K. K. et al. Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. J. Clin. Invest. 112, 1741–1750 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yvon, E. S. et al. Overexpression of the Notch ligand, Jagged-1, induces alloantigen-specific human regulatory T cells. Blood 102, 3815–3821 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Adler, S. H. et al. Notch signaling augments T cell responsiveness by enhancing CD25 expression. J. Immunol. 171, 2896–2903 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Hoyne, G. F. et al. Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4+ T cells. Int. Immunol. 12, 177–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Palaga, T., Miele, L., Golde, T. E. & Osborne, B. A. TCR-mediated notch signaling regulates proliferation and IFN-γ production in peripheral T cells. J. Immunol. 171, 3019–3024 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Hadland, B. K. et al. A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104, 3097–3105 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Kumano, K. et al. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18, 699–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Med. 6, 1278–1281 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Varnum-Finney, B., Brashem-Stein, C. & Bernstein, I. D. Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 101, 1784–1789 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Stier, S. et al. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99, 2369–2378 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Duncan, A. W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nature Immunol. 6, 314–322 (2005).

    Article  CAS  Google Scholar 

  88. Wettstein, D. A., Turner, D. L. & Kintner, C. The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 124, 693–702 (1997).

    CAS  PubMed  Google Scholar 

  89. Hsieh, J. J. & Hayward, S. D. Masking of the CBF1/RBPJ κ transcriptional repression domain by Epstein-Barr virus EBNA2. Science 268, 560–563 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Aster, J. et al. Functional analysis of the TAN-1 gene, a human homolog of Drosophila notch. Cold Spring Harb. Symp. Quant. Biol. 59, 125–136 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Pear, W. S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996). This is the first documentation of the oncogenic potential of human TAN1 in the haematopoietic system of a murine model.

    Article  CAS  PubMed  Google Scholar 

  92. Aster, J. C. et al. Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Mol. Cell. Biol. 20, 7505–7515 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Allman, D. et al. Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J. Exp. Med. 194, 99–106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Robey, E. et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Fowlkes, B. J. & Robey, E. A. A reassessment of the effect of activated Notch1 on CD4 and CD8 T cell development. J. Immunol. 169, 1817–1821 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Tsuji, H. et al. Radiation-induced deletions in the 5′ end region of Notch1 lead to the formation of truncated proteins and are involved in the development of mouse thymic lymphomas. Carcinogenesis 24, 1257–1268 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. O'Neil, J. et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 107, 781–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Lin, Y. W., Nichols, R. A., Letterio, J. J. & Aplan, P. D. Notch1 mutations are important for leukemic transformation in murine models of precursor-T leukemia/lymphoma. Blood 107, 2540–2543 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Ma, S. K., Wan, T. S. & Chan, L. C. Cytogenetics and molecular genetics of childhood leukemia. Hematol. Oncol. 17, 91–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Jundt, F. et al. Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 99, 3398–3403 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Bellavia, D. et al. Combined expression of pTα and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc. Natl Acad. Sci. USA 99, 3788–3793 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chiaramonte, R. et al. Differential regulation of Notch signal transduction in leukaemia and lymphoma cells in culture. J. Cell Biochem. 88, 569–577 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Weng, A. P. et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol. Cell. Biol. 23, 655–664 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004). Demonstrates the causative role of somatic activating mutations in NOTCH1 in the development of human T-ALL.

    Article  CAS  PubMed  Google Scholar 

  105. Sanchez-Irizarry, C. et al. Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol. Cell. Biol. 24, 9265–9273 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Greenwald, I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 12, 1751–1162 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Berry, L. W., Westlund, B. & Schedl, T. Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124, 925–936 (1997).

    CAS  PubMed  Google Scholar 

  108. Gupta-Rossi, N. et al. Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J. Biol. Chem. 276, 34371–34378 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Feldman, B. J., Hampton, T. & Cleary, M. L. A carboxy-terminal deletion mutant of Notch1 accelerates lymphoid oncogenesis in E2APBX1 transgenic mice. Blood 96, 1906–1913 (2000).

    CAS  PubMed  Google Scholar 

  110. Hoemann, C. D. et al. Two distinct Notch1 mutant alleles are involved in the induction of T-cell leukemia in c-myc transgenic mice. Mol. Cell. Biol. 20, 3831–3842 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Deftos, M. L. et al. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 13, 73–84 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sade, H., Krishna, S. & Sarin, A. The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells. J. Biol. Chem. 279, 2937–2944 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Sicinska, E. et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4, 451–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Engel, I. & Murre, C. E2A proteins enforce a proliferation checkpoint in developing thymocytes. EMBO J. 23, 202–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Nie, L., Xu, M., Vladimirova, A. & Sun, X. H. Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J. 22, 5780–5792 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Engel, I. & Murre, C. Disruption of pre-TCR expression accelerates lymphomagenesis in E2A-deficient mice. Proc. Natl Acad. Sci. USA 99, 11322–11327 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Talora, C. Pre-TCR-triggered ERK signalling-dependent downregulation of E2A activity. EMBO Rep. 4, 1067–1072 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ordentlich, P. et al. Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol. Cell. Biol. 18, 2230–2239 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Reschly, E. J. et al. Notch1 promotes survival of E2A-deficient T cell lymphomas through Pre-T cell receptor dependent and independent mechanisms. Blood 31 Jan 2006 (doi: 10.1182/blood-2005-09-3551).

  120. Beverly, L. J., Felsher, D. W. & Capobianco, A. J. Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res. 65, 7159–7168 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Jehn, B. M., Bielke, W., Pear, W. S. & Osborne, B. A. Cutting edge: protective effects of notch-1 on TCR-induced apoptosis. J. Immunol. 162, 635–638 (1999).

    CAS  PubMed  Google Scholar 

  122. Deftos, M. L., He, Y. W., Ojala, E. W. & Bevan, M. J. Correlating notch signaling with thymocyte maturation. Immunity 9, 777–786 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. He, Y. W. Orphan nuclear receptors in T lymphocyte development. J. Leukoc. Biol. 72, 440–446 (2002).

    CAS  PubMed  Google Scholar 

  124. Girard, L. et al. Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev. 10, 1930–1944 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Beverly, L. J. & Capobianco, A. J. Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell 3, 551–564 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Dumortier, A. et al. Notch activation is an early and critical event during t-cell leukemogenesis in Ikaros-deficient mice. Mol. Cell. Biol. 26, 209–220 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dupuy, A. J. et al. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Yeoh, E. J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Garces, C. et al. Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J. Biol. Chem. 272, 29729–29734 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Petit, A. et al. New protease inhibitors prevent γ-secretase-mediated production of αβ40/42 without affecting Notch cleavage. Nature Cell Biol. 3, 507–511 (2001).

    CAS  Google Scholar 

  131. Fortini, M. E. γ-Secretase-mediated proteolysis in cell-surface-receptor signalling. Nature Rev. Mol. Cell Biol. 3, 673–84 (2002).

    Article  CAS  Google Scholar 

  132. Wong, G. T. et al. Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J. Biol. Chem. 279, 12876–12882 (2004). The first report that documents the long-term effects of oral administration of GSIs in mice. The authors provide evidence that significant side effects are due to inhibition of Notch signalling, including arrest of T-cell development and aberrant differentiation of gut epithelium.

    Article  CAS  PubMed  Google Scholar 

  133. Minter, L. M. et al. Inhibitors of γ-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nature Immunol. 6, 680–688 (2005).

    Article  CAS  Google Scholar 

  134. O'Neil, J. et al. TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 5, 587–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Feldman, B. J., Hampton, T. & Cleary, M. L. A carboxy-terminal deletion mutant of Notch1 accelerates lymphoid oncogenesis in E2APBX1 transgenic mice. Blood 96, 1906–1913 (2000).

    CAS  PubMed  Google Scholar 

  136. Mikkers, H. & Berns, A. Retroviral insertional mutagenesis: tagging cancer pathways. Adv. Cancer Res. 88, 53–99 (2003).

    CAS  PubMed  Google Scholar 

  137. Collier, L. S. et al. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Langenau, D. M. et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 299, 887–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Langenau, D. M. et al. In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc. Natl Acad. Sci. USA 101, 7369–7374 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Langenau, D. M. et al. Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 102, 6068–6073 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Okajima, T., Xu, A., Lei, L. & Irvine, K. D. Chaperone activity of protein O-fucosyltransferase 1 promotes notch receptor folding. Science 307, 1599–1603 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Selkoe, D. & Kopan, R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci. 26, 565–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Shah, S. et al. Nicastrin functions as a γ-secretase-substrate receptor. Cell 122, 435–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Nam, Y., Weng, A. P., Aster, J. C. & Blacklow, S. C. Structural requirements for assembly of the CSL–intracellular Notch1–Mastermind-like 1 transcriptional activation complex. J. Biol. Chem. 278, 21232–21239 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Lubman, O. Y., Korolev, S. V. & Kopan, R. Anchoring notch genetics and biochemistry; structural analysis of the ankyrin domain sheds light on existing data. Mol. Cell 13, 619–626 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Fryer, C. J. et al. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev. 16, 1397–1411 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wallberg, A. E., Pedersen, K., Lendahl, U. & Roeder, R. G. p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol. Cell. Biol. 22, 7812–7819 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jeffries, S., Robbins, D. J. & Capobianco, A. J. Characterization of a high-molecular-weight Notch complex in the nucleus of Notch(ic)-transformed RKE cells and in a human T-cell leukemia cell line. Mol. Cell. Biol. 11, 3927–3941 (2002).

    Article  CAS  Google Scholar 

  149. Berdnik, D., Torok, T., Gonzalez-Gaitan, M. & Knoblich, J. A. The endocytic protein α-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev. Cell 3, 221–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. McGill, M. A. & McGlade, C. J. Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J. Biol. Chem. 278, 23196–23203 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Matsuno, K. et al. Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development 121, 2633–2644 (1995).

    CAS  PubMed  Google Scholar 

  152. Lai, E. C. Protein degradation: four E3s for the notch pathway. Curr. Biol. 12, R74–R78 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Fryer, C. J., White, J. B. & Jones, K. A. Mastermind recruits CycC–CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell 16, 509–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Lu, M., Gong, Z. Y., Shen, W. F. & Ho, A. D. The tcl-3 proto-oncogene altered by chromosomal translocation in T-cell leukemia codes for a homeobox protein. EMBO J. 10, 2905–2910 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hatano, M. et al. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 253, 79–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  156. Kennedy, M. A. et al. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc. Natl Acad. Sci. USA 88, 8900–8904 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dube, I. D. et al. A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). Blood 78, 2996–3003 (1991).

    CAS  PubMed  Google Scholar 

  158. Hansen-Hagge, T. E. et al. Disruption of the RanBP17/Hox11L2 region by recombination with the TCRδ locus in acute lymphoblastic leukemias with t(5;14)(q34;q11). Leukemia 16, 2205–2212 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Wang, J. et al. The t(14;21)(q11. 2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc. Natl Acad. Sci. USA 97, 3497–3502 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mellentin, J. D., Smith, S. D. & Cleary, M. L. lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 58, 77–83 (1989).

    Article  CAS  PubMed  Google Scholar 

  161. Begley, C. G. et al. Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor δ-chain diversity region and results in a previously unreported fusion transcript. Proc. Natl Acad. Sci. USA 86, 2031–2035 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chen, Q. et al. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J. 9, 415–424 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Xia, Y. et al. TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc. Natl Acad. Sci. USA 88, 11416–11420 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Finger, L. R. et al. A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science 234, 982–985 (1986).

    Article  CAS  PubMed  Google Scholar 

  165. McKeithan, T. W. et al. Molecular cloning of the breakpoint junction of a human chromosomal 8;14 translocation involving the T-cell receptor α-chain gene and sequences on the 3′ side of MYC. Proc. Natl Acad. Sci. USA 83, 6636–6640 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Shima, E. A. et al. Gene encoding the α chain of the T-cell receptor is moved immediately downstream of c-myc in a chromosomal 8;14 translocation in a cell line from a human T-cell leukemia. Proc. Natl Acad. Sci. USA 83, 3439–3443 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Greenberg, J. M. et al. Segmental and developmental regulation of a presumptive T-cell oncogene in the central nervous system. Nature 344, 158–160 (1990).

    Article  CAS  PubMed  Google Scholar 

  168. McGuire, E. A. et al. The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol. Cell. Biol. 9, 2124–2132 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Boehm, T. et al. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc. Natl Acad. Sci. USA 88, 4367–4371 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Royer-Pokora, B., Loos, U. & Ludwig, W. D. TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene 6, 1887–1893 (1991).

    CAS  PubMed  Google Scholar 

  171. Hussey, D. J. et al. The (4;11)(q21;p15) translocation fuses the NUP98 and RAP1GDS1 genes and is recurrent in T-cell acute lymphocytic leukemia. Blood 94, 2072–2079 (1999).

    CAS  PubMed  Google Scholar 

  172. Carlson, K. M. et al. Identification and molecular characterization of CALM–AF10 fusion products in T cell acute lymphoblastic leukemia and acute myeloid leukemia. Leukemia 14, 100–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Ferrando, A. A. & Look, A. T. Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin. Hematol. 37, 381–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Zweidler-McKay, P. A. & Pear, W. S. Notch and T cell malignancy. Semin. Cancer Biol. 14, 329–340 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Aster, J. C. & Pear, W. S. Notch signaling in leukemia. Curr. Opin. Hematol. 8, 237–244 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. A. Ferrando and W. S. Pear for permission to modify their original figures and J. Gilbert for editorial review. C.G. is supported by the Lady Tata Memorial Trust. Research in the Look and von Boehmer laboratories is supported by a programme project grant from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Thomas Look.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

acute lymphoblastic leukaemia

chronic myeloid leukaemia

FURTHER INFORMATION

Atlas of Genetics and Cytogenetics in Oncology and Haematology

Locus Link

Glossary

Double-negative

Immature thymocytes that do not express CD4 or CD8 cell-surface markers and have not yet undergone gene rearrangement to produce a functional TCR. Double negative thymocytes can be divided up into 4 subsets (DN1–DN4) that reflect their maturation status.

Episomal elements

Extra-chromosomal DNA (such as a plasmid). Amplification of a DNA segment followed by circularization can result in the generation of episomal DNA (for example the NUP214–ABL1 gene fusion).

Double-positive

Thymocytes expressing both the CD4 and CD8 cell-surface markers after successful rearrangement of a functional TCRβ chain.

γ-Secretase inhibitor

Ligand binding to Notch 1 initiates two successive proteolytic cleavages (S2 and S3). The S2 cleavage allows access of the γ-secretase complex, which is responsible for the second proteolytic cleavage (S3). This cleavage liberates the intracellular domain of Notch 1 (ICN1), which translocates the nucleus to activate gene transcription. So, inhibition of the γ-secretase complex prevents the activation of Notch signalling pathways.

PEST domain

A motif that contains the amino-acids proline (P), glutamic acid (E), serine (S) and threonine (T) that is involved in targeting proteins for degradation through the ubiquitin-26S proteosome pathway.

V-D-J recombination

The TCRB locus contains V, D and J segments, similar to the immunoglobulin heavy-chain locus, that are rearranged into diverse combinations that increase the repertoire of antigens recognized by the T-cell receptor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabher, C., von Boehmer, H. & Look, A. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 6, 347–359 (2006). https://doi.org/10.1038/nrc1880

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1880

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing