Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

HSP90 and the chaperoning of cancer

Key Points

  • Most heat-shock proteins (HSPs) are constitutively expressed molecular chaperones that guide the normal folding, intracellular disposition and proteolytic turnover of many of the key regulators of cell growth and survival. Their levels of intracellular expression increase in response to protein-denaturing stressors, such as temperature change, as an evolutionarily conserved response to restore the normal protein-folding environment and to enhance cell survival.

  • The essential chaperoning functions of HSPs are subverted during oncogenesis to make malignant transformation possible and to facilitate rapid somatic evolution.

  • Functioning as biochemical buffers for the numerous genetic lesions that are present within tumours, chaperones, especially HSP90, allow mutant proteins to retain or even gain function while permitting cancer cells to tolerate the imbalanced signalling that such oncoproteins create.

  • Highly specific inhibitors of HSP90 have been identified that redirect its chaperoning activity and decrease cellular levels of the many cancer-related client proteins that depend on it for their function.

  • The use of HSP90 inhibitors has proven invaluable at a basic level in probing the complex cellular functions of this chaperone.

  • The modulation of client protein levels has been demonstrated in animal models and cancer patients following systemically well-tolerated exposure to the HSP90 inhibitor 17AAG, which is the first in its class.

  • Work is ongoing to identify and develop new HSP90 inhibitors with improved pharmacological properties.

  • The best way to exploit the novel mechanism of action of HSP90 inhibitors for anticancer therapy remains to be defined, but probably involves combination with conventional cytotoxic drugs or other molecularly targeted agents.

Abstract

Standing watch over the proteome, molecular chaperones are an ancient and evolutionarily conserved class of proteins that guide the normal folding, intracellular disposition and proteolytic turnover of many of the key regulators of cell growth, differentiation and survival. This essential guardian function is subverted during oncogenesis to allow malignant transformation and to facilitate rapid somatic evolution. Pharmacologically 'bribing' the essential guard duty of the chaperone HSP90 (heat-shock protein of 90 kDa) seems to offer a unique anticancer strategy of considerable promise.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Participation of molecular chaperones in regulating many aspects of post-translational protein homeostasis.
Figure 2: The role of chaperone cycling in regulating the function and turnover of client proteins such as the oestrogen receptor.
Figure 3: Depiction of chaperone interactions that modulate the function of p53 and how they are altered on mutation of this tumour suppressor.
Figure 4: Structure of the HSP90 dimer.

Similar content being viewed by others

References

  1. Wegele, H., Muller, L. & Buchner, J. Hsp70 and Hsp90 — a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol. 151, 1–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Takayama, S., Reed, J. C. & Homma, S. Heat-shock proteins as regulators of apoptosis. Oncogene 22, 9041–9047 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Dymock, B. W., Drysdale, M. J., McDonald, E. & Workman, P. Inhibitors of HSP90 and other chaperones for the treatment of cancer. Expert. Opin. Ther. Patents 14, 837–847 (2004).

    Article  CAS  Google Scholar 

  4. Morimoto, R. I. & Santoro, M. G. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nature Biotechnol. 16, 833–838 (1998).

    Article  CAS  Google Scholar 

  5. Leppa, S. & Sistonen, L. Heat shock response — pathophysiological implications. Ann. Med. 29, 73–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Jolly, C. & Morimoto, R. I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 92, 1564–1572 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Smith, D. F., Whitesell, L. & Katsanis, E. Molecular chaperones: biology and prospects for pharmacological intervention. Pharm. Rev. 50, 493–513 (1998).

    CAS  PubMed  Google Scholar 

  8. Buchner, J. Hsp90 & Co.—a holding for folding. Trends biochem. Sci. 24, 136–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Csermely, P., Schnaider, T., Soti, C., Prohaskka, Z. & Nardai, G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 79, 129–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Picard, D. et al. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348, 166–168 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Freeman, B. C. & Yamamoto, K. R. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296, 2232–2235 (2002). Surprising evidence that chaperones not only have a role in regulating the activation of signal transduction pathways, but can also modulate cellular activities by assisting in the termination of transcriptional responses.

    Article  CAS  PubMed  Google Scholar 

  12. Zeng, Y., Feng, H., Graner, M. W. & Katsanis, E. Tumor-derived, chaperone-rich cell lysate activates dendritic cells and elicits potent antitumor immunity. Blood 101, 4485–4491 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Parmiani, G. et al. Heat shock proteins and their use as anticancer vaccines. Clin. Cancer Res. 10, 8142–8146 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, D. F. et al. Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol.Cell. Biol. 15, 6804–6812 (1995). Describes the cyclical chaperone interactions that were shown in rabbit reticulocyte lysate to regulate the high affinity binding of hormone by steroid receptors and how this cycling is disrupted by geldanamycin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nathan, D. E., Vos, M. H. & Lindquist, S. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc. Natl Acad. Sci. USA 94, 12949–12956 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pratt, W. B. The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc. Soc. Exp. Biol. Med. 217, 420–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, R. et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715–727 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Morimoto, R. I. Dynamic remodeling of transcription complexes by molecular chaperones. Cell 110, 281–284 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Sollars, V. et al. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genet. 33, 70–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Sangster, T. A., Queitsch, C. & Lindquist, S. Hsp90 and chromatin: where is the link? Cell Cycle 2, 166–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998). Groundbreaking report that the chaperone function of HSP90 can buffer genetic variation in D. melanogaster , allowing it to accumulate silently until it is released in the face of environmental stress to be acted on by natural selection.

    Article  CAS  PubMed  Google Scholar 

  22. Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Ruden, D. M., Garfinkel, M. D., Sollars, V. E. & Lu, X. Waddington's widget: Hsp90 and the inheritance of acquired characters. Semin. Cell Dev. Biol. 14, 301–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Sangster, T. A., Lindquist, S. & Queitsch, C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 26, 348–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Rutherford, S. L. Between genotype and phenotype: protein chaperones and evolvability. Nature Rev. Genet. 4, 263–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Bagatell, R. & Whitesell, L. Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol. Cancer Ther. 3, 1021–1030 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Gatenby, R. A. & Vincent, T. L. An evolutionary model of carcinogenesis. Cancer Res. 63, 6212–6220 (2003).

    CAS  PubMed  Google Scholar 

  28. Kimura, E. et al. Correlation of the survival of ovarian cancer patients with mRNA expression of the 60kDa heat shock protein Hsp60. J. Clin. Oncol. 11, 891–898 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Ciocca, D. R. et al. Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J. Natl Cancer Inst. 85, 570–574 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Conroy, S. E., Sasieni, P. D., Fentiman, I. & Latchman, D. S. Autoantibodies to the 90kDa heat shock protein and poor survival in breast cancer patients. Eur. J. Cancer 34, 942–943 (1998).

    CAS  PubMed  Google Scholar 

  31. Ralhan, R. & Kaur, J. Differential expression of Mr 70, 000 heat shock protein in normal, premalignant, and malignant human uterine cervix. Clin. Cancer Res. 1, 1217–1222 (1995).

    CAS  PubMed  Google Scholar 

  32. Kaur, J. & Ralhan, R. Differential expression of 70-kDa heat shock-protein in human oral tumorigenesis. Int. J. Cancer 63, 774–779 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Santarosa, M., Favaro, D., Quaia, M. & Galligioni, E. Expression of heat shock protein 72 in renal cell carcinoma: possible role and prognostic implications in cancer patients. Eur. J. Cancer 33, 873–877 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Chant, I. D., Rose, P. E. & Morris, A. G. Analysis of heat shock protein expression in myeloid leukaemia cells by flow cytometry. Br. J. Haematol. 90, 163–168 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Yufu, Y., Nishimura, J. & Nawata, H. High constitutive expression of heat shock protein 90α in human acute leukemia cells. Leuk. Res. 16, 597–605 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Jameel, A. et al. Clinical and biological significance of Hsp90a in human breast cancer. Int. J. Cancer 50, 409–415 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Yano, M., Naito, Z., Tanaka, S. & Asano, G. Expression and roles of heat shock proteins in human breast cancer. Jpn. J. Cancer Res. 87, 908–915 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nanbu, K. et al. Prognostic significance of heat shock proteins HSP70 and HSP90 in endometrial carcinomas. Cancer Detect. Prev. 22, 549–555 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Trieb, K. et al. Antibodies to heat shock protein 90 in osteosarcoma patients correlate with response to neoadjuvant chemotherapy. BR. J. Cancer 82, 85–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Mosser, D. D. & Morimoto, R. I. Molecular chaperones and the stress of oncogenesis. Oncogene 23, 2907–2918 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Jaattela, M. Escaping cell death: survival proteins in cancer. Exp. Cell Res. 248, 30–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Hannun, Y. Apoptosis and the dilemma of cancer chemotherapy. Blood 89, 1845–1853 (1997).

    CAS  PubMed  Google Scholar 

  43. Sliutz, G. et al. Drug resistance against gemcitabine and topotecan mediated by constitutive hsp70 overexpression in vitro: implication of quercetin as sensitiser in chemotherapy. Br. J. Cancer 74, 172–177 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mosser, D. D. et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol. Cell. Biol. 20, 7146–7159 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Steel, R. et al. Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J. Biol. Chem. 279, 51490–51499 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Mosser, D. D., Caron, A. W., Bourget, L., Denis-Larose, C. & Massie, B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell. Biol. 17, 5317–5327 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nylandsted, J. et al. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc. Natl Acad. Sci. USA 97, 7871–7876 (2000). Demonstrates differential requirements for HSP70 in the growth and survival of breast cancer cells compared with normal cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rohde, M. et al. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev. 19, 570–582 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Basso, A. D. et al. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J. Biol. Chem. 277, 39858–39866 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Vanden Berghe, T., Kalai, M., van Loo, G., Declercq, W. & Vandenabeele, P. Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J. Biol. Chem. 278, 5622–5629 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, G., Cao, P. & Goeddel, D. V. TNF-induced recruitment and activation of the IkK complex require Cdc37 and Hsp90. Mol. Cell 9, 401–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, Y., Singer, M. A. & Lindquist, S. Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proc. Natl Acad. Sci. USA 96, 109–114 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oppermann, H., Levinson, W. & Bishop, J. M. A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat-shock protein. Proc. Natl Acad. Sci. USA 78, 1067–1071 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brugge, J., Yonemoto, W. & Darrow, D. Interaction between the Rous sarcoma virus transforming protein and two cellular phosphoproteins: analysis of the turnover and distribution of this complex. Mol. Cell. Biol. 3, 9–19 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu, Y. & Lindquist, S. Heat-shock protein hsp90 governs the activity of pp60vsrc kinase. Proc. Natl Acad. Sci. USA 90, 7074–7078 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Whitesell, L., Mimnaugh, E. G., De Costa, B., Myers, C. E. & Neckers, L. M. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. USA 91, 8324–8328 (1994). Identification of geldanamycin as the first small-molecule inhibitor of HSP90 chaperone function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Muller, L., Schaupp, A., Walerych, D., Wegele, H. & Buchner, J. Hsp90 regulates the activity of wild type p53 under physiological and elevated temperatures. J. Biol. Chem. 279, 48846–48854 (2004).

    Article  PubMed  CAS  Google Scholar 

  58. Walerych, D. et al. Hsp90 chaperones wild-type p53 tumor suppressor protein. J. Biol. Chem. 279, 48836–48845 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Whitesell, L., Sutphin, P. D., Pulcini, E. J., Martinez, J. D. & Cook, P. H. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol. Cell. Biol. 18, 1517–1524 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Blagosklonny, M. V., Toretsky, J., Bohen, S. & Neckers, L. Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc. Natl Acad. Sci. USA 93, 8379–8383 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sepehrnia, B., Paz, I. B., Dasgupta, G. & Momand, J. Heat shock protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell. J. Biol. Chem. 271, 15084–15090 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Sreedhar, A. S., Kalmar, E., Csermely, P. & Shen, Y. F. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett. 562, 11–15 (2004).

    Article  PubMed  CAS  Google Scholar 

  63. Eustace, B. K. et al. Functional proteomic screens reveal an essential extracellular role for hsp90 α in cancer cell invasiveness. Nature Cell Biol. 6, 507–514 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Grammatikakis, N. et al. The role of Hsp90N, a new member of the Hsp90 family, in signal transduction and neoplastic transformation. J. Biol. Chem. 277, 8312–8320 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Pearl, L. H. & Prodromou, C. Structure, function, and mechanism of the Hsp90 molecular chaperone. Adv. Protein Chem. 59, 157–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Prodromou, C. & Pearl, L. H. Structure and functional relationships of Hsp90. Curr. Cancer Drug Targets 3, 301–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Stebbins, C. E. et al. Crystal structure of an hsp90–geldanamycin complex: targeting of a protein chaperone by an anti-tumor agent. Cell 89, 239–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Prodromou, C. et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65–75 (1997). Identification and characterization of the binding pocket for geldanamycin on HSP90 as an atypical ATPase site.

    Article  CAS  PubMed  Google Scholar 

  69. Meyer, P. et al. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell 11, 647–658 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Huai, Q. et al. Structures of the N-terminal and middle domains of E. coli Hsp90 and conformation changes upon ADP binding. Structure (Camb) 13, 579–590 (2005).

    Article  CAS  Google Scholar 

  71. Harris, S. F., Shiau, A. K. & Agard, D. A. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure (Camb) 12, 1087–1097 (2004).

    Article  CAS  Google Scholar 

  72. Dutta, R. & Inouye, M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 25, 24–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. McLaughlin, S. H., Ventouras, L. A., Lobbezoo, B. & Jackson, S. E. Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J. Mol. Biol. 344, 813–826 (2004). Biophysical evidence for an alternative to the 'molecular clamp' model of HSP90 chaperoning action.

    Article  CAS  PubMed  Google Scholar 

  74. Roe, S. M. et al. The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116, 87–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Pearl, L. H. Hsp90 and Cdc37 — a chaperone cancer conspiracy. Curr. Opin. Genet. Dev. 15, 55–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Soti, C., Racz, A. & Csermely, P. A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. J. Biol. Chem. 277, 7066–7075 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Meyer, P. et al. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. Embo J. 23, 511–519 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Panaretou, B. et al. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell 10, 1307–1318 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Garnier, C. et al. Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J. Biol. Chem. 277, 12208–12214 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Scheufler, C. et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell 101, 199–210 (2000). Structural elucidation of how multichaperone complexes can be formed by adapter proteins.

    Article  CAS  PubMed  Google Scholar 

  81. Prodromou, C. et al. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. Embo J. 18, 754–762 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, Y. S., Marcu, M. G. & Neckers, L. Quantum chemical calculations and mutational analysis suggest heat shock protein 90 catalyzes trans-cis isomerization of geldanamycin. Chem. Biol. 11, 991–998 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Roe, S. M. et al. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42, 260–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Xu, W. et al. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl Acad. Sci. USA 99, 12847–12852 (2002). Identification of a mechanism by which chaperone interactions regulate the cellular level of a receptor-linked tyrosine kinase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nathan, D. F. & Lindquist, S. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol. Cell. Biol. 15, 3917–3925 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Birnby, D. A. et al. A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics 155, 85–104 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yue, L. et al. Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis. Genetics 151, 1065–1079 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. LeBlanc, R. et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res. 62, 4996–5000 (2002).

    CAS  PubMed  Google Scholar 

  89. Kim, J. et al. Development of a fluorescence polarization assay for the molecular chaperone Hsp90. J. Biomol. Screen. 9, 375–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Kamal, A., Boehm, M. F. & Burrows, F. J. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol. Med. 10, 283–290 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407–410 (2003). First evidence that HSP90 in tumour cells is found in multimolecular complexes with higher affinity for 17AAG than the largely uncomplexed HSP90 found in normal cells. This paper provides a biochemical explanation for why a useful therapeutic index might exist for HSP90 inhibitors.

    Article  CAS  PubMed  Google Scholar 

  92. Workman, P. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol. Med. 10, 47–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Yun, B. G., Huang, W., Leach, N., Hartson, S. D. & Matts, R. L. Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions. Biochemistry 43, 8217–8229 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Marcu, M. G., Schulte, T. W. & Neckers, L. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J. Natl Cancer Inst. 92, 242–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Marcu, M. G., Chadli, A., Bouhouche, I., Catelli, M. & Neckers, L. M. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the C-terminus of the chaperone. J. Biol. Chem. 275, 37181–37186 (2000). Biochemical evidence for a second, cryptic ATP-binding site in HSP90 that binds the antibiotic novobiocin, albeit with very low affinity.

    Article  CAS  PubMed  Google Scholar 

  96. Itoh, H. et al. A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90. Biochem. J. 343, 697–703 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rosenhagen, M. C. et al. The heat shock protein 90-targeting drug cisplatin selectively inhibits steroid receptor activation. Mol. Endocrinol. 17, 1991–2001 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. McIlwrath, A. J., Brunton, V. G. & Brown, R. Cell-cycle arrest and p53 accumulation induced by geldanamycin in human ovarian tumour cells. Cancer Chemother. Pharmacol. 37, 423–428 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Nomura, M. et al. Geldanamycin induces mitotic catastrophe and subsequent apoptosis in human glioma cells. J. Cell. Physiol. 201, 374–384 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Srethapakdi, M., Liu, F., Tavorath, R. & Rosen, N. Inhibition of Hsp90 function by ansamycins causes retinoblastoma gene product-dependent G1 arrest. Cancer Res. 60, 3940–3946 (2000).

    CAS  PubMed  Google Scholar 

  101. Hostein, I., Robertson, D., DiStefano, F., Workman, P. & Clarke, P. A. Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res. 61, 4003–4009 (2001).

    CAS  PubMed  Google Scholar 

  102. Bagatell, R., Beliakoff, J., David, C. L., Marron, M. T. & Whitesell, L. Hsp90 inhibitors deplete key anti-apoptotic proteins in pediatric solid tumor cells and demonstrate synergistic anticancer activity with cisplatin. Int. J. Cancer 113, 179–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Munster, P. N., Basso, A., Solit, D., Norton, L. & Rosen, N. Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. See: E. A. Sausville, Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters, Clin. Cancer Res. 7, 2155–2158 (2001). Clin. Cancer Res. 7, 2228–2236 (2001). Evidence for the ability of HSP90 inhibitors to increase the anticancer activity of cytotoxic chemotherapeutic agents.

    Google Scholar 

  104. Basso, A. D., Solit, D. B., Munster, P. N. & Rosen, N. Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 21, 1159–1166 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Maloney, A., Clarke, P. A. & Workman, P. Genes and proteins governing the cellular sensitivity to HSP90 inhibitors: a mechanistic perspective. Curr. Cancer Drug Targets 3, 331–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Gorre, M. E., Ellwood-Yen, K., Chiosis, G., Rosen, N. & Sawyers, C. L. BCR–ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR–ABL chaperone heat shock protein 90. Blood 100, 3041–3044 (2002). Clinical BCR–ABL mutations that render the kinase resistant to the active site inhibitor imatinib (Glivec) remain HSP90-dependent and, as a result, quite sensitive to geldanamycin-stimulated degradation. Such a lack of cross-resistance provides the rationale for current clinical studies of 17AAG in imatinib-resistant patients.

    Article  CAS  PubMed  Google Scholar 

  107. Bonvini, P., Dalla Rosa, H., Vignes, N. & Rosolen, A. Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res. 64, 3256–3264 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Beliakoff, J. et al. Hormone-refractory breast cancer remains sensitive to the antitumor activity of heat shock protein 90 inhibitors. Clin. Cancer Res. 9, 4961–4971 (2003).

    CAS  PubMed  Google Scholar 

  109. Solit, D. B. et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/NEU and inhibits the growth of prostate cancer xenografts. Clin. Cancer Res. 8, 986–993 (2002).

    CAS  PubMed  Google Scholar 

  110. Munster, P. N., Marchion, D. C., Basso, A. D. & Rosen, N. Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3'-kinase-AKT-dependent pathway. Cancer Res. 62, 3132–3137 (2002).

    CAS  PubMed  Google Scholar 

  111. Solit, D. B., Basso, A. D., Olshen, A. B., Scher, H. I. & Rosen, N. Inhibition of heat shock protein 90 function down-regulates akt kinase and sensitizes tumors to taxol. Cancer Res. 63, 2139–2144 (2003).

    CAS  PubMed  Google Scholar 

  112. Bagatell, R. et al. Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of Hsp90 binding agents. Clin. Cancer Res. 6, 3312–3318 (2000).

    CAS  PubMed  Google Scholar 

  113. Clarke, P. A. et al. Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene. 19, 4125–4133 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Burger, A. M., Fiebig, H. H., Stinson, S. F. & Sausville, E. A. 17-(Allylamino)-17-demethoxygeldanamycin activity in human melanoma models. Anticancer Drugs 15, 377–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Lu, A., Ran, R., Parmentier-Batteur, S., Nee, A. & Sharp, F. R. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J. Neurochem. 81, 355–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Sittler, A. et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum. Mol. Genet. 10, 1307–1315 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Auluck, P. K., Meulener, M. C. & Bonini, N. M. Mechanisms of suppression of α-synuclein neurotoxicity by geldanamycin in Drosophila. J. Biol. Chem. 280, 2873–2878 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Egorin, M. J. et al. Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1. Cancer Chemother. Pharmacol. 47, 291–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Kelland, L. R., Sharp, S. Y., Rogers, P. M., Myers, T. G. & Workman, P. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J. Natl Cancer Inst. 91, 1940–1949 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Goetz, M. P. et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J. Clin. Oncol. 23, 1078–1087 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Rajkumar, S. V., Richardson, P. G., Hideshima, T. & Anderson, K. C. Proteasome inhibition as a novel therapeutic target in human cancer. J. Clin. Oncol. 23, 630–639 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Grem, J. L. et al. Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J. Clin. Oncol. 23, 1885–1893 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Banerji, U. et al. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol. 23, 4152–4161 (2005). Report of a phase I trial of 17AAG demonstrating the modulation of HSP90 function by systemically tolerable drug exposures and the stabilization of disease in two melanoma patients.

    Article  CAS  PubMed  Google Scholar 

  124. Enmon, R. et al. Combination treatment with 17-N-allylamino-17-demethoxy geldanamycin and acute irradiation produces supra-additive growth suppression in human prostate carcinoma spheroids. Cancer Res. 63, 8393–8399 (2003).

    CAS  PubMed  Google Scholar 

  125. Bisht, K. S. et al. Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res. 63, 8984–8995 (2003).

    CAS  PubMed  Google Scholar 

  126. McCollum, A., Toft, D. O. & Erlichman, C. Geldanamycin enhances cisplatin cytotoxicity through loss of Akt activation in A549 cells. Clin. Cancer Res. 9 (Suppl.), 6178 (2003).

    Google Scholar 

  127. Vasilevskaya, I. A., Rakitina, T. V. & O'Dwyer, P. J. Geldanamycin and its 17-allylamino-17-demethoxy analogue antagonize the action of cisplatin in human colon adenocarcinoma cells: differential caspase activation as a basis for interaction. Cancer Res. 63, 3241–3246 (2003).

    CAS  PubMed  Google Scholar 

  128. Mimnaugh, E. G. et al. Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol. Cancer Ther. 3, 551–566 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Mitsiades, C. S., Mitsiades, N., Richardson, P. G., Treon, S. P. & Anderson, K. C. Novel biologically based therapies for Waldenstrom's macroglobulinemia. Semin. Oncol. 30, 309–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Rahmani, M. et al. Coadministration of the heat shock protein 90 antagonist 17-allylamino- 17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res. 63, 8420–8427 (2003).

    CAS  PubMed  Google Scholar 

  131. Yu, X. et al. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl Cancer Inst. 94, 504–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Dymock, B. et al. Adenine derived inhibitors of the molecular chaperone HSP90–SAR explained through multiple X-ray structures. Bioorg. Med. Chem. Lett. 14, 325–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Chiosis, G., Lucas, B., Shtil, A., Huezo, H. & Rosen, N. Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg. Med. Chem. 10, 3555–3564 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Rowlands, M. G. et al. High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal. Biochem. 327, 176–183 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Turbyville, T. J., Wijeratne, E. M. K., Whitesell, L. & Gunatilaka, A. A. L. The anticancer activity of the fungal metabolite terrecyclic acid A is associated with modulation of multiple cellular stress response pathways. Mol. Cancer Ther. (in the press).

  136. Barbosa, J. A. et al. Discovery of novel small molecule Hsp90 complex inhibitors using a forward chemical genetics approach. Clin. Cancer Res. 9 (Suppl.), 6176 (2003).

    Google Scholar 

  137. Kuduk, S. D. et al. Synthesis and evaluation of geldanamycin-testosterone hybrids. Bioorg. Med. Chem. Lett. 10, 1303–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Zheng, F. F. et al. Identification of a geldanamycin dimer that induces the selective degradation of HER-family tyrosine kinases. Cancer Res. 60, 2090–2094 (2000).

    CAS  PubMed  Google Scholar 

  139. Patel, K. et al. Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition. Chem. Biol. 11, 1625–1633 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Soga, S. et al. KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res. 59, 2931–2938 (1999).

    CAS  PubMed  Google Scholar 

  141. Eiseman, J. L. et al. Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C. B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother. Pharmacol. 55, 21–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Schulte, T. W. et al. Destabilization of Raf-1 by geldanamycin leads to disruption of the RAF-1-MEK-mitogen-activated protein kinase signalling pathway. Mol. Cell. Biol. 16, 5839–5845 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Stepanova, L., Leng, X., Parker, S. B. & Harper, J. W. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Devel. 10, 1491–1502 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Holt, S. E. et al. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Devel. 13, 817–824 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Isaacs, J. S. et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 α-degradative pathway. J. Biol. Chem. 277, 29936–29944 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Falsone, F. M., Leptihn, S., Osterauer, A., Haslbeck, M. & Buchner, J. Oncogenic mutations reduce the stability of Src kinase. J. Mol. Biol. 344, 281–291 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Whitesell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CYP40

ER

HIP

HOP

HSP70

HSP90

p53

SRC

National Cancer Institute

breast cancer

FURTHER INFORMATION

Annotated summary of known HSP90 client proteins

PDQ database of current clinical trials of HSP90 inhibitors

Home page of Cell Stress Society International

Glossary

CHAPERONE

A class of proteins that prevent improper associations and assist in the correct folding and maturation of other cellular proteins collectively termed clients and substrates. In most cases, chaperones do not participate in the final mature structures that their clients form.

GELDANAMYCIN

Natural-product antibiotic of the benzoquinone ansamycin class that inhibits the chaperone activity of HSP90.

CANALIZATION

The funnelling of variation into discrete, well-defined outcomes, especially during developmental processes.

RADICICOL

Natural-product antibiotic of the macrolide class that inhibits the chaperone activity of HSP90.

ISOMERIZATION

A change in the structural organization of a compound without altering its underlying chemical composition.

DAUER DEVELOPMENTAL ARREST

An alternate third stage of larval development in C. elegans that enhances survival of the organism under harsh conditions.

FORWARD CHEMICAL-GENETIC APPROACH

The use of small-molecule chemical libraries to generate phenotypes of interest in a manner analogous to mutagenesis in classical genetic screens. Any active compounds found can be used to identify the proteins involved in regulating biological processes, to provide molecular insights into how specific proteins perform their biological functions and to identify lead compounds for the development of useful therapeutics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitesell, L., Lindquist, S. HSP90 and the chaperoning of cancer. Nat Rev Cancer 5, 761–772 (2005). https://doi.org/10.1038/nrc1716

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing