Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Immunotherapy and chemotherapy — a practical partnership

Abstract

This article discusses how recent data have altered the way we understand how dying tumour cells, particularly those killed by chemotherapy, engage with antitumour immune responses. These data have significant implications for the development of new protocols combining chemotherapy with immunotherapy, indicating an exciting potential for therapeutic synergy with general applicability to many cancer types.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The six steps necessary for an effective antitumour CD8+ T-cell response.
Figure 2: Apoptosis delivers increased antigen loads into the antigen-presentation pathway.
Figure 3: Established tumours can be cured when immunotherapy is delivered following apoptosis induction.

Similar content being viewed by others

References

  1. Raff, M. C. Social controls on cell survival and cell death. Nature 356, 397–400 (1992).

    Article  CAS  Google Scholar 

  2. Degterev, A., Boyce, M. & Yuan, J. A decade of caspases. Oncogene 22, 8543–8567 (2003).

    Article  CAS  Google Scholar 

  3. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    CAS  Google Scholar 

  4. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  Google Scholar 

  5. Restifo, N. P. Building better vaccines: how apoptotic cell death can induce inflammation and activate innate and adaptive immunity. Curr. Opin. Immunol. 12, 597–603 (2000).

    Article  CAS  Google Scholar 

  6. Sotomayor, E. M. et al. Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood 98, 1070–1077 (2001).

    Article  CAS  Google Scholar 

  7. Cuenca, A. et al. Extra-lymphatic solid tumor growth is not immunologically ignored and results in early induction of antigen-specific T-cell anergy: dominant role of cross-tolerance to tumor antigens. Cancer Res. 63, 9007–9015 (2003).

    CAS  PubMed  Google Scholar 

  8. Ozoren, N. & El-Deiry, W. S. Cell surface Death Receptor signaling in normal and cancer cells. Semin. Cancer Biol. 13, 135–147 (2003).

    Article  Google Scholar 

  9. Mesner, P. W. Jr, Budihardjo, II & Kaufmann, S. H. Chemotherapy-induced apoptosis. Adv. Pharmacol. 41, 461–499 (1997).

    Article  CAS  Google Scholar 

  10. Kaufmann, S. H. & Earnshaw, W. C. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 256, 42–49 (2000).

    Article  CAS  Google Scholar 

  11. Li, X. et al. Apoptotic cell death during treatment of leukemias. Leuk. Lymphoma 13 (Suppl. 1), 65–70 (1994).

    Article  Google Scholar 

  12. Kim, R., Nishimoto, N., Inoue, H., Yoshida, K. & Toge, T. An analysis of the therapeutic efficacy of protracted infusion of low-dose 5-fluorouracil and cisplatin in advanced gastric cancer. J. Infect. Chemother. 6, 222–228 (2000).

    Article  CAS  Google Scholar 

  13. Cassinelli, G. et al. A role for loss of p53 function in sensitivity of ovarian carcinoma cells to taxanes. Int. J. Cancer 92, 738–747 (2001).

    Article  CAS  Google Scholar 

  14. Salomons, G. S. et al. Bcl-2 family members in childhood acute lymphoblastic leukemia: relationships with features at presentation, in vitro and in vivo drug response and long-term clinical outcome. Leukemia 13, 1574–1580 (1999).

    Article  CAS  Google Scholar 

  15. Okada, H. & Mak, T. W. Pathways of apoptotic and non-apoptotic death in tumour cells. Nature Rev. Cancer 4, 592–603 (2004).

    Article  CAS  Google Scholar 

  16. Edinger, A. L. & Thompson, C. B. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663–669 (2004).

    Article  CAS  Google Scholar 

  17. Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477 (2004).

    Article  CAS  Google Scholar 

  18. Kanzawa, T. et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11, 448–457 (2004).

    Article  CAS  Google Scholar 

  19. Pagani, E. et al. DNA repair enzymes and cytotoxic effects of temozolomide: comparative studies between tumor cells and normal cells of the immune system. J. Chemother. 15, 173–183 (2003).

    Article  CAS  Google Scholar 

  20. De Vleeschouwer, S. et al. Transient local response and persistent tumor control in a child with recurrent malignant glioma: treatment with combination therapy including dendritic cell therapy. Case report. J. Neurosurg. Spine 100, 492–497 (2004).

    Google Scholar 

  21. Jordan, M. A. et al. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res. 56, 816–825 (1996).

    CAS  PubMed  Google Scholar 

  22. Russell, P. & Nurse, P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45, 145–153 (1986).

    Article  CAS  Google Scholar 

  23. Eralp, Y. et al. Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neu in a murine mammary carcinoma model. Breast Cancer Res. 6, R275–R283 (2004).

    Article  CAS  Google Scholar 

  24. Bonnotte, B. et al. Bcl-2-mediated inhibition of apoptosis prevents immunogenicity and restores tumorigenicity of spontaneously regressive tumors. J. Immunol. 161, 1433–1438 (1998).

    CAS  PubMed  Google Scholar 

  25. Leitner, W. W. et al. Apoptosis is essential for the increased efficacy of alphaviral replicase-based DNA vaccines. Vaccine 22, 1537–1544 (2004).

    Article  CAS  Google Scholar 

  26. Sasaki, S., Amara, R. R., Oran, A. E., Smith, J. M. & Robinson, H. L. Apoptosis-mediated enhancement of DNA-raised immune responses by mutant caspases. Nature Biotechnol. 19, 543–547 (2001).

    Article  CAS  Google Scholar 

  27. Chattergoon, M. A. et al. Targeted antigen delivery to antigen-presenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nature Biotechnol. 18, 974–979 (2000).

    Article  CAS  Google Scholar 

  28. Steinman, R. M., Turley, S., Mellman, I. & Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191, 411–416 (2000).

    Article  CAS  Google Scholar 

  29. Kim, S., Elkon, K. B. & Ma, X. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 21, 643–653 (2004).

    Article  CAS  Google Scholar 

  30. Rovere, P. et al. Delayed clearance of apoptotic lymphoma cells allows cross-presentation of intracellular antigens by mature dendritic cells. J. Leukoc. Biol. 66, 345–349 (1999).

    Article  CAS  Google Scholar 

  31. Feng, H., Zeng, Y., Graner, M. W. & Katsanis, E. Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood 100, 4108–4115 (2002).

    Article  CAS  Google Scholar 

  32. Golpon, H. A. et al. Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J. 18, 1716–1718 (2004).

    Article  CAS  Google Scholar 

  33. Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).

    Article  CAS  Google Scholar 

  34. Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    Article  CAS  Google Scholar 

  35. Skoberne, M., Beignon, A. S. & Bhardwaj, N. Danger signals: a time and space continuum. Trends Mol. Med. 10, 251–257 (2004).

    Article  CAS  Google Scholar 

  36. Robbins, P. in Tumor immunology: molecularly defined antigens and clinical applications (eds Parmiani, G. & Lotze, M.) 11 (Harwood Academic Publishers, London, 2002).

    Google Scholar 

  37. Novellino, L., Castelli, C. & Parmiani, G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol. Immunother. 54, 187–207 (2005).

    Article  CAS  Google Scholar 

  38. Kawakami, Y. & Rosenberg, S. A. Human tumor antigens recognized by T-cells. Immunol. Res. 16, 313–339 (1997).

    Article  CAS  Google Scholar 

  39. Marzo, A. L., Lake, R. A., Robinson, B. W. S. & Scott, B. T cell receptor transgenic analysis of tumor-specific CD8 and CD4 responses in the eradication of solid tumors. Cancer Res. 59, 1071–1079 (1999).

    CAS  PubMed  Google Scholar 

  40. Stumbles, P. A. et al. Cutting Edge: Tumor-specific CTL are constitutively cross-armed in draining lymph nodes and transiently disseminate to mediate tumor regression following systemic CD40 activation. J. Immunol. 173, 5923–5928 (2004).

    Article  CAS  Google Scholar 

  41. Nowak, A. K. et al. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J. Immunol. 170, 4905–4913 (2003).

    Article  CAS  Google Scholar 

  42. Nelson, D., Bundell, C. & Robinson, B. In vivo cross-presentation of a soluble protein antigen: kinetics, distribution, and generation of effector CTL recognizing dominant and subdominant epitopes. J. Immunol. 165, 6123–6132 (2000).

    Article  CAS  Google Scholar 

  43. Nowak, A. K., Robinson, B. W. & Lake, R. A. Gemcitabine exerts a selective effect on the humoral immune response: implications for combination chemo-immunotherapy. Cancer Res. 62, 2353–2358 (2002).

    CAS  PubMed  Google Scholar 

  44. Polak, L. & Turk, J. L. Reversal of immunological tolerance by cyclophosphamide through inhibition of suppressor cell activity. Nature 249, 654–656 (1974).

    Article  CAS  Google Scholar 

  45. Fehervari, Z. & Sakaguchi, S. Development and function of CD25+CD4+ regulatory T cells. Curr. Opin. Immunol. 16, 203–208 (2004).

    Article  CAS  Google Scholar 

  46. Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur. J. Immunol. 34, 336–344 (2004).

    Article  CAS  Google Scholar 

  47. Heath, W. R. & Carbone, F. R. Cross-presentation in viral immunity and self-tolerance. Nature Rev. Immunol. 1, 126–134 (2001).

    Article  CAS  Google Scholar 

  48. Morgan, D. J., Kreuwel, H. T. & Sherman, L. A. Antigen concentration and precursor frequency determine the rate of CD8+ T cell tolerance to peripherally expressed antigens. J. Immunol. 163, 723–727 (1999).

    CAS  PubMed  Google Scholar 

  49. Miller, J. F. & Morahan, G. Peripheral T cell tolerance. Annu. Rev. Immunol. 10, 51–69 (1992).

    Article  CAS  Google Scholar 

  50. Nowak, A. K., Robinson, B. W. & Lake, R. A. Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res. 63, 4490–4496 (2003).

    CAS  PubMed  Google Scholar 

  51. Srivastava, P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20, 395–425 (2002).

    Article  CAS  Google Scholar 

  52. Fadok, V. A., Bratton, D. L., Guthrie, L. & Henson, P. M. Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J. Immunol. 166, 6847–6854 (2001).

    Article  CAS  Google Scholar 

  53. Rad, A. N. et al. The differential influence of allogeneic tumor cell death via DNA damage on dendritic cell maturation and antigen presentation. Cancer Res. 63, 5143–5150 (2003).

    CAS  PubMed  Google Scholar 

  54. Friesen, C., Herr, I., Krammer, P. H. & Debatin, K. M. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nature Med. 2, 574–577 (1996).

    Article  CAS  Google Scholar 

  55. Bergmann-Leitner, E. S. & Abrams, S. I. Treatment of human colon carcinoma cell lines with anti-neoplastic agents enhances their lytic sensitivity to antigen-specific CD8+ cytotoxic T lymphocytes. Cancer Immunol. Immunother. 50, 445–455 (2001).

    Article  CAS  Google Scholar 

  56. Yang, S. & Haluska, F. G. Treatment of melanoma with 5-fluorouracil or dacarbazine in vitro sensitizes cells to antigen-specific CTL lysis through perforin/granzyme- and Fas-mediated pathways. J. Immunol. 172, 4599–4608 (2004).

    Article  CAS  Google Scholar 

  57. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nature Immunol. 4, 1191–1198 (2003).

    Article  CAS  Google Scholar 

  58. Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA 101, 16004–16009 (2004).

    Article  CAS  Google Scholar 

  59. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  Google Scholar 

  60. Burnet, F. M. Immunological recognition of self. Science 133, 307–311 (1961).

    Article  CAS  Google Scholar 

  61. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    Article  CAS  Google Scholar 

  62. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  Google Scholar 

  63. Janeway, C. A. Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13, 11–16 (1992).

    Article  CAS  Google Scholar 

  64. Medzhitov, R. & Janeway, C. Jr., Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000).

    Article  CAS  Google Scholar 

  65. Medzhitov, R. & Janeway, C. A. Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002).

    Article  CAS  Google Scholar 

  66. Lyons, A. B. & Parish, C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137 (1994).

    Article  CAS  Google Scholar 

  67. Oehen, S. & Brduscha-Riem, K. Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J. Immunol. 161, 5338–5346 (1998).

    CAS  PubMed  Google Scholar 

  68. Davis, M. M. et al. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    Article  CAS  Google Scholar 

  69. Miyahira, Y. et al. Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J. Immunol. Methods 181, 45–54 (1995).

    Article  CAS  Google Scholar 

  70. North, R. J. & Kirstein, D. P. T-cell–mediated concomitant immunity to syngeneic tumors. I. Activated macrophages as the expressors of nonspecific immunity to unrelated tumors and bacterial parasites. J. Exp. Med. 145, 275–292 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the current and former members of the Tumour Immunology Group, but we are particularly grateful to R. van der Most for proof reading the evolving manuscript and consistently thought-provoking debate. We apologize for our failure to fully acknowledge many important contributions to this area. This research was supported by grants from the National Health and Medical Research Council of Australia and the Cancer Council of Western Australia. R.L. is supported by the Insurance Commission of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Lake.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

BCL2

BCL-XL

CD40

FAS

IFNγ

IL-10

IL-12

IL-6

TNFα

National Cancer Institute

melanoma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lake, R., Robinson, B. Immunotherapy and chemotherapy — a practical partnership. Nat Rev Cancer 5, 397–405 (2005). https://doi.org/10.1038/nrc1613

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing