Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Profiling early head and neck cancer

Abstract

Head and neck squamous-cell carcinoma (HNSCC) is the sixth most common cancer worldwide and, disappointingly, survival rates are not improving. Moreover, HNSCC has a severe impact on the quality of life of patients and survivors, and the significant morbidity subsequent to treatment often mandates long-term multidisciplinary care, which places significant financial pressures on the treating institution. Therefore, prevention and early diagnosis of high-risk pre-malignant lesions are high priorities for reducing deaths due to head and neck cancer. Recent advances have begun to elucidate the different aetiologies of HNSCCs in relation to previous pre-malignancies and to identify which pre-malignant lesions are likely to progress to malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical pictures of leukoplakias and erythroplakias.
Figure 2: Relationships of dysplasias to carcinomas revealed by gene-expression profiling.

Similar content being viewed by others

References

  1. Lo, K. W., To, K. F. & Huang, D. P. Focus on nasopharyngeal carcinoma. Cancer Cell 5, 423–428 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ries, L. A. G. et al. SEER Cancer Statistics Review, 1975–2001 (National Cancer Institute, Bethesda, 2004).

    Google Scholar 

  3. Parkin, D. M., Whelan, S. L., Ferlay, J., Teppo, L. & Thomas, D. B. Cancer Incidence in Five Continents, Vols. V–VIII, (IARC Scientific Publication, Lyon, 2003).

    Google Scholar 

  4. Mackenzie, J. et al. Increasing incidence of oral cancer amongst young persons: what is the aetiology? Oral Oncol. 36, 387–389 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Annertz, K. et al. Incidence and survival of squamous cell carcinoma of the tongue in Scandinavia, with special reference to young adults. Int. J. Cancer 101, 95–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Schantz, S. P. & Yu, G. P. Head and neck cancer incidence trends in young Americans, 1973–1997, with a special analysis for tongue cancer. Arch. Otolaryngol. Head Neck Surg. 128, 268–274 (2002).

    Article  PubMed  Google Scholar 

  7. Rodriguez, T. et al. Risk factors for oral and pharyngeal cancer in young adults. Oral Oncol. 40, 207–213 (2004).

    Article  PubMed  Google Scholar 

  8. Chen, J. K., Katz, R. V. & Krutchkoff, D. J. Intraoral squamous cell carcinoma. Epidemiologic patterns in Connecticut from 1935 to 1985. Cancer 66, 1288–1296 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Cullen, J. W. et al. Health consequences of using smokeless tobacco: summary of the Advisory Committee's report to the Surgeon General. Public Health Rep. 101, 355–373 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Muir, C. S. & Kirk, R. Betel, tobacco, and cancer of the mouth. Br. J. Cancer 14, 597–608 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Winn, D. M. et al. Snuff dipping and oral cancer among women in the southern United States. N. Engl. J. Med. 304, 745–749 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Burns, J. E. et al. Gene mutations and increased levels of p53 protein in human squamous cell carcinomas and their cell lines. Br. J. Cancer 67, 1274–1284 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang, F. et al. Frequent mutations of p53 gene in oesophageal squamous cell carcinomas with and without human papillomavirus (HPV) involvement suggest the dominant role of environmental carcigones in oesophageal carcinogenesis. Br. J. Cancer 70, 346–351 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brennan, J. A. et al. Association between cigarette smoking and mutation of the p53 gene in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 332, 712–717 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Seitz, H. K. et al. Alcohol and cancer. Alcohol Clin. Exp. Res. 25, 137S–143S (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Poschl, G. & Seitz, H. K. Alcohol and cancer. Alcohol Alcohol 39, 155–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Hashibe, M., Ford, D. E. & Zhang, Z. F. Marijuana smoking and head and neck cancer. J. Clin. Pharmacol. 42, 103S–107S (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Z. F. et al. Marijuana use and increased risk of squamous cell carcinoma of the head and neck. Cancer Epidemiol. Biomarkers Prev. 8, 1071–1078 (1999).

    CAS  PubMed  Google Scholar 

  19. Macfarlane, G. J. et al. Alcohol, tobacco, diet and the risk of oral cancer: a pooled analysis of three case-control studies. Eur. J. Cancer B Oral Oncol. 31B, 181–187 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Macfarlane, G. J., Sharp, L., Porter, S. & Franceschi, S. Trends in survival from cancers of the oral cavity and pharynx in Scotland: a clue as to why the disease is becoming more common? Br. J. Cancer 73, 805–808 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Llewellyn, C. D., Linklater, K., Bell, J., Johnson, N. W. & Warnakulasuriya, K. A. Squamous cell carcinoma of the oral cavity in patients aged 45 years and under: a descriptive analysis of 116 cases diagnosed in the South East of England from 1990 to 1997. Oral Oncol. 39, 106–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Llewellyn, C. D., Linklater, K., Bell, J., Johnson, N. W. & Warnakulasuriya, S. An analysis of risk factors for oral cancer in young people: a case-control study. Oral Oncol. 40, 304–313 (2004).

    Article  PubMed  Google Scholar 

  23. Paz, I. B., Cook, N., Odom-Maryon, T., Xie, Y. & Wilczynski, S. P. Human papillomavirus (HPV) in head and neck cancer. An association of HPV 16 with squamous cell carcinoma of Waldeyer's tonsillar ring. Cancer 79, 595–604 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Gillison, M. L. et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl Cancer Inst. 92, 709–720 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Mork, J. et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 344, 1125–1131 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Smith, E. M. et al. Human papillomavirus in oral exfoliated cells and risk of head and neck cancer. J. Natl Cancer Inst. 96, 449–455 (2004).

    Article  PubMed  Google Scholar 

  27. Herrero, R. et al. Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. J. Natl Cancer Inst. 95, 1772–1783 (2003).

    Article  PubMed  Google Scholar 

  28. Dahlstrom, K. R. et al. Human papillomavirus type 16 infection and squamous cell carcinoma of the head and neck in never-smokers: a matched pair analysis. Clin. Cancer Res. 9, 2620–2626 (2003).

    PubMed  Google Scholar 

  29. Partridge, M., Pateromichelakis, S., Phillips, E., Emilion, G. & Langdon, J. Profiling clonality and progression in multiple premalignant and malignant oral lesions identifies a subgroup of cases with a distinct presentation of squamous cell carcinoma. Clin. Cancer Res. 7, 1860–1866 (2001).

    CAS  PubMed  Google Scholar 

  30. Ringstrom, E. et al. Human papillomavirus type 16 and squamous cell carcinoma of the head and neck. Clin. Cancer Res. 8, 3187–3192 (2002).

    PubMed  Google Scholar 

  31. Gillison, M. L. & Lowy, D. R. A causal role for human papillomavirus in head and neck cancer. Lancet 363, 1488–1489 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Herrero, R. Human papillomavirus and cancer of the upper aerodigestive tract. J. Natl Cancer Inst. Monogr. 31, 47–51 (2003).

    Article  Google Scholar 

  33. Braakhuis, B. J. et al. Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. J. Natl Cancer Inst. 96, 998–1006 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Klingelhutz, A. J., Foster, S. A. & McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Cuthbert, A. P. et al. Telomerase repressor sequences on chromosome 3 and induction of permanent growth arrest in human breast cancer cells. J. Natl Cancer Inst. 91, 37–45 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. de Vries, N., Van der Waal, I. & Snow, G. B. Multiple primary tumours in oral cancer. Int. J. Oral Maxillofac. Surg. 15, 85–87 (1986).

    Article  CAS  PubMed  Google Scholar 

  37. Mao, L., Hong, W. K. & Papadimitrakopoulou, V. A. Focus on head and neck cancer. Cancer Cell 5, 311–316 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Slaughter, D. P., Southwick, H. W. & Smejkal, W. “Field cancerisation” in oral stratified squamous epithelium: clinical implications of multicentric origin. Cancer 6, 963–968 (1953).

    Article  CAS  PubMed  Google Scholar 

  39. Jang, S. J., Chiba, I., Hirai, A., Hong, W. K. & Mao, L. Multiple oral squamous epithelial lesions: are they genetically related? Oncogene 20, 2235–2242 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Spira, A. et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc. Natl Acad. Sci. USA 101, 10143–10148 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hackett, N. R. et al. Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers. Am. J. Respir. Cell Mol. Biol. 29, 331–343 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Tabor, M. P. et al. Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications. Clin. Cancer Res. 7, 1523–1532 (2001).

    CAS  PubMed  Google Scholar 

  43. Tabor, M. P. et al. Multiple head and neck tumors frequently originate from a single preneoplastic lesion. Am. J. Pathol. 161, 1051–1060 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Braakhuis, B. J., Tabor, M. P., Kummer, J. A., Leemans, C. R. & Brakenhoff, R. H. A genetic explanation of Slaughter's concept of field cancerization: evidence and clinical implications. Cancer Res. 63, 1727–1730 (2003).

    CAS  PubMed  Google Scholar 

  45. Braakhuis, B. J. et al. Second primary tumors and field cancerization in oral and oropharyngeal cancer: molecular techniques provide new insights and definitions. Head Neck 24, 198–206 (2002).

    Article  PubMed  Google Scholar 

  46. Braakhuis, B. J., Leemans, C. R. & Brakenhoff, R. H. A genetic progression model of oral cancer: current evidence and clinical implications. J. Oral Pathol. Med. 33, 317–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Brennan, J. A. et al. Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 332, 429–435 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. van Houten, V. M. et al. Molecular diagnosis of surgical margins and local recurrence in head and neck cancer patients: a prospective study. Clin. Cancer Res. 10, 3614–3620 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Tabor, M. P. et al. Genetically altered fields as origin of locally recurrent head and neck cancer: a retrospective study. Clin. Cancer Res. 10, 3607–3613 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Partridge, M. et al. Detection of rare disseminated tumor cells identifies head and neck cancer patients at risk of treatment failure. Clin. Cancer Res. 9, 5287–5294 (2003).

    CAS  PubMed  Google Scholar 

  51. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol. Cell 14, 501–513 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Rheinwald, J. G. et al. A two-stage, p16INK4A- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol. Cell. Biol. 22, 5157–5172 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Romanov, S. R. et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409, 633–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Muntoni, A. et al. Senescing oral dysplasias are not immortalized by ectopic expression of hTERT alone without other molecular changes, such as loss of INK4A and/or retinoic acid receptor-β: but p53 mutations are not necessarily required. Oncogene 22, 7804–7808 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Gordon, K. E. et al. High levels of telomere dysfunction bestow a selective disadvantage during the progression of human oral squamous cell carcinoma. Cancer Res. 63, 458–467 (2003).

    CAS  PubMed  Google Scholar 

  57. Crawford, Y. G. et al. Histologically normal human mammary epithelia with silenced p16INK4a overexpress COX-2, promoting a premalignant program. Cancer Cell 5, 263–273 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Edington, K. G., Loughran, O. P., Berry, I. J. & Parkinson, E. K. Cellular immortality: a late event in the progression of human squamous cell carcinoma of the head and neck associated with p53 alteration and a high frequency of allele loss. Mol. Carcinog. 13, 254–265 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Loughran, O. et al. Evidence for the inactivation of multiple replicative lifespan genes in immortal human squamous cell carcinoma keratinocytes. Oncogene 14, 1955–1964 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Weber, R. G. et al. Recurrent chromosomal imbalances detected in biopsy material from oral premalignant and malignant lesions by combined tissue microdissection, universal DNA amplification, and comparative genomic hybridization. Am. J. Pathol. 153, 295–303 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosin, M. P. et al. Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Clin. Cancer Res. 6, 357–362 (2000).

    CAS  PubMed  Google Scholar 

  63. Mao, L. et al. Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nature Med. 2, 682–685 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Shao, C. et al. Chromosome instability contributes to loss of heterozygosity in mice lacking p53. Proc. Natl Acad. Sci. USA 97, 7405–7410 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Field, J. K. et al. Allelotype of squamous cell carcinoma of the head and neck: fractional allele loss correlates with survival. Br. J. Cancer 72, 1180–1188 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sudbo, J. et al. Cyclooxygenase-2 (COX-2) expression in high-risk premalignant oral lesions. Oral Oncol. 39, 497–505 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Shimada, Y. et al. Cell culture in esophageal squamous cell carcinoma and the association with molecular markers. Clin. Cancer Res. 9, 243–249 (2003).

    CAS  PubMed  Google Scholar 

  69. Mao, L. et al. Telomerase activity in head and neck squamous cell carcinoma and adjacent tissues. Cancer Res. 56, 5600–5604 (1996).

    CAS  PubMed  Google Scholar 

  70. Henson, J. D., Neumann, A. A., Yeager, T. R. & Reddel, R. R. Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Alonso, L. & Fuchs, E. Stem cells of the skin epithelium. Proc. Natl Acad. Sci. USA 100 (Suppl. 1), 11830–11835 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Holt, S. E., Wright, W. E. & Shay, J. W. Regulation of telomerase activity in immortal cell lines. Mol. Cell. Biol. 16, 2932–2939 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramirez, R. D., Wright, W. E., Shay, J. W. & Taylor, R. S. Telomerase activity concentrates in the mitotically active segments of human hair follicles. J. Invest. Dermatol. 108, 113–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Dellambra, E. et al. Downregulation of 14-3-3σ prevents clonal evolution and leads to immortalization of primary human keratinocytes. J. Cell Biol. 149, 1117–1130 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lindsey, J., McGill, N. I., Lindsey, L. A., Green, D. K. & Cooke, H. J. In vivo loss of telomeric repeats with age in humans. Mutat. Res. 256, 45–48 (1991).

    Article  CAS  PubMed  Google Scholar 

  77. Owens, D. M. & Watt, F. M. Contribution of stem cells and differentiated cells to epidermal tumours. Nature Rev. Cancer 3, 444–451 (2003).

    Article  CAS  Google Scholar 

  78. Argyris, T. S. Tumor promotion by abrasion induced epidermal hyperplasia in the skin of mice. J. Invest. Dermatol. 75, 360–362 (1980).

    Article  CAS  PubMed  Google Scholar 

  79. Brown, K., Strathdee, D., Bryson, S., Lambie, W. & Balmain, A. The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr. Biol. 8, 516–524 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Barrandon, Y., Morgan, J. R., Mulligan, R. C. & Green, H. Restoration of growth potential in paraclones of human keratinocytes by a viral oncogene. Proc. Natl Acad. Sci. USA 86, 4102–4106 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sudbo, J. et al. DNA content as a prognostic marker in patients with oral leukoplakia. N. Engl. J. Med. 344, 1270–1278 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Parkinson, E. K., Newbold, R. F. & Keith, W. N. The genetic basis of human keratinocyte immortalisation in squamous cell carcinoma development: the role of telomerase reactivation. Eur. J. Cancer 33, 727–734 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Yeager, T. R. et al. Overcoming cellular senescence in human cancer pathogenesis. Genes Dev. 12, 163–174 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mashberg, A. Erythroplasia vs. leukoplasia in the diagnosis of early asymptomatic oral squamous carcinoma. N. Engl. J. Med. 297, 109–110 (1977).

    Article  CAS  PubMed  Google Scholar 

  85. Bouquot, J. E., Weiland, L. H. & Kurland, L. T. Leukoplakia and carcinoma in situ synchronously associated with invasive oral/oropharyngeal carcinoma in Rochester, Minn., 1935–1984. Oral Surg. Oral Med. Oral Pathol. 65, 199–207 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Hogewind, W. F., van der Waal, I., van der Kwast, W. A. & Snow, G. B. The association of white lesions with oral squamous cell carcinoma. A retrospective study of 212 patients. Int. J. Oral Maxillofac. Surg. 18, 163–164 (1989).

    Article  CAS  PubMed  Google Scholar 

  87. Califano, J. et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 56, 2488–2492 (1996).

    CAS  PubMed  Google Scholar 

  88. Garnis, C., Baldwin, C., Zhang, L., Rosin, M. P. & Lam, W. L. Use of complete coverage array comparative genomic hybridization to define copy number alterations on chromosome 3p in oral squamous cell carcinomas. Cancer Res. 63, 8582–8585 (2003).

    CAS  PubMed  Google Scholar 

  89. Garnis, C. et al. Novel regions of amplification on 8q distinct from the MYC locus and frequently altered in oral dysplasia and cancer. Genes Chromosom. Cancer 39, 93–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Garnis, C., Coe, B. P., Zhang, L., Rosin, M. P. & Lam, W. L. Overexpression of LRP12, a gene contained within an 8q22 amplicon identified by high-resolution array CGH analysis of oral squamous cell carcinomas. Oncogene 23, 2582–2586 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Garnis, C., Campbell, J., Zhang, L., Rosin, M. P. & Lam, W. L. OCGR array: an oral cancer genomic regional array for comparative genomic hybridization analysis. Oral Oncol. 40, 511–519 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Scully, C., Sudbo, J. & Speight, P. M. Progress in determining the malignant potential of oral lesions. J. Oral Pathol. Med. 32, 251–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Sudbo, J. & Reith, A. Which putatively pre-malignant oral lesions become oral cancers? Clinical relevance of early targeting of high-risk individuals. J. Oral Pathol. Med. 32, 63–70 (2003).

    Article  PubMed  Google Scholar 

  94. Kresty, L. A. et al. Alterations of p16INK4a and p14ARF in patients with severe oral epithelial dysplasia. Cancer Res. 62, 5295–5300 (2002).

    CAS  PubMed  Google Scholar 

  95. Gallo, O., Santucci, M. & Franchi, A. Cumulative prognostic value of p16/CDKN2 and p53 oncoprotein expression in premalignant laryngeal lesions. J. Natl Cancer Inst. 89, 1161–1163 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Cruz, I. B. et al. p53 expression above the basal cell layer in oral mucosa is an early event of malignant transformation and has predictive value for developing oral squamous cell carcinoma. J. Pathol. 184, 360–368 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Rosin, M. P. et al. 3p14 and 9p21 loss is a simple tool for predicting second oral malignancy at previously treated oral cancer sites. Cancer Res. 62, 6447–6450 (2002).

    CAS  PubMed  Google Scholar 

  98. Kim, J. et al. Chromosome polysomy and histological characteristics in oral premalignant lesions. Cancer Epidemiol. Biomarkers Prev. 10, 319–325 (2001).

    CAS  PubMed  Google Scholar 

  99. Lee, J. J. et al. Predicting cancer development in oral leukoplakia: ten years of translational research. Clin. Cancer Res. 6, 1702–1710 (2000).

    CAS  PubMed  Google Scholar 

  100. Partridge, M. et al. A case-control study confirms that microsatellite assay can identify patients at risk of developing oral squamous cell carcinoma within a field of cancerization. Cancer Res. 60, 3893–3898 (2000).

    CAS  PubMed  Google Scholar 

  101. Lee, J. I. et al. Loss of Fhit expression is a predictor of poor outcome in tongue cancer. Cancer Res. 61, 837–841 (2001).

    CAS  PubMed  Google Scholar 

  102. Tanimoto, K. et al. Abnormalities of the FHIT gene in human oral carcinogenesis. Br. J. Cancer 82, 838–843 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tai, S. K. et al. Loss of Fhit expression in head and neck squamous cell carcinoma and its potential clinical implication. Clin. Cancer Res. 10, 5554–5557 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Sudbo, J. et al. Abnormal DNA content predicts the occurrence of carcinomas in non-dysplastic oral white patches. Oral Oncol. 37, 558–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Sudbo, J. et al. The influence of resection and aneuploidy on mortality in oral leukoplakia. N. Engl. J. Med. 350, 1405–1413 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Sudbo, J. et al. Comparison of histological grading and large-scale genomic status (DNA ploidy) as prognostic tools in oral dysplasia. J. Pathol. 194, 303–310 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Remmerbach, T. W., Weidenbach, H., Hemprich, A. & Bocking, A. Earliest detection of oral cancer using non-invasive brush biopsy including DNA-image-cytometry: report on four cases. Anal. Cell Pathol. 25, 159–166 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Remmerbach, T. W. et al. Cytologic and DNA-cytometric early diagnosis of oral cancer. Anal. Cell Pathol. 22, 211–221 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maraki, D., Becker, J. & Boecking, A. Cytologic and DNA-cytometric very early diagnosis of oral cancer. J. Oral Pathol. Med. 33, 398–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Burns, J. E. et al. The p53 status of cultured human premalignant oral keratinocytes. Br. J. Cancer 70, 591–595 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lazarus, P. et al. Relationship between p53 mutation incidence in oral cavity squamous cell carcinomas and patient tobacco use. Carcinogenesis 17, 733–739 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Lazarus, P. et al. A low incidence of p53 mutations in pre-malignant lesions of the oral cavity from non-tobacco users. Int. J. Cancer 60, 458–463 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Qin, G. Z., Park, J. Y., Chen, S. Y. & Lazarus, P. A high prevalence of p53 mutations in pre-malignant oral erythroplakia. Int. J. Cancer 80, 345–348 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Ha, P. K. et al. A transcriptional progression model for head and neck cancer. Clin. Cancer Res. 9, 3058–3064 (2003).

    CAS  PubMed  Google Scholar 

  115. McGregor, F. et al. Inappropriate retinoic acid receptor-β expression in oral dysplasias: correlation with acquisition of the immortal phenotype. Cancer Res. 57, 3886–3889 (1997).

    CAS  PubMed  Google Scholar 

  116. McGregor, F. et al. Molecular changes associated with oral dysplasia progression and acquisition of immortality: potential for its reversal by 5-azacytidine. Cancer Res. 62, 4757–4766 (2002).

    CAS  PubMed  Google Scholar 

  117. Gonzalez, H. E. et al. Identification of 9 genes differentially expressed in head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 129, 754–759 (2003).

    Article  PubMed  Google Scholar 

  118. El-Naggar, A. K. et al. Differential expression profiling of head and neck squamous carcinoma: significance in their phenotypic and biological classification. Oncogene 21, 8206–8219 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Mendez, E. et al. Transcriptional expression profiles of oral squamous cell carcinomas. Cancer 95, 1482–1494 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Sok, J. C. et al. Tissue-specific gene expression of head and neck squamous cell carcinoma in vivo by complementary DNA microarray analysis. Arch. Otolaryngol. Head Neck Surg. 129, 760–770 (2003).

    Article  PubMed  Google Scholar 

  121. Hwang, D. et al. Genomic dissection for characterization of cancerous oral epithelium tissues using transcription profiling. Oral Oncol. 39, 259–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Alevizos, I. et al. Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis. Oncogene 20, 6196–6204 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Leethanakul, C. et al. Gene expression profiles in squamous cell carcinomas of the oral cavity: use of laser capture microdissection for the construction and analysis of stage-specific cDNA libraries. Oral Oncol. 36, 474–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Leethanakul, C. et al. Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene 19, 3220–3224 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Al Moustafa, A. E. et al. Identification of genes associated with head and neck carcinogenesis by cDNA microarray comparison between matched primary normal epithelial and squamous carcinoma cells. Oncogene 21, 2634–2640 (2002).

    Article  PubMed  Google Scholar 

  126. Ginos, M. A. et al. Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck. Cancer Res. 64, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Chung, C. H. et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 5, 489–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Altorki, N. K., Subbaramaiah, K. & Dannenberg, A. J. COX-2 inhibition in upper aerodigestive tract tumors. Semin. Oncol. 31, 30–36 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Goodin, S. & Shiff, S. J. NSAIDs for the chemoprevention of oral cancer: promise or pessimism?: Commentary re J. L. Mulshine et al., randomized, double-blind, placebo-controlled, phase IIB trial of the cyclooxygenase inhibitor ketorolac as an oral rinse in oropharyngeal leukoplakia. Clin. Cancer Res., 10: 1565–1573, 2004. Clin. Cancer Res. 10, 1561–1564 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Subbaramaiah, K., Cole, P. A. & Dannenberg, A. J. Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and-independent mechanisms. Cancer Res. 62, 2522–2530 (2002).

    CAS  PubMed  Google Scholar 

  131. Minter, H. A., Eveson, J. W., Huntley, S., Elder, D. J. & Hague, A. The cyclooxygenase 2-selective inhibitor NS398 inhibits proliferation of oral carcinoma cell lines by mechanisms dependent and independent of reduced prostaglandin E2 synthesis. Clin. Cancer Res. 9, 1885–1897 (2003).

    CAS  PubMed  Google Scholar 

  132. Schroeder, C. P., Yang, P., Newman, R. A. & Lotan, R. Eicosanoid metabolism in squamous cell carcinoma cell lines derived from primary and metastatic head and neck cancer and its modulation by celecoxib. Cancer Biol. Ther. 3, 847–852 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Mulshine, J. L. et al. Randomized, double-blind, placebo-controlled phase IIb trial of the cyclooxygenase inhibitor ketorolac as an oral rinse in oropharyngeal leukoplakia. Clin. Cancer Res. 10, 1565–1573 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Van Schooten, F. J. et al. Effects of oral administration of N-acetyl-L-cysteine: a multi-biomarker study in smokers. Cancer Epidemiol. Biomarkers Prev. 11, 167–175 (2002).

    CAS  PubMed  Google Scholar 

  135. Singh, M., Krishanappa, R., Bagewadi, A. & Keluskar, V. Efficacy of oral lycopene in the treatment of oral leukoplakia. Oral Oncol. 40, 591–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Kujan, O., Glenny, A. M., Duxbury, A. J., Thakker, N. & Sloan, P. Screening programmes for the early detection and prevention of oral cancer. Cochrane Database Syst. Rev. CD004150 (2003).

  137. Sidransky, D. Emerging molecular markers of cancer. Nature Rev. Cancer 2, 210–219 (2002).

    Article  CAS  Google Scholar 

  138. Sanchez-Cespedes, M. et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res. 60, 892–895 (2000).

    CAS  PubMed  Google Scholar 

  139. Rosas, S. L. et al. Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res. 61, 939–942 (2001).

    CAS  PubMed  Google Scholar 

  140. Spafford, M. F. et al. Detection of head and neck squamous cell carcinoma among exfoliated oral mucosal cells by microsatellite analysis. Clin. Cancer Res. 7, 607–612 (2001).

    CAS  PubMed  Google Scholar 

  141. Nawroz-Danish, H. et al. Microsatellite analysis of serum DNA in patients with head and neck cancer. Int. J. Cancer 111, 96–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Califano, J. et al. Detection of telomerase activity in oral rinses from head and neck squamous cell carcinoma patients. Cancer Res. 56, 5720–5722 (1996).

    CAS  PubMed  Google Scholar 

  143. Freeman, A. et al. Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin. Cancer Res. 5, 2121–2132 (1999).

    CAS  PubMed  Google Scholar 

  144. Chatrath, P. et al. Aberrant expression of minichromosome maintenance protein-2 and Ki67 in laryngeal squamous epithelial lesions. Br. J. Cancer 89, 1048–1054 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sidransky, D. et al. Serum protein MALDI profiling to distinguish upper aerodigestive tract cancer patients from control subjects. J. Natl Cancer Inst. 95, 1711–1717 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Wadsworth, J. T. et al. Serum protein profiles to identify head and neck cancer. Clin. Cancer Res. 10, 1625–1632 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Sun, S. Y. & Lotan, R. Retinoids and their receptors in cancer development and chemoprevention. Crit. Rev. Oncol. Hematol. 41, 41–55 (2002).

    Article  PubMed  Google Scholar 

  148. Vieira, A. V., Schneider, W. J. & Vieira, P. M. Retinoids: transport, metabolism, and mechanisms of action. J. Endocrinol. 146, 201–207 (1995).

    Article  CAS  PubMed  Google Scholar 

  149. Lodi, G., Sardella, A., Bez, C., Demarosi, F. & Carrassi, A. Interventions for treating oral leukoplakia (Cochrane Review). in The Cochrane Library Vol. 2 (John Wiley & Sons, Chichester 2004).

    Google Scholar 

  150. Hong, W. K. et al. 13-cis-retinoic acid in the treatment of oral leukoplakia. N. Engl. J. Med. 315, 1501–1505 (1986).

    Article  CAS  PubMed  Google Scholar 

  151. Papadimitrakopoulou, V. A. et al. Biochemoprevention for dysplastic lesions of the upper aerodigestive tract. Arch. Otolaryngol. Head Neck Surg. 125, 1083–1089 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Shin, D. M. et al. Combined interferon-α, 13-cis-retinoic acid, and α-tocopherol in locally advanced head and neck squamous cell carcinoma: novel bioadjuvant phase II trial. J. Clin. Oncol. 19, 3010–3017 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Hong, W. K. et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck [see comments]. N. Engl. J. Med. 323, 795–801 (1990).

    Article  CAS  PubMed  Google Scholar 

  154. Khuri, F. et al. Isotretinoin effects of head and neck cancer recurrence and second primary tumors. Proc. Am. Soc. Clin. Oncol. 22, 90 (2003).

    Google Scholar 

  155. van Zandwijk, N., Dalesio, O., Pastorino, U., de Vries, N. & van Tinteren, H. EUROSCAN, a randomized trial of vitamin A and N-acetylcysteine in patients with head and neck cancer or lung cancer. For the European Organization for Research and Treatment of Cancer Head and Neck and Lung Cancer Cooperative Groups. J. Natl Cancer Inst. 92, 977–986 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Ulanovski, D. et al. Expression of EGFR and Cerb-B2 as prognostic factors in cancer of the tongue. Oral Oncol. 40, 532–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Ang, K. K. et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 62, 7350–7356 (2002).

    CAS  PubMed  Google Scholar 

  158. Chen, I. H. et al. Prognostic significance of EGFR and Her-2 in oral cavity cancer in betel quid prevalent area cancer prognosis. Br. J. Cancer 89, 681–686 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kawakami, M. et al. Interleukin-13 receptor α2 chain in human head and neck cancer serves as a unique diagnostic marker. Clin. Cancer Res. 9, 6381–6388 (2003).

    CAS  PubMed  Google Scholar 

  160. Estilo, C. L. et al. The role of novel oncogenes squamous cell carcinoma-related oncogene and phosphatidylinositol 3-kinase p110α in squamous cell carcinoma of the oral tongue. Clin. Cancer Res. 9, 2300–2306 (2003).

    CAS  PubMed  Google Scholar 

  161. Wada, S., Yue, L. & Furuta, I. Prognostic significance of p34cdc2 expression in tongue squamous cell carcinoma. Oral Oncol. 40, 164–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Mineta, H. et al. p53 mutation, but not p53 overexpression, correlates with survival in head and neck squamous cell carcinoma. Br. J. Cancer 78, 1084–1090 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nathan, C. A., Sanders, K., Abreo, F. W., Nassar, R. & Glass, J. Correlation of p53 and the proto-oncogene eIF4E in larynx cancers: prognostic implications. Cancer Res. 60, 3599–3604 (2000).

    CAS  PubMed  Google Scholar 

  164. Nogueira, C. P. et al. Inactivation of p53 and amplification of cyclin D1 correlate with clinical outcome in head and neck cancer. Laryngoscope 108, 345–350 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Geisler, S. A. et al. p16 and p53 protein expression as prognostic indicators of survival and disease recurrence from head and neck cancer. Clin. Cancer Res. 8, 3445–3453 (2002).

    CAS  PubMed  Google Scholar 

  166. Bova, R. J. et al. Cyclin D1 and p16INK4A expression predict reduced survival in carcinoma of the anterior tongue. Clin. Cancer Res. 5, 2810–2819 (1999).

    CAS  PubMed  Google Scholar 

  167. Ogi, K. et al. Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. Clin. Cancer Res. 8, 3164–3171 (2002).

    CAS  PubMed  Google Scholar 

  168. Knecht, R. et al. Prognostic significance of polo-like kinase (PLK) expression in squamous cell carcinomas of the head and neck. Cancer Res. 59, 2794–2797 (1999).

    CAS  PubMed  Google Scholar 

  169. Lo Muzio, L. et al. Survivin expression in oral squamous cell carcinoma. Br. J. Cancer 89, 2244–2248 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Chang, H. W., Chow, V., Lam, K. Y., Wei, W. I. & Yuen, A. Loss of E-cadherin expression resulting from promoter hypermethylation in oral tongue carcinoma and its prognostic significance. Cancer 94, 386–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Lim, S. C. et al. Predictive markers for late cervical metastasis in stage I and II invasive squamous cell carcinoma of the oral tongue. Clin. Cancer Res. 10, 166–172 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Chow, V. et al. A comparative study of the clinicopathological significance of E-cadherin and catenins (α, β, γ) expression in the surgical management of oral tongue carcinoma. J. Cancer Res. Clin. Oncol. 127, 59–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Moriyama-Kita, M. et al. Correlation of S100A4 expression with invasion and metastasis in oral squamous cell carcinoma. Oral Oncol. 40, 496–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Gonzalez-Moles, M. A. et al. Adhesion molecule CD44 as a prognostic factor in tongue cancer. AntiCancer Res. 23, 5197–5202 (2003).

    PubMed  Google Scholar 

  175. Kosunen, A. et al. Reduced expression of hyaluronan is a strong indicator of poor survival in oral squamous cell carcinoma. Oral Oncol. 40, 257–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Katayama, A. et al. Expressions of matrix metalloproteinases in early-stage oral squamous cell carcinoma as predictive indicators for tumor metastases and prognosis. Clin. Cancer Res. 10, 634–640 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Kobayashi, H. et al. Clinical significance of cellular distribution of moesin in patients with oral squamous cell carcinoma. Clin. Cancer Res. 10, 572–580 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Uehara, M. et al. Expression of vascular endothelial growth factor and prognosis of oral squamous cell carcinoma. Oral Oncol. 40, 321–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Shintani, S. et al. Expression of vascular endothelial growth factor A, B, C, and D in oral squamous cell carcinoma. Oral Oncol. 40, 13–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Beasley, N. J. et al. Hypoxia-inducible factors HIF-1α and HIF-2α in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res. 62, 2493–2497 (2002).

    CAS  PubMed  Google Scholar 

  181. Miyazawa, J., Mitoro, A., Kawashiri, S., Chada, K. K. & Imai, K. Expression of mesenchyme-specific gene HMGA2 in squamous cell carcinomas of the oral cavity. Cancer Res. 64, 2024–2029 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Delilbasi, C. B., Okura, M., Iida, S. & Kogo, M. Investigation of CXCR4 in squamous cell carcinoma of the tongue. Oral Oncol. 40, 154–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Liao, C. T. et al. Telomerase as an independent prognostic factor in head and neck squamous cell carcinoma. Head Neck 26, 504–512 (2004).

    Article  PubMed  Google Scholar 

  184. Chang, B. W. et al. Prognostic significance of cyclooxygenase-2 in oropharyngeal squamous cell carcinoma. Clin. Cancer Res. 10, 1678–1684 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Yanagawa, T. et al. Heme oxygenase-1 expression predicts cervical lymph node metastasis of tongue squamous cell carcinomas. Oral Oncol. 40, 21–27 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of P.R.H. and E.K.P. is supported by Cancer Research UK. K.D.H. is a clinical lecturer in oral pathology at the University of Glasgow. The authors' work is the product of a longstanding collaboration with clinical colleagues and pathologists in Glasgow, particularly G. MacDonald and D. Felix at the Glasgow Dental Hospital and School; D. Soutar at the Plastic Surgery Unit at Glasgow Royal Infirmary; and L. Clark at the Southern General Hospital, Glasgow. We are grateful to G. MacDonald and colleagues at the Beatson Institute (M. Frame, D. Gillespie and B. Ozanne) for constructive comments on the manuscript. We are also grateful to L. Batti at the Scottish Cancer Registry, Information and Statistics Division, Edinburgh, for supplying the Scottish and European oral cancer incidence statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Harrison.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

COX1

COX2

CYP2E1

EGFR

FHIT

INK4A

p53

RB

National Cancer Institute

breast cancer

head and neck cancer

lung cancer

FURTHER INFORMATION

Beatson laboratories

Upstate Medical University oral cancer genetics database

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, K., Parkinson, E. & Harrison, P. Profiling early head and neck cancer. Nat Rev Cancer 5, 127–135 (2005). https://doi.org/10.1038/nrc1549

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing