Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Galectins as modulators of tumour progression

Key Points

  • Galectins are a family of animal lectins that have affinity for β-galactosides and that share similar amino-acid sequences.

  • Galectins bind to a wide array of glycoproteins and glycolipids both on the cell surface and in extracellular matrices.

  • By binding to these glycoconjugates, galectins deliver signals intracellularly as well as mediate cell–cell and cell–extracellular matrix adhesion.

  • The most extensively-studied function of galectins is the regulation of apoptosis; some galectins can induce apoptosis when added exogenously to cells, whereas others regulate apoptosis through intracellular mechanisms.

  • Galectin-1 and galectin-3 can interact with oncogenic Ras and mediate cell transformation induced by this oncogene.

  • Galectins can modulate cell adhesion and cell migration, thereby affecting the process of tumour metastasis.

  • Galectin-3 has angiogenic activity.

  • Galectins have pro- and anti-inflammatory functions and modulate the immune response. Furthermore, galectin-1 functions as a soluble mediator employed by tumour cells to evade the immune response.

Abstract

Galectins are a family of animal lectins with diverse biological activities. They function both extracellularly, by interacting with cell-surface and extracellular matrix glycoproteins and glycolipids, and intracellularly, by interacting with cytoplasmic and nuclear proteins to modulate signalling pathways. Current research indicates that galectins have important roles in cancer; they contribute to neoplastic transformation, tumour cell survival, angiogenesis and tumour metastasis. They can modulate the immune and inflammatory responses and might have a key role helping tumours to escape immune surveillance. How do the different members of the Galectin family contribute to these diverse aspects of tumour biology?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Galectin family.
Figure 2: Intracellular and extracellular functions of galectins.
Figure 3: Roles of galectins in tumorigenesis.
Figure 4: Galectins and tumour metastasis.
Figure 5: Galectins and tumour-associated immune and inflammatory responses.
Figure 6: Anti-tumour immune responses and galectin-mediated escape mechanisms.

Similar content being viewed by others

References

  1. Gabius, H. J. Animal lectins. Eur. J. Biochem. 243, 543–576 (1997).

    CAS  PubMed  Google Scholar 

  2. Sharon, N. & Lis, H. Lectins: from hemagglutinins to biological recognition molecules. A historical overview. Glycobiology 14, 53–62 (2004).

    Google Scholar 

  3. Feizi, T. Progress in deciphering the information content of the 'glycome' — a crescendo in the closing years of the millennium. Glycoconj. J. 17, 553–565 (2000).

    CAS  PubMed  Google Scholar 

  4. Barondes, S. H. et al. Galectins: a family of animal β-galactoside-binding lectins. Cell 76, 597–598 (1994).

    CAS  PubMed  Google Scholar 

  5. Cooper, D. N. Galectinomics: finding themes in complexity. Biochim. Biophys. Acta. 1572, 209–231 (2002). A comprehensive review of the emerging themes of the complex field of galectins, in particular the structural features of galectins in diverse animal species.

    CAS  PubMed  Google Scholar 

  6. Leffler, H., Carlsson, S., Hedlund, M., Qian, Y. & Poirier, F. Introduction to galectins. Glycoconj. J. 19, 433–440 (2004). A succinct overview of many aspects of the galectin field.

    Google Scholar 

  7. Houzelstein, D. et al. Phylogenetic analysis of the vertebrate galectin family. Mol. Biol. Evol 21, 1177–1187 (2004).

    CAS  PubMed  Google Scholar 

  8. Rini, J. M. & Lobsanov, Y. D. New animal lectin structures. Curr. Opin. Struct. Biol. 9, 578–584 (1999).

    CAS  PubMed  Google Scholar 

  9. Hirabayashi, J. et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta. 1572, 232–254 (2002).

    CAS  PubMed  Google Scholar 

  10. Ahmad, N. et al. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J. Biol. Chem 279, 10841–10847 (2004).

    CAS  PubMed  Google Scholar 

  11. Brewer, C. F., Miceli, M. C. & Baum, L. G. Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr. Opin. Struct. Biol. 12, 616–623 (2002).

    CAS  PubMed  Google Scholar 

  12. Cooper, D. N. W. & Barondes, S. H. Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J. Cell Biol. 110, 1681–1691 (1990).

    CAS  PubMed  Google Scholar 

  13. Hughes, R. C. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim. Biophys. Acta. 1473, 172–185 (1999).

    CAS  PubMed  Google Scholar 

  14. Liu, F. T., Patterson, R. J. & Wang, J. L. Intracellular functions of galectins. Biochim. Biophys. Acta. 1572, 263–273 (2002).

    CAS  PubMed  Google Scholar 

  15. Chiariotti, L., Salvatore, P., Frunzio, R. & Bruni, C. B. Galectin genes: regulation of expression. Glycoconj. J. 19, 441–449 (2002).

    CAS  PubMed  Google Scholar 

  16. Danguy, A., Camby, I. & Kiss, R. Galectins and cancer. Biochim. Biophys. Acta. 1572, 285–293 (2002).

    CAS  PubMed  Google Scholar 

  17. van den Brule, F., Califice, S. & Castronovo, V. Expression of galectins in cancer: a critical review. Glycoconj. J. 19, 537–542 (2004).

    Google Scholar 

  18. Lahm, H. et al. Tumor galectinology: insights into the complex network of a family of endogenous lectins. Glycoconj. J. 20, 227–238 (2004).

    CAS  PubMed  Google Scholar 

  19. Huflejt, M. E. & Leffler, H. Galectin-4 in normal tissues and cancer. Glycoconj. J. 20, 557–563 (2004).

    Google Scholar 

  20. Bidon-Wagner, N. & Le Pennec, J. P. Human galectin-8 isoforms and cancer. Glycoconj. J. 19, 557–563 (2004).

    Google Scholar 

  21. Oka, N., Takenaka, Y. & Raz, A. Galectins and urological cancer. J. Cell. Biochem. 91, 118–124 (2004).

    CAS  PubMed  Google Scholar 

  22. Hughes, R. C. Galectins as modulators of cell adhesion. Biochimie 83, 667–676 (2001).

    CAS  PubMed  Google Scholar 

  23. Hikita, C. et al. Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin 3. J. Cell Biol. 151, 1235–1146 (2001).

    Google Scholar 

  24. Ochieng, J., Warfieldl, P., Green-Jarvis, B. & Fentie, I. Galectin-3 regulates the adhesive interaction between breast carcinoma cells and elastin. J. Cell. Biochem. 75, 505–514 (1999).

    CAS  PubMed  Google Scholar 

  25. Davidson, P. J. et al. Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology 12, 329–337 (2002).

    CAS  PubMed  Google Scholar 

  26. Dagher, S. F., Wang, J. L. & Patterson, R. J. Identification of galectin-3 as a factor in pre-mRNA splicing. Proc. Natl Acad. Sci. USA 92, 1213–1217 (1995).

    CAS  PubMed  Google Scholar 

  27. Vyakarnam, A., Dagher, S. F., Wang, J. L. & Patterson, R. J. Evidence for a role for galectin-1 in pre-mRNA splicing. Mol. Cell Biol. 17, 4730–4737 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, J. L., Gray, R. M., Haudek, K. C. & Patterson, R. J. Nucleocytoplasmic lectins. Biochim. Biophys. Acta. 1673, 75–93 (2004). A review that focuses on lectins inside the cell and their participation in fundamental intracellular processes such as pre-mRNA splicing — a process that is independent of the carbohydrate-binding properties of galectins.

    CAS  PubMed  Google Scholar 

  29. Yamaoka, K. et al. Expression of galectin-1 mRNA correlates with the malignant potential of human gliomas and expression of antisense galectin-1 inhibits the growth of 9 glioma cells. J. Neurosci. Res. 59, 722–730 (2000).

    CAS  PubMed  Google Scholar 

  30. Honjo, Y., Nangia-Makker, P., Inohara, H. & Raz, A. Down-regulation of galectin-3 suppresses tumorigenicity of human breast carcinoma cells. Clin. Cancer Res. 7, 661–668 (2001).

    CAS  PubMed  Google Scholar 

  31. Yoshii, T. et al. Galectin-3 maintains the transformed phenotype of thyroid papillary carcinoma cells. Int. J. Oncol. 18, 787–792 (2001).

    CAS  PubMed  Google Scholar 

  32. Takenaka, Y et al. Malignant transformation of thyroid follicular cells by galectin-3. Cancer Lett. 195, 111–119 (2003).

    CAS  PubMed  Google Scholar 

  33. Paz, A., Haklai, R., Elad-Sfadia, G., Ballan, E. & Kloog, Y. Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20, 7486–7493 (2001). This paper demonstrates that galectin-1 binds oncogenic Ras, helping it to anchor to the plasma membrane and mediate cell transformation.

    CAS  PubMed  Google Scholar 

  34. Elad-Sfadia, G., Haklai, R., Ballan, E. & Kloog, Y. Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J. Biol. Chem. 279, 34922–34930 (2004).

    CAS  PubMed  Google Scholar 

  35. Elad-Sfadia, G., Haklai, R., Ballan, E., Gabius, H. J. & Kloog Y. Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J. Biol. Chem. 277, 37169–37175 (2002).

    CAS  PubMed  Google Scholar 

  36. Hoyer, K. K. et al. An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am. J. Pathol. 164, 893–902 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Takenaka, Y. et al. Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol. Cell. Biol. 24, 4395–4406 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Choi, J. H., Chun, K. H., Raz, A. & Lotan, R. Inhibition of N-(4-hydroxyphenyl)retinamide-induced apoptosis in breast cancer cells by galectin-3. Cancer Biol. Ther. 3, 447–452 (2004).

    CAS  PubMed  Google Scholar 

  39. Yu, F., Finley, R. L. Jr, Raz, A. & Kim, H. R. Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J. Biol. Chem. 277, 15819–15827 (2002).

    CAS  PubMed  Google Scholar 

  40. Matarrese, P. et al. Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis. FEBS Lett. 473, 311–315 (2000).

    CAS  PubMed  Google Scholar 

  41. Huflejt, M. E., Turck, C. W., Lindstedt, R., Barondes, S. H. & Leffler, H. L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. J. Biol. Chem. 268, 26712–26718 (1993).

    CAS  PubMed  Google Scholar 

  42. Cowles, E. A., Agrwal, N., Anderson, R. L. & Wang, J. L. Carbohydrate-binding protein 35. Isoelectric points of the polypeptide and a phosphorylated derivative. J. Biol. Chem. 265, 17706–17712 (1990).

    CAS  PubMed  Google Scholar 

  43. Yoshii, T. et al. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J. Biol. Chem. 277, 6852–6857 (2002).

    PubMed  Google Scholar 

  44. Yang, R. -Y., Hsu, D. K. & Liu, F. -T. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc. Natl Acad. Sci. USA 93, 6737–6742 (1996). The first paper to demonstrate the anti-apoptotic function of galectin-3.

    CAS  PubMed  Google Scholar 

  45. Akahani, S., Nangia-Makker, P., Inohara, H., Kim, H. R. & Raz, A. Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res. 57, 5272–5276 (1997).

    CAS  PubMed  Google Scholar 

  46. Califice, S., Castronovo, V., Bracke, M. & van Den Brule, F. Dual activities of galectin-3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3. Oncogene 23, 7527–7536 (2004).

    CAS  PubMed  Google Scholar 

  47. Yang, R. Y. & Liu, F. -T. Galectins in cell growth and apoptosis. Cell. Mol. Life Sci. 60, 267–276 (2003).

    CAS  PubMed  Google Scholar 

  48. Bernerd, F., Sarasin, A. & Magnaldo, T. Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes. Proc. Natl Acad. Sci. USA 96, 11329–11334 (1999).

    CAS  PubMed  Google Scholar 

  49. Kuwabara, I. et al. Galectin-7 (PIG1) exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome c release. J. Biol. Chem 277, 3487–3497 (2002).

    CAS  PubMed  Google Scholar 

  50. Hotta, K. et al. Galectin-12, an adipose-expressed galectin-like molecule possessing apoptosis-inducing activity. J. Biol. Chem 276, 34089–34097 (2001).

    CAS  PubMed  Google Scholar 

  51. Hsu, D. K. et al. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am. J. Pathol. 156, 1073–1083 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Okada, H. & Mak, T. W. Pathways of apoptotic and non-apoptotic death in tumour cells. Nature Rev. Cancer 4, 592–603 (2004).

    CAS  Google Scholar 

  53. Wells, V., Davies, D. & Mallucci, L. Cell cycle arrest and induction of apoptosis by β-galactoside binding protein (β GBP) in human mammary cancer cells. A potential new approach to cancer control. Eur. J. Cancer 35, 978–983 (1999).

    CAS  PubMed  Google Scholar 

  54. Kopitz, J. et al. Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J. Biol. Chem. 276, 35917–35923 (2001).

    CAS  PubMed  Google Scholar 

  55. Kopitz, J. et al. Homodimeric galectin-7 (p53-induced gene 1) is a negative growth regulator for human neuroblastoma cells. Oncogene 22, 6277–6288 (2003).

    CAS  PubMed  Google Scholar 

  56. van den Brüle, F. A. et al. Antisense galectin-3 alters thymidine incorporation in human MDA-MB435 breast cancer cells. Int. J. Oncol. 11, 261–264 (1997).

    Google Scholar 

  57. Ellerhorst, J. A., Stephens, L. C., Nguyen, T. & Xu, X. C. Effects of galectin-3 expression on growth and tumorigenicity of the prostate cancer cell line LNCaP. Prostate 50, 64–70 (2002).

    CAS  PubMed  Google Scholar 

  58. Paron, I. et al. Nuclear localization of galectin-3 in transformed thyroid cells: a role in transcriptional regulation. Biochem. Biophys. Res. Commun. 302, 545–553 (2003).

    CAS  PubMed  Google Scholar 

  59. Ueda, S., Kuwabara, I. & Liu, F. -T. Suppression of tumor growth by galectin-7 gene transfer. Cancer Res. 64, 5672–5676 (2004).

    CAS  PubMed  Google Scholar 

  60. Kim, H. R., Lin, H. M., Biliran, H. & Raz, A. Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Res. 59, 4148–4154 (1999).

    CAS  PubMed  Google Scholar 

  61. Lin, H. M., Pestell, R. G., Raz, A. & Kim, H. R. Galectin-3 enhances cyclin D1 promoter activity through SP1 and a cAMP-responsive element in human breast epithelial cells. Oncogene 21, 8001–8010 (2002).

    CAS  PubMed  Google Scholar 

  62. Shimura, T. et al. Galectin-3, a novel binding partner of β-catenin. Cancer Res. 64, 6363–6367 (2004).

    CAS  PubMed  Google Scholar 

  63. Yang, R. Y., Hsu, D. K., Yu, L., Ni, J. & Liu, F. -T. Cell cycle regulation by galectin-12, a member of the galectin superfamily. J. Biol. Chem. 276, 20252–20260 (2001).

    CAS  PubMed  Google Scholar 

  64. Hood, J. D. & Cheresh, D. A. Role of integrins in cell invasion and migration. Nature Rev. Cancer 2, 91–100 (2002).

    Google Scholar 

  65. Ochieng, J., Furtak, V. & Lukyanov, P. Extracellular functions of galectin-3. Glycoconj. J. 19, 527–535 (2004).

    Google Scholar 

  66. Kuwabara, I., Sano, H. & Liu, F. T. Functions of galectins in cell adhesion and chemotaxis. Methods Enzymol. 363, 532–552 (2003).

    CAS  PubMed  Google Scholar 

  67. Levy, Y. et al. Galectin-8 functions as a matricellular modulator of cell adhesion. J. Biol. Chem. 276, 31285–31295 (2001).

    CAS  PubMed  Google Scholar 

  68. van den Brüle, F. et al. Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab. Invest. 83, 377–386 (2003).

    PubMed  Google Scholar 

  69. Ellerhorst, J., Nguyen, T., Cooper, D. N., Lotan, D. & Lotan, R. Differential expression of endogenous galectin-1 and galectin-3 in human prostate cancer cell lines and effects of overexpressing galectin-1 on cell phenotype. Int. J. Oncol. 14, 217–224 (1999).

    CAS  PubMed  Google Scholar 

  70. Glinsky, V. V. et al. Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res. 63, 3805–3811 (2003)

    CAS  PubMed  Google Scholar 

  71. Khaldoyanidi, S. K. et al. MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions. J. Biol. Chem. 278, 4127–4134 (2003).

    CAS  PubMed  Google Scholar 

  72. Gu, M., Wang, W., Song, W. K., Cooper, D. N. W. & Kaufman, S. J. Selective modulation of the interaction of α7β1 integrin with fibronectin and laminin by L-14 lectin during skeletal muscle differentiation. J. Cell Sci. 107, 175–181 (1994).

    CAS  PubMed  Google Scholar 

  73. Ochieng, J., Leite-Browning, M. L. & Warfield, P. Regulation of cellular adhesion to extracellular matrix proteins by galectin-3. Biochem. Biophys. Res. Commun. 246, 788–791 (1998).

    CAS  PubMed  Google Scholar 

  74. Nishi, N. et al. Galectin-8 modulates neutrophil function via interaction with integrin alpha M. Glycobiology 13, 755–763 (2003).

    CAS  PubMed  Google Scholar 

  75. Mataresse, P. et al. Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties. Int. J. Cancer 85, 545–554 (2000).

    Google Scholar 

  76. Le Marer, N. & Hughes, R. C. Effects of the carbohydrate-binding protein galectin-3 on the invasiveness of human breast carcinoma cells. J. Cell Physiol. 168, 51–58 (1996).

    CAS  PubMed  Google Scholar 

  77. Hittelet, A. et al. Upregulation of galectins-1 and-3 in human colon cancer and their role in regulating cell migration. Int. J. Cancer 103, 370–379 (2003).

    CAS  PubMed  Google Scholar 

  78. O'Driscoll, L. et al. Galectin-3 expression alters adhesion, motility and invasion in a lung cell line (DLKP), in vitro. Anticancer Res. 22, 3117–3125 (2002).

    CAS  PubMed  Google Scholar 

  79. Camby, I. et al. Galectin-1 modulates human glioblastoma cell migration into the brain through modifications to the actin cytoskeleton and levels of expression of small GTPases. J. Neuropathol. Exp. Neurol. 61, 585–596 (2002).

    CAS  PubMed  Google Scholar 

  80. Nagy, N. et al. Galectin-8 expression decreases in cancer compared with normal and dysplastic human colon tissue and acts significantly on human colon cancer cell migration as a suppressor. Gut 50, 392–401 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002).

    CAS  PubMed  Google Scholar 

  82. Nangia-Makker, P. et al. Galectin-3 induces endothetial cell morphogenesis and angiogenesis. Am. J. Pathol. 156, 899–909 (2000). This paper demonstrates the proangiogenic activity of galectin-3.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Furtak, V., Hatcher, F. & Ochieng, J. Galectin-3 mediates the endocytosis of β-1 integrins by breast carcinoma cells. Biochem. Biophys. Res. Commun. 289, 845–850 (2001).

    CAS  PubMed  Google Scholar 

  84. Partridge, E. A. et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306, 120–124 (2004).

    CAS  PubMed  Google Scholar 

  85. Ochieng, J., Green, B., Evans, S., James, O. & Warfield, P. Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochim. Biophys. Acta. 1379, 97–106 (1998).

    CAS  PubMed  Google Scholar 

  86. Bresalier, R. S. et al. Metastasis of human colon cancer is altered by modifying expression of the β-galactoside-binding protein galectin 3. Gastroenterology 115, 287–296 (1998).

    CAS  PubMed  Google Scholar 

  87. Takenaka, Y., Fukumori, T. & Raz, A. Galectin-3 and metastasis. Glycoconj. J. 19, 543–549 (2004).

    Google Scholar 

  88. Inufusa, H. et al. Role of galectin-3 in adenocarcinoma liver metastasis. Int. J. Oncol. 19, 913–919 (2001).

    CAS  PubMed  Google Scholar 

  89. Song, Y. K., Billiar, T. R. & Lee, Y. J. Role of galectin-3 in breast cancer metastasis: involvement of nitric oxide. Am. J. Pathol. 160, 1069–1075 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Luo, J. -L., Maeda, S., Hsu, L. -C., Yagita, H. & Karin, M. Inhibition of NF-κB in cancer cells converts inflammation-induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. Cancer Cell 6, 297–305 (2004).

    CAS  PubMed  Google Scholar 

  91. Balkwill, F. Cancer and the chemokine network. Nature Rev. Cancer 4, 540–550 (2004).

    CAS  Google Scholar 

  92. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nature Rev. Cancer 4, 71–78 (2004).

    CAS  Google Scholar 

  93. Gabrilovich, D. & Pisarev, V. Tumor escape from immune response: mechanisms and targets of activity. Curr. Drug Targets 4, 525–536 (2003).

    CAS  PubMed  Google Scholar 

  94. Pardoll, D. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol. 21, 807–839 (2003).

    CAS  PubMed  Google Scholar 

  95. Dunn, G. P., Old, L. J. & Schreiber, R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148 (2004).

    CAS  Google Scholar 

  96. Rabinovich, G. A., Toscano, M. A., Ilarregui, J. M. & Rubinstein, N. Shedding light on the immunomodulatory properties of galectins: novel regulators of innate and adaptive immune responses. Glycoconj. J. 19, 565–573 (2004).

    Google Scholar 

  97. Liu, F. -T. Galectins: a new family of regulators of inflammation. Clin. Immunol. 97, 79–88 (2000).

    CAS  PubMed  Google Scholar 

  98. Vasta, G. R., Quesenberry, M., Ahmed, H. & O'Leary, N. C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Dev. Comp. Immunol. 23, 401–420 (1999).

    CAS  PubMed  Google Scholar 

  99. Sato, S. & Nieminen, J. Seeing strangers or announcing 'danger': galectin-3 in two models of innate immunity. Glycoconj. J. 19, 583–591 (2004).

    Google Scholar 

  100. Young, A. R. & Meeusen, E. N. Galectins in parasite infection and allergic inflammation. Glycoconj. J. 19, 601–606 (2004).

    Google Scholar 

  101. Rabinovich, G. A. et al. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 23, 313–320 (2002). A comprehensive review on the role of galectins in the inflammatory response

    CAS  PubMed  Google Scholar 

  102. Chung, C. D., Patel, V. P., Moran, M., Lewis, L. A. & Miceli, M. C. Galectin-1 induces partial TCR ζ-chain phosphorylation and antagonizes processive TCR signal transduction. J. Immunol. 165, 3722–3729 (2000).

    CAS  PubMed  Google Scholar 

  103. Blaser, C. et al. β-galactoside binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur. J. Immunol 28, 2311–2319 (1998).

    CAS  PubMed  Google Scholar 

  104. Perillo, N. L., Pace, K. E., Seilhamer, J. J. & Baum, L. G. Apoptosis of T cells mediated by galectin-1. Nature 378, 736–739 (1995). The first paper demonstrating the ability of galectin-1 to induce apoptosis in T cells.

    CAS  PubMed  Google Scholar 

  105. Rabinovich, G. A. et al. Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: biochemical and functional characterization. J. Immunol. 160, 4831–4840 (1998).

    CAS  PubMed  Google Scholar 

  106. Rabinovich, G. A. et al. Induction of allogenic T-cell hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic mechanisms. Cell Death Differ. 9, 661–670 (2002).

    CAS  PubMed  Google Scholar 

  107. He, J. & Baum, L. G. Presentation of galectin-1 by extracellular matrix triggers T cell death. J. Biol. Chem. 279, 4705–4712 (2004).

    CAS  PubMed  Google Scholar 

  108. Rabinovich, G. A. et al. Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology 97, 100–106 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rabinovich, G. A. et al. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J. Exp. Med. 190, 385–397 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Santucci, L. et al. Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124, 1381–1394 (2003).

    CAS  PubMed  Google Scholar 

  111. Baum, L. G. et al. Amelioration of graft versus host disease by galectin-1. Clin. Immunol. 109, 295–307 (2003).

    CAS  PubMed  Google Scholar 

  112. Galvan, M., Tsuboi, S., Fukuda, M. & Baum, L. G. Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J. Biol. Chem., 275, 16730–16737 (2000).

    CAS  PubMed  Google Scholar 

  113. Pace, K. E., Lee, C., Stewart, P. L. & Baum, L. G. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J. Immunol. 163, 3801–3811 (1999).

    CAS  PubMed  Google Scholar 

  114. Rabinovich, G. A. et al. Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1 transcription factor and downregulation of Bcl-2. Cell Death Differ. 7, 747–753 (2000)

    CAS  PubMed  Google Scholar 

  115. Walzel, H., Blach, M., Hirabayashi, J., Kasai, K. & Brock, J. Involvement of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells. Glycobiology 10, 131–140 (2000).

    CAS  PubMed  Google Scholar 

  116. Hahn, H. P. et al. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ. 11, 1277–1286 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Dias-Baruffi, M. et al. Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J. Biol. Chem. 278, 41282–41293 (2003).

    CAS  PubMed  Google Scholar 

  118. Rubinstein, N. et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell 5, 241–251 (2004). Demonstration that inhibition of galectin-1 gene expression in tumour cells results in heightened T-cell mediated tumour rejection, thereby validating galectin-1 as a target for cancer therapy in an animal model.

    CAS  PubMed  Google Scholar 

  119. Rabinovich, G. A., Sotomayor, C. E., Riera, C. M., Bianco, I. & Correa, S. G. Evidence of a role for galectin-1 in acute inflammation. Eur. J. Immunol 30, 1331–1339 (2000).

    CAS  PubMed  Google Scholar 

  120. La, M. et al. A novel biological activity for galectin-1: inhibition of leukocyte-endothelial cell interactions in experimental inflammation. Am. J. Pathol. 163, 1505–1515 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sano, H. et al. Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J. Immunol. 165, 2156–2164 (2000).

    CAS  PubMed  Google Scholar 

  122. Colnot, C. et al. Maintenance of granulocyte numbers during acute peritonitis is defective in galectin-3-null mutant mice. Immunology 94, 290–296 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zuberi, R. I. et al. Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am. J. Pathol. (In the press).

  124. Fukumori, T. et al. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 63, 8302–8311 (2003).

    CAS  PubMed  Google Scholar 

  125. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–779 (2001).

    CAS  PubMed  Google Scholar 

  126. Cortegano, I. et al. Galectin-3 down-regulates IL-5 gene expression on different cell types. J. Immunol. 161, 385–389 (1998).

    CAS  PubMed  Google Scholar 

  127. Acosta-Rodríguez, E. V. et al. Galectin-3 mediates IL-4-induced survival and differentiation of B cells: functional cross-talk and implications during Trypanosoma cruzi infection. J. Immunol. 172, 493–502 (2004).

    PubMed  Google Scholar 

  128. Sturm, A. et al. Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. J. Immunol. 173, 3825–3837 (2004).

    CAS  PubMed  Google Scholar 

  129. Ozaki, K. et al. Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-α secretion in vitro. Nature 429, 72–75 (2004).

    CAS  PubMed  Google Scholar 

  130. Hokama, A. et al. Induced reactivity of intestinal CD4+ T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation. Immunity 20, 681–693 (2004).

    CAS  PubMed  Google Scholar 

  131. Wada, J., Ota, K., Kumar, A., Wallner, E. I. & Kanwar, Y. S. Developmental regulation, expression, and apoptotic potential of galectin-9, a β-galactoside binding lectin. J. Clin. Invest. 99, 2452–2461 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kashio, Y, et al. Galectin-9 induces apoptosis through the calcium–calpain–caspase-1 pathway. J. Immunol. 170, 3631–3636 (2003).

    CAS  PubMed  Google Scholar 

  133. Matsumoto, R. et al. Human ecalectin, a variant of human galectin-9, is a novel eosinophil chemoattractant produced by T lymphocytes. J. Biol. Chem 273, 16976–16984 (1998).

    CAS  PubMed  Google Scholar 

  134. Poirier, F. Roles of galectins in vivo. Biochem. Soc. Symp. 69, 95–103 (2002).

    CAS  Google Scholar 

  135. Lahm, H. et al. Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J. Cancer Res. Clin. Oncol. 127, 375–386 (2001)

    CAS  PubMed  Google Scholar 

  136. John, C. M., Leffler, H., Kahl-Knutsson, B., Svensson, I. & Jarvis, G. A. Truncated galectin-3 inhibits tumor growth and metastasis in orthotopic nude mouse model of human breast cancer. Clin. Cancer Res. 9, 2374–2383 (2003).

    CAS  PubMed  Google Scholar 

  137. Zou, J., Glinsky, V. V., Landon, L. A., Matthews, L. & Deutscher, S. L. Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis–associated cancer cell adhesion. Carcinogenesis (In the press).

  138. Sorme, P., Qian, Y., Nyholm, P. G., Leffler, H. & Nilsson, U. J. Low micromolar inhibitors of galectin-3 based on 3'-derivatization of N-acetyllactosamine. Chembiochem 3, 183–189 (2002).

    CAS  PubMed  Google Scholar 

  139. Andre, S. et al. Wedgelike glycodendrimers as inhibitors of binding of mammalian galectins to glycoproteins, lactose maxiclusters, and cell surface glycoconjugates. Chembiochem 2, 822–830 (2001).

    CAS  PubMed  Google Scholar 

  140. Lu, Y. Lotan, D. & Lotan, R. Differential regulation of constitutive and retinoic acid-induced galectin-1 gene transcription in murine embryonal carcinoma and myoblastic cells. Biochim. Biophys. Acta. 1491, 13–19 (2000).

    CAS  PubMed  Google Scholar 

  141. Rabinovich, G. A. et al. The antimetastatic effect of a single low dose of cyclophosphamide involves modulation of galectin-1 and Bcl-2 expression. Cancer Immunol. Immunother. 50, 597–603 (2002).

    CAS  PubMed  Google Scholar 

  142. Trapani, J. A. Tumor-mediated apoptosis of cancer-specific T lymphocytes — reversing the 'kiss of death'? Cancer Cell 2, 169–171 (2002).

    CAS  PubMed  Google Scholar 

  143. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Med. 8, 793–800 (2002).

    CAS  PubMed  Google Scholar 

  144. Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Med. 9, 1269–1274 (2003).

    CAS  PubMed  Google Scholar 

  145. Yu, H. & Jove, R. The STATs of cancer — new molecular targets come of age. Nature Rev. Cancer 4, 97–105 (2004).

    CAS  Google Scholar 

  146. Almkvist, J. & Karlsson A. Galectins as inflammatory mediators. Glycoconj. J. 19, 575–581 (2004).

    Google Scholar 

Download references

Acknowledgements

We thank members of our laboratories for stimulating discussions and helpful suggestions, in particular D. Hsu, I. Kuwabara, J. Newman, and R.-Y. Yang (in F.-T.L.'s laboratory) and M. A. Toscano, J. M. Ilarregui, N. Rubinstein, and G. A. Bianco (in G.A.R.'s laboratory). We apologize to the authors of many relevant studies not cited because of space limitations. Work in authors' laboratories was supported by grants from the National Institutes of Health to F.-T.L. and by grants from Sales Foundation, Antorchas Foundation, Ministry of Health (Becas 'Carrillo-O˜ativia'), Wellcome Trust, and University of Buenos Aires to G.A.R. G.A.R. is a member of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fu-Tong Liu or Gabriel A. Rabinovich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Protein

BCL2

Galectin-1

Galectin-2

Galectin-3

Galectin-4

Galectin-7

Galectin-8

Galectin-9

Galectin-12

HRAS

KIP1

KRAS

NRAS

RAF1

Synexin

TTF1

WAF1

FURTHER INFORMATION

The Consortium for Functional Glycomics

The Japanese Consortium for Glycobiology and Glycotechnology

Glossary

MACROPHAGES

Cells of the mononuclear-phagocyte system that can phagocytose foreign particulate materials. Macrophages are present in many tissues and are important for the innate and immune reactions. They can also function as antigen-presenting cells and as effector cells in humoral and cell-mediated adaptive immunity. They have a vital role in host defense.

SCID MICE

Mice that are homozygous for the severe combined immunodeficiency (SCID) mutation have compromised B- and T-cell immunity. This lack of immunity means that they can support human tumour xenografts for preclinical studies.

DENDRITIC CELL

Specialized antigen-presenting cell whose immunogenicity leads to the induction of antigen-specific immune responses. Dendritic cells have been used in clinical trials to induce anti-tumour immune responses in cancer patients.

GRAFT-VERSUS-HOST DISEASE

In organ transplantation, mature T lymphocytes from the donor can attack various tissues in the recipient, causing a graft-versus-host (GVH) reaction and a disease state termed graft-versus-host disease.

NEUTROPHILS

The major class of white blood cells in human peripheral blood (>70%). Neutrophils are phagocytes and have an important role in engulfing and killing extracellular pathogens. They can migrate into tissues under the influence of chemotactic stimuli, where they phagocytose materials.

MONOCYTES

Circulating white blood cells that represent about 5% of total blood leukocytes. These cells can migrate into tissues to become macrophages.

PLASMA CELL

Terminally differentiated B lymphocyte. Plasma cells are the main antibody-secreting cells of the body. They are found in the medulla of the lymph nodes, in the spleen and in bone marrow.

EOSINOPHIL

White blood cell thought to be important chiefly in defense against parasite infections and in allergic inflammation. However, they can be activated by lymphocytes of the adaptive immune response and have a role in tumour immunity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, FT., Rabinovich, G. Galectins as modulators of tumour progression. Nat Rev Cancer 5, 29–41 (2005). https://doi.org/10.1038/nrc1527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing