Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

X-Chromosome Genetics and Human Cancer

Key Points

  • Although female mammals carry two copies of the X chromosome, both male and female mammalian cells carry a single active X chromosome, as in females one copy of the X chromosome is inactivated.

  • Both of the main types of genetic alterations that lead to cancer — tumour-suppressor inactivation and oncogene activation — act dominantly when they affect the single active copy of an X-linked gene. The same alterations remain silent when they affect the inactivated X chromosome in female cells.

  • Increased dosage of X-linked genes is thought to represent a key event in oncogenesis. Two principal mechanisms that achieve such change in gene dosage are commonly observed in tumours: gain of whole copies or regions of the active X chromosome and loss or skewing of the inactivation mechanism.

  • As for autosomal genes, the expression of X-linked genes can be altered by changes in methylation, in addition to classic genetic mutations. Increases and decreases in methylation of X-chromosome genes have been implicated in certain cancers.

  • Some genes that are located on the inactive X chromosome escape inactivation in normal cells and several of these are implicated in human cancer.

  • Translocations involving regions of the X chromosome have unique outcomes in relation to ability to cause cancer. Events involving relocation of regions of the inactive X chromosome to an autosome can result in the reactivation of previously silent X-linked genes, with potential oncogenic effects. Conversely, loss of expression of an autosomal tumour suppressor can result from translocation to the inactive X chromosome.

  • Defects in the X-chromosome inactivation process can lead to cancer. The BRCA1 tumour suppressor is thought to have a key role in X-chromosome inactivation, and it has been proposed that loss of this function contributes to the development of cancer when normal expression of this gene is lost.

Abstract

In mammals, the X chromosome is unique within the chromosome set. In contrast to the other chromosomes — for which two active copies are present — both male and female cells carry only one active X chromosome. This is because males have only one X chromosome and in females only one copy is active, a situation that leads to specific characteristics for genes located on this chromosome. How are the outcomes of genetic events involved in cancer — namely activation of oncogenes and inactivation of tumour suppressors — expected to be different when these genes are carried on the X chromosome rather than on autosomes?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The process of X-chromosome inactivation.
Figure 2: The impact of X-chromosome genetics on cancer.
Figure 3: Tumorigenic effects of translocations involving the X chromosome.

Similar content being viewed by others

References

  1. Barr, M. L. & Bertram, E. G. A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163, 676–677 (1949).

    CAS  PubMed  Google Scholar 

  2. Lyon, M. F. Gene action in the X chromosome of the mouse (Musc musculus). Nature 190, 372–373 (1961).

    Article  CAS  PubMed  Google Scholar 

  3. Plath, K., Mlynarczyk-Evans, S., Nusinow, D. A. & Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet. 36, 233–278 (2002). Comprehensive review describing the factors that regulate and interact with XIST to control X-chromosome inactivation, and the molecular mechanisms that underlie this complex process.

    CAS  PubMed  Google Scholar 

  4. Coutts, W. E., Coutts, W. R. & Silva-Inzunza, E. Sex chromatin in cells of prostatic hypertrophy and prostatic cancer. Br. J Urol. 28, 268–270 (1956).

    CAS  PubMed  Google Scholar 

  5. Barr, M. L. & Moore, K. L. Chromosomes, sex chromatin, and cancer. Proc. Can. Cancer Conf. 2, 3–16 (1957).

    CAS  PubMed  Google Scholar 

  6. Rudas, M. et al. Karyotypic findings in two cases of male breast cancer. Cancer Genet. Cytogenet. 121, 190–193 (2000).

    CAS  PubMed  Google Scholar 

  7. Giammarini, A., Rocchi, M., Zennaro, W. & Filippi, G. XX male with breast cancer. Clin. Genet. 18, 103–108 (1980).

    CAS  PubMed  Google Scholar 

  8. Evans, D. B. & Crichlow, R. W. Carcinoma of the male breast and Klinefelter's syndrome: is there an association? CA Cancer J. Clin. 37, 246–251 (1987).

    CAS  PubMed  Google Scholar 

  9. Hado, H. S., Helmy, S. W., Klemm, K., Miller, P. & Elhadd, T. A. XX male: a rare cause of short stature, infertility, gynaecomastia and carcinoma of the breast. Int. J Clin. Pract. 57, 844–845 (2003).

    CAS  PubMed  Google Scholar 

  10. Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649 (2003).

    PubMed  Google Scholar 

  11. Huynh, K. D. & Lee, J. T. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426, 857–862 (2003).

    CAS  PubMed  Google Scholar 

  12. Iitsuka, Y. et al. Evidence of skewed X-chromosome inactivation in 47,XXY and 48,XXYY Klinefelter patients. Am. J. Med. Genet. 98, 25–31 (2001).

    CAS  PubMed  Google Scholar 

  13. Rooman, R. P., Van Driessche, K. & Du Caju, M. V. Growth and ovarian function in girls with 48,XXXX karyotype — patient report and review of the literature. J. Pediatr. Endocrinol. Metab. 15, 1051–1055 (2002).

    PubMed  Google Scholar 

  14. Looijenga, L. H. & Oosterhuis, J. W. Pathogenesis of testicular germ cell tumours. Rev. Reprod. 4, 90–100 (1999).

    CAS  PubMed  Google Scholar 

  15. Rapley, E. A., Crockford, G. P., Easton, D. F., Stratton, M. R. & Bishop, D. T. Localisation of susceptibility genes for familial testicular germ cell tumour. APMIS 111, 128–133 (2003). These authors were the first to demonstrate a TGCT-susceptibility gene — TGCT1 — at Xq27. The gene is close to HPCX , which is located at Xq27–28.

    PubMed  Google Scholar 

  16. Terracciano, L. M. et al. Comparative genomic hybridization analysis of hepatoblastoma reveals high frequency of X-chromosome gains and similarities between epithelial and stromal components. Hum. Pathol. 34, 864–871 (2003).

    CAS  PubMed  Google Scholar 

  17. Yamamoto, K., Nagata, K., Kida, A. & Hamaguchi, H. Acquired gain of an X chromosome as the sole abnormality in the blast crisis of chronic neutrophilic leukemia. Cancer Genet. Cytogenet. 134, 84–87 (2002).

    CAS  PubMed  Google Scholar 

  18. Heinonen, K. et al. Acquired X-chromosome aneuploidy in children with acute lymphoblastic leukemia. Med. Pediatr. Oncol. 32, 360–365 (1999).

    CAS  PubMed  Google Scholar 

  19. Visakorpi, T., Hyytinen, E., Kallioniemi, A., Isola, J. & Kallioniemi, O. P. Sensitive detection of chromosome copy number aberrations in prostate cancer by fluorescence in situ hybridization. Am. J. Pathol. 145, 624–630 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Koivisto, P. et al. Analysis of genetic changes underlying local recurrence of prostate carcinoma during androgen deprivation therapy. Am. J. Pathol. 147, 1608–1614 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Koivisto, P. A. et al. Androgen receptor gene alterations and chromosomal gains and losses in prostate carcinomas appearing during finasteride treatment for benign prostatic hyperplasia. Clin. Cancer Res. 5, 3578–3582 (1999).

    CAS  PubMed  Google Scholar 

  22. Visakorpi, T. et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nature Genet. 9, 401–406 (1995).

    CAS  PubMed  Google Scholar 

  23. Dutrillaux, B., Muleris, M. & Seureau, M. G. Imbalance of sex chromosomes, with gain of early-replicating X, in human solid tumors. Int. J. Cancer 38, 475–479 (1986).

    CAS  PubMed  Google Scholar 

  24. Muleris, M., Dutrillaux, A. M., Salmon, R. J. & Dutrillaux, B. Sex chromosomes in a series of 79 colorectal cancers: replication pattern, numerical, and structural changes. Genes Chromosom. Cancer 1, 221–227 (1990).

    CAS  PubMed  Google Scholar 

  25. Wang, N., Cedrone, E., Skuse, G. R., Insel, R. & Dry, J. Two identical active X chromosomes in human mammary carcinoma cells. Cancer Genet. Cytogenet. 46, 271–280 (1990).

    CAS  PubMed  Google Scholar 

  26. Okada, Y., Nishikawa, R., Matsutani, M. & Louis, D. N. Hypomethylated X chromosome gain and rare isochromosome 12p in diverse intracranial germ cell tumors. J. Neuropathol. Exp. Neurol. 61, 531–538 (2002).

    CAS  PubMed  Google Scholar 

  27. Kawakami, T. et al. The roles of supernumerical X chromosomes and XIST expression in testicular germ cell tumors. J. Urol. 169, 1546–1552 (2003).

    PubMed  Google Scholar 

  28. Looijenga, L. H., Gillis, A. J., van Gurp, R. J., Verkerk, A. J. & Oosterhuis, J. W. X inactivation in human testicular tumors. XIST expression and androgen receptor methylation status. Am. J. Pathol. 151, 581–590 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Looijenga, L. H. & Oosterhuis, J. W. Clinical value of the X chromosome in testicular germ-cell tumours. Lancet 363, 6–8 (2004).

    PubMed  Google Scholar 

  30. Klein, C. B. et al. Senescence of nickel-transformed cells by an X chromosome: possible epigenetic control. Science 251, 796–799 (1991).

    CAS  PubMed  Google Scholar 

  31. Wang, X. W. et al. A conserved region in human and Chinese hamster X chromosomes can induce cellular senescence of nickel-transformed Chinese hamster cell lines. Carcinogenesis 13, 555–561 (1992).

    CAS  PubMed  Google Scholar 

  32. Monroe, K. R. et al. Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nature Med. 1, 827–829 (1995).

    CAS  PubMed  Google Scholar 

  33. Xu, J. et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nature Genet. 20, 175–179 (1998).

    CAS  PubMed  Google Scholar 

  34. Kibel, A. S., Faith, D. A., Bova, G. S. & Isaacs, W. B. Xq27-28 deletions in prostate carcinoma. Genes Chromosom. Cancer 37, 381–388 (2003).

    CAS  PubMed  Google Scholar 

  35. Rapley, E. A. et al. Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nature Genet. 24, 197–200 (2000).

    CAS  PubMed  Google Scholar 

  36. Bochum, S. et al. Confirmation of the prostate cancer susceptibility locus HPCX in a set of 104 German prostate cancer families. Prostate 52, 12–19 (2002).

    CAS  PubMed  Google Scholar 

  37. Piao, Z. & Malkhosyan, S. R. Frequent loss Xq25 on the inactive X chromosome in primary breast carcinomas is associated with tumor grade and axillary lymph node metastasis. Genes Chromosom. Cancer 33, 262–269 (2002).

    CAS  PubMed  Google Scholar 

  38. Buekers, T. E., Lallas, T. A. & Buller, R. E. Xp22. 2-3 loss of heterozygosity is associated with germline BRCA1 mutation in ovarian cancer. Gynecol. Oncol. 76, 418–422 (2000).

    CAS  PubMed  Google Scholar 

  39. Yang-Feng, T. L., Li, S., Han, H. & Schwartz, P. E. Frequent loss of heterozygosity on chromosomes Xp and 13q in human ovarian cancer. Int. J. Cancer 52, 575–580 (1992).

    CAS  PubMed  Google Scholar 

  40. Dodson, M. K. et al. Comparison of loss of heterozygosity patterns in invasive low-grade and high-grade epithelial ovarian carcinomas. Cancer Res. 53, 4456–4460 (1993).

    CAS  PubMed  Google Scholar 

  41. Chenevix-Trench, G. et al. Analysis of loss of heterozygosity and KRAS2 mutations in ovarian neoplasms: clinicopathological correlations. Genes Chromosom. Cancer 18, 75–83 (1997).

    CAS  PubMed  Google Scholar 

  42. Choi, C. et al. Loss of heterozygosity at chromosome segment Xq25-26. 1 in advanced human ovarian carcinomas. Genes Chromosom. Cancer 20, 234–242 (1997).

    CAS  PubMed  Google Scholar 

  43. Edelson, M. I. et al. A one centimorgan deletion unit on chromosome Xq12 is commonly lost in borderline and invasive epithelial ovarian tumors. Oncogene 16, 197–202 (1998).

    CAS  PubMed  Google Scholar 

  44. Jiang, F. et al. Chromosomal imbalances in papillary renal cell carcinoma: genetic differences between histological subtypes. Am. J. Pathol. 153, 1467–1473 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mathur, M., Das, S. & Samuels, H. H. PSF-TFE3 oncoprotein in papillary renal cell carcinoma inactivates TFE3 and p53 through cytoplasmic sequestration. Oncogene 22, 5031–5044 (2003).

    CAS  PubMed  Google Scholar 

  46. D'Adda, T., Candidus, S., Denk, H., Bordi, C. & Hofler, H. Gastric neuroendocrine neoplasms: tumour clonality and malignancy-associated large X-chromosomal deletions. J. Pathol. 189, 394–401 (1999).

    CAS  PubMed  Google Scholar 

  47. Pizzi, S. et al. Malignancy-associated allelic losses on the X-chromosome in foregut but not in midgut endocrine tumours. J. Pathol. 196, 401–407 (2002).

    PubMed  Google Scholar 

  48. Hake, S. B., Xiao, A. & Allis, C. D. Linking the epigenetic 'language' of covalent histone modifications to cancer. Br. J. Cancer 90, 761–769 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jones, P. A. The DNA methylation paradox. Trends Genet. 15, 34–37 (1999).

    CAS  PubMed  Google Scholar 

  50. Bestor, T. H. Cytosine methylation mediates sexual conflict. Trends Genet. 19, 185–190 (2003).

    CAS  PubMed  Google Scholar 

  51. Pilia, G. et al. Mutations in GPC3, a glypican gene, cause the Simpson–Golabi–Behmel overgrowth syndrome. Nature Genet. 12, 241–247 (1996).

    CAS  PubMed  Google Scholar 

  52. Hughes-Benzie, R. M., Hunter, A. G., Allanson, J. E. & MacKenzie, A. E. Simpson–Golabi–Behmel syndrome associated with renal dysplasia and embryonal tumor: localization of the gene to Xqcen-q21. Am. J. Med. Genet. 43, 428–435 (1992).

    CAS  PubMed  Google Scholar 

  53. Murthy, S. S. et al. Expression of GPC3, an X-linked recessive overgrowth gene, is silenced in malignant mesothelioma. Oncogene 19, 410–416 (2000).

    CAS  PubMed  Google Scholar 

  54. Lin, H., Huber, R., Schlessinger, D. & Morin, P. J. Frequent silencing of the GPC3 gene in ovarian cancer cell lines. Cancer Res. 59, 807–810 (1999).

    CAS  PubMed  Google Scholar 

  55. Xiang, Y. Y., Ladeda, V. & Filmus, J. Glypican-3 expression is silenced in human breast cancer. Oncogene 20, 7408–7412 (2001).

    CAS  PubMed  Google Scholar 

  56. Zendman, A. J., Van Kraats, A. A., Weidle, U. H., Ruiter, D. J. & Van Muijen, G. N. The XAGE family of cancer/testis-associated genes: alignment and expression profile in normal tissues, melanoma lesions and Ewing's sarcoma. Int. J. Cancer 99, 361–369 (2002).

    CAS  PubMed  Google Scholar 

  57. Alpen, B., Gure, A. O., Scanlan, M. J., Old, L. J. & Chen, Y. T. A new member of the NY-ESO-1 gene family is ubiquitously expressed in somatic tissues and evolutionarily conserved. Gene 297, 141–149 (2002).

    CAS  PubMed  Google Scholar 

  58. De Backer, O. et al. Characterization of the GAGE genes that are expressed in various human cancers and in normal testis. Cancer Res. 59, 3157–3165 (1999).

    CAS  PubMed  Google Scholar 

  59. dos Santos, N. R. et al. Heterogeneous expression of the SSX cancer/testis antigens in human melanoma lesions and cell lines. Cancer Res. 60, 1654–1662 (2000).

    CAS  PubMed  Google Scholar 

  60. De Smet, C., Lurquin, C., Lethe, B., Martelange, V. & Boon, T. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol. Cell. Biol. 19, 7327–7335 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, Y. T. et al. Identification and characterization of mouse SSX genes: a multigene family on the X chromosome with restricted cancer/testis expression. Genomics 82, 628–636 (2003).

    CAS  PubMed  Google Scholar 

  62. Carrel, L., Cottle, A. A., Goglin, K. C. & Willard, H. F. A first-generation X-inactivation profile of the human X chromosome. Proc. Natl Acad. Sci. USA 96, 14440–14444 (1999). This study presents an X-chromosome inactivation profile of 224 X-linked genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mondello, C., Goodfellow, P. J. & Goodfellow, P. N. Analysis of methylation of a human X located gene which escapes X inactivation. Nucleic Acids Res. 16, 6813–6824 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Boggs, B. A. et al. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nature Genet. 30, 73–76 (2002). Describes the rearrangement of heterochromatin on the inactive X chromosome, involving enrichment for histone H3 methylated at Lys9 and depletion of histone H3 methylated at Lys4.

    CAS  PubMed  Google Scholar 

  65. Gilbert, S. L. & Sharp, P. A. Promoter-specific hypoacetylation of X-inactivated genes. Proc. Natl Acad. Sci. USA 96, 13825–13830 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Csankovszki, G., McDonel, P. & Meyer, B. J. Recruitment and spreading of the C. elegans dosage compensation complex along X chromosomes. Science 303, 1182–1185 (2004).

    CAS  PubMed  Google Scholar 

  67. Shriver, S. P. et al. Sex-specific expression of gastrin-releasing peptide receptor: relationship to smoking history and risk of lung cancer. J. Natl Cancer Inst. 92, 24–33 (2000).

    CAS  PubMed  Google Scholar 

  68. Sudbrak, R. et al. X chromosome-specific cDNA arrays: identification of genes that escape from X-inactivation and other applications. Hum. Mol. Genet. 10, 77–83 (2001).

    CAS  PubMed  Google Scholar 

  69. Cheng, P. C. et al. Potential role of the inactivated X chromosome in ovarian epithelial tumor development. J. Natl Cancer Inst. 88, 510–518 (1996).

    CAS  PubMed  Google Scholar 

  70. Piao, Z., Lee, K. S., Kim, H., Perucho, M. & Malkhosyan, S. Identification of novel deletion regions on chromosome arms 2q and 6p in breast carcinomas by amplotype analysis. Genes Chromosom. Cancer 30, 113–122 (2001).

    CAS  PubMed  Google Scholar 

  71. Kokalj-Vokac, N. et al. A t(X;15)(q23;q25) with Xq reactivation in a lymphoblastoid cell line from Fanconi anemia. Cytogenet. Cell Genet. 57, 11–15 (1991).

    CAS  PubMed  Google Scholar 

  72. Couturier, J. et al. Evidence for a correlation between late replication and autosomal gene inactivation in a familial translocation t(X;21). Hum. Genet. 49, 319–326 (1979).

    CAS  PubMed  Google Scholar 

  73. Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist. Nature Genet. 30, 167–174 (2002).

    CAS  PubMed  Google Scholar 

  74. White, W. M., Willard, H. F., Van Dyke, D. L. & Wolff, D. J. The spreading of X inactivation into autosomal material of an x;autosome translocation: evidence for a difference between autosomal and X-chromosomal DNA. Am. J. Hum. Genet. 63, 20–28 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hall, L. L., Clemson, C. M., Byron, M., Wydner, K. & Lawrence, J. B. Unbalanced X;autosome translocations provide evidence for sequence specificity in the association of XIST RNA with chromatin. Hum. Mol. Genet. 11, 3157–3165 (2002).

    CAS  PubMed  Google Scholar 

  76. Sharp, A. J., Spotswood, H. T., Robinson, D. O., Turner, B. M. & Jacobs, P. A. Molecular and cytogenetic analysis of the spreading of X inactivation in X;autosome translocations. Hum. Mol. Genet. 11, 3145–3156 (2002). The authors analysed the spreading of X-chromosome inactivation in five unbalanced translocations of an autosomal gene onto the X chromosome occurring in human cells. They addressed the ability of X-chromosome inactivation to spread to the translocated autosomal gene.

    CAS  PubMed  Google Scholar 

  77. Jones, C. et al. Bilateral retinoblastoma in a male patient with an X;13 translocation: evidence for silencing of the RB1 gene by the spreading of X inactivation. Am. J. Hum. Genet. 60, 1558–1562 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Plenge, R. M. et al. A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nature Genet. 17, 353–356 (1997).

    CAS  PubMed  Google Scholar 

  79. Tomkins, D. J., McDonald, H. L., Farrell, S. A. & Brown, C. J. Lack of expression of XIST from a small ring X chromosome containing the XIST locus in a girl with short stature, facial dysmorphism and developmental delay. Eur. J. Hum. Genet. 10, 44–51 (2002).

    CAS  PubMed  Google Scholar 

  80. Ganesan, S. et al. BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111, 393–405 (2002). Demonstrates colocalization of BRCA1 and XIST RNA, suggesting that loss of BRCA1 in female cells might lead to perturbation of X-chromosome inactivation and destabilization of the silenced state.

    CAS  PubMed  Google Scholar 

  81. Jazaeri, A. A. et al. Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J. Natl Cancer Inst. 94, 990–1000 (2002).

    CAS  PubMed  Google Scholar 

  82. Parolini, O. et al. X-linked Wiskott–Aldrich syndrome in a girl. N. Engl. J. Med. 338, 291–295 (1998).

    CAS  PubMed  Google Scholar 

  83. Parrish, J. E., Scheuerle, A. E., Lewis, R. A., Levy, M. L. & Nelson, D. L. Selection against mutant alleles in blood leukocytes is a consistent feature in Incontinentia Pigmenti type 2. Hum. Mol. Genet. 5, 1777–1783 (1996).

    CAS  PubMed  Google Scholar 

  84. Kenwrick, S. Incontinentia pigmenti: the first single gene disorder due to disrupted NF-κB function. Ernst. Schering. Res. Found. Workshop 36, 95–107 (2002).

    CAS  Google Scholar 

  85. Levan, G. & Mitelman, F. Absence of late-replicating X-chromosome in a female patient with acute myeloid leukemia and the 8;21 translocation. J. Natl Cancer Inst. 62, 273–275 (1979).

    CAS  PubMed  Google Scholar 

  86. Buller, R. E., Sood, A. K., Lallas, T., Buekers, T. & Skilling, J. S. Association between nonrandom X-chromosome inactivation and BRCA1 mutation in germline DNA of patients with ovarian cancer. J. Natl Cancer Inst. 91, 339–346 (1999).

    CAS  PubMed  Google Scholar 

  87. Buller, R. E., Sood, A. K., Lallas, T., Buekers, T. & Skilling, J. S. RESPONSE: Re: Association Between Nonrandom X-Chromosome Inactivation and BRCA1 Mutation in Germline DNA of Patients With Ovarian Cancer. J. Natl Cancer Inst. 91, 1508–1509 (1999).

    CAS  PubMed  Google Scholar 

  88. Kristiansen, M. et al. High frequency of skewed X inactivation in young breast cancer patients. J. Med. Genet. 39, 30–33 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sharp, A., Robinson, D. & Jacobs, P. Age- and tissue-specific variation of X chromosome inactivation ratios in normal women. Hum. Genet. 107, 343–349 (2000).

    CAS  PubMed  Google Scholar 

  90. Kawakami, T., Okamoto, K., Ogawa, O. & Okada, Y. Xist unmethylated DNA fragments in male-derived plasma as a tumour marker for testicular cancer. Lancet 365, 40–42 (2204).

    Google Scholar 

Download references

Acknowledgements

P. Dessen and A. Kauffmann are gratefully acknowledged for their help in illustrating the set of genes that escape X-chromosome inactivation. J.F. is supported by the 'Association pour la Recherche sur le Cancer' (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Feunteun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

acute lymphoblastic leukaemia

acute myeloid leukaemia

anal cancer

female breast cancer

colorectal cancer

lung cancer

male breast cancer

malignant mesothelioma

melanoma

ovarian cancer

prostate cancer

renal-cell cancer

testicular cancer

Entrez Gene

XIST

XIC

TGCT1

ARAF1

ELK1

HPCX

TFE3

GPC3

GRPR

RB

AR

BRCA1

BRCA2

NEMO

Glossary

UNISOMY

The state of an individual or cell carrying only one member of a pair of homologous chromosomes.

MOSAICISM

The occurrence in an individual of two or more cell populations of different chromosomal constitutions derived from a single zygote.

HETEROCHROMATIN

Highly condensed region of the interphase nucleus consisting of nucleic acid and associated histone proteins packed into nucleosomes. Heterochromatin is transcriptionally inactive and becomes especially abundant in the nuclei of terminally differentiated cells, in which most formerly active genes are repressed.

LOSS OF HETEROZYGOSITY

Refers to a mutation or other genetic event that results in the loss of one allele.

KLINEFELTER'S SYNDROME

A syndrome affecting males, characterized by small testes, infertility and the development of breasts. Patients tend to be tall with long legs. The syndrome is typically associated with an XXY chromosome complement, although variants include XXYY, XXXY, XXXXY and several mosaic patterns.

XX MALE SYNDROME

A syndrome that occurs in males that is associated with the presence of two X chromosomes. The parts of the Y chromosome that are necessary for the male phenotype are thought to be located elsewhere in the genome as a result of translocation, at least in some cases.

IMPRINTING

Monoallelic gene expression or inactivation of either the maternal or paternal allele of a particular locus.

ENTEROCHROMAFFIN-LIKE CELL

A distinctive type of neuroendocrine cell present in gastric mucosa underlying epithelia; most prevalent in the acid-secreting regions of the stomach.

RETROTRANSPOSONS

Transposable elements (transposons) that, similar to retroviruses, require reverse transcription for their replication. The DNA element is transcribed into RNA, reverse-transcribed into DNA and then inserted at a new site in the genome.

ALLELOTYPING

A technique used to identify the paternal and maternal alleles of a given gene based on polymorphisms.

FANCONI ANAEMIA

A rare disorder that is characterized by developmental abnormalities of the skeleton and other organs, defects in skin pigmentation, progressive failure of the bone marrow to replenish platelets and red and white blood cells, and susceptibility to acute myeloid leukaemia and squamous-cell carcinoma.

SUPEROXIDE DISMUTASE

An enzyme that is present in all aerobic organisms. It catalyses the conversion of highly reactive and destructive superoxide anion radicals, which are generated by the metabolism of the cell, into hydrogen peroxide.

WISKOTT–ALDRICH SYNDROME

An X-linked genetic disorder that almost always affects males and is characterized by thrombocytopaenia, eczema, melena and susceptibility to bacterial infections because of severe immunodeficiency.

INCONTINENTIA PIGMENTI

An inherited hypopigmented skin lesion that shows a so-called 'marble-cake' pattern, which is variably associated with epidermal nevi, alopecia, and ocular, skeletal and neural abnormalities.

PENETRANCE

The frequency with which individuals who carry a given mutation show associated phenotypic manifestations. If the penetrance of a disease allele is 100%, then all individuals carrying that allele will express the associated phenotype.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spatz, A., Borg, C. & Feunteun, J. X-Chromosome Genetics and Human Cancer. Nat Rev Cancer 4, 617–629 (2004). https://doi.org/10.1038/nrc1413

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1413

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing