Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathways of apoptotic and non-apoptotic death in tumour cells

Key Points

  • Resistance to apoptosis is considered to be a hallmark of cancer cells. Defects in apoptosis underlie not only tumorigenesis, but also resistance to cancer treatments.

  • Defects in non-apoptotic cell-death pathways — such as necrosis, autophagy and mitotic catastrophe — are also associated with tumorigenesis. The senescence 'living-death' programme — which involves the genes that encode p53, WAF1, INK4A and the retinoblastoma protein — is crucial for both tumour suppression and anticancer therapy.

  • Malignant transformation can be induced by the dysregulation of oncogenes and tumour-suppressor genes that have secondary functions in the autophagic pathway. Inactivation of the autophagy gene beclin 1 induces malignancy in a mouse model.

  • Defects in genes that are required for mitotic catastrophe can contribute to tumorigenesis. Uncontrolled activation of mitotic kinases and defects in mitotic checkpoints are important causes of centrosomal aberrations and genomic instability.

  • Survivin is essential for mitotic progression, and inactivation of this protein induces death by mitotic catastrophe. Survivin might be an ideal target for cancer treatment, because cell death induced by survivin loss is independent of BCL2 and p53.

  • The interactions between non-apoptotic and apoptotic cell-death pathways are not yet clear. Further investigation of non-apoptotic pathways might reveal new targets for the design of therapeutics that are aimed at inducing the non-apoptotic death of cancer cells.

Abstract

Defects in cell-death pathways are hallmarks of cancer. Although resistance to apoptosis is closely linked to tumorigenesis, tumour cells can still be induced to die by non-apoptotic mechanisms, such as necrosis, senescence, autophagy and mitotic catastrophe. The molecular pathways that underlie these non-apoptotic responses remain unclear. Several apoptotic and non-apoptotic pathways of cell death have been defined in normal physiology and during tumorigenesis, and these could potentially be manipulated to develop new cancer therapies. The mitotic-checkpoint molecule survivin — the inactivation of which induces the death of p53-deficient cells by mitotic catastrophe — is of particular interest.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Responses of cells to natural and treatment-induced tumorigenic stresses.
Figure 2: Model for survivin-mediated protection against mitotic catastrophe.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  2. Green, D. R. & Evan, G. I. A matter of life and death. Cancer Cell 1, 19–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Johnstone, R. W., Ruefli, A. A. & Lowe, S. W. Apoptosis: a link between cancer genetics and chemotherapy. Cell 108, 153–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Brown, J. M. & Wouters, B. G. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res. 59, 1391–1399 (1999).

    CAS  PubMed  Google Scholar 

  5. Roninson, I. B., Broude, E. V. & Chang, B. D. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist. Updat. 4, 303–313 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Castedo, M., Perfettini, J. L., Roumier, T. & Kroemer, G. Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ. 9, 1287–1293 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Majno, G. & Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146, 3–15 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lockshin, R. A. & Zakeri, Z. Caspase-independent cell deaths. Curr. Opin. Cell Biol. 14, 727–733 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972). First description of the morphological features of apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellis, R. E., Yuan, J. Y. & Horvitz, H. R. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663–698 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Jacobson, M. D., Weil, M. & Raff, M. C. Programmed cell death in animal development. Cell 88, 347–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Alnemri, E. S. et al. Human ICE/CED-3 protease nomenclature. Cell 87, 171 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Salvesen, G. S. & Dixit, V. M. Caspases: intracellular signaling by proteolysis. Cell 91, 443–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Cryns, V. & Yuan, J. Proteases to die for. Genes Dev. 12, 1551–1570 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell. Dev. Biol. 15, 269–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Kluck, R. M. et al. The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J. Cell Biol. 147, 809–822 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cory, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nature Rev. Cancer 2, 647–656 (2002).

    Article  CAS  Google Scholar 

  19. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Li, L. Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Lipton, S. A. & Bossy-Wetzel, E. Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 111, 147–150 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Martins, L. M. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a Reaper-like motif. J. Biol. Chem. 277, 439–444 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Verhagen, A. M. et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J. Biol. Chem. 277, 445–454 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki, Y. et al. A serine protease, htra2, is released from the mitochondria and interacts with xiap, inducing cell death. Mol. Cell 8, 613–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem. 277, 432–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961). The first description of replicative senescence; cells eventually reach a limit beyond which they cannot continue to divide.

    Article  CAS  PubMed  Google Scholar 

  30. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Campisi, J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11, S27–S31 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Alcorta, D. A. et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA 93, 13742–13747 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Sage, J., Miller, A. L., Perez-Mancera, P. A., Wysocki, J. M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Stein, G. H., Drullinger, L. F., Soulard, A. & Dulic, V. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol. Cell. Biol. 19, 2109–2117 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kamijo, T., Bodner, S., van de Kamp, E., Randle, D. H. & Sherr, C. J. Tumor spectrum in ARF-deficient mice. Cancer Res. 59, 2217–2222 (1999).

    CAS  PubMed  Google Scholar 

  38. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413, 83–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Boulanger, C. A. & Smith, G. H. Reducing mammary cancer risk through premature stem cell senescence. Oncogene 20, 2264–2272 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Nicotera, P. & Melino, G. Regulation of the apoptosis–necrosis switch. Oncogene 23, 2757–2765 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Klionsky, D. J. & Ohsumi, Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 1–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, J. & Klionsky, D. J. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu. Rev. Biochem. 69, 303–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Schwartz, L. M., Smith, S. W., Jones, M. E. & Osborne, B. A. Do all programmed cell deaths occur via apoptosis? Proc. Natl Acad. Sci. USA 90, 980–984 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bursch, W. et al. Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J. Cell Sci. 113, 1189–1198 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Takeshige, K., Baba, M., Tsuboi, S., Noda, T. & Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119, 301–311 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477 (2004). A recent and excellent review on autophagy.

    Article  CAS  PubMed  Google Scholar 

  50. Huang, W. P. & Klionsky, D. J. Autophagy in yeast: a review of the molecular machinery. Cell Struct. Funct. 27, 409–420 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Rohde, J., Heitman, J. & Cardenas, M. E. The TOR kinases link nutrient sensing to cell growth. J. Biol. Chem. 276, 9583–9586 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963–3966 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Reggiori, F. & Klionsky, D. J. Autophagy in the eukaryotic cell. Eukaryot. Cell 1, 11–21 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Melendez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Baehrecke, E. H. Autophagic programmed cell death in Drosophila. Cell Death Differ. 10, 940–945 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Lamborghini, J. E. Disappearance of Rohon–Beard neurons from the spinal cord of larval Xenopus laevis. J. Comp. Neurol. 264, 47–55 (1987).

    Article  CAS  PubMed  Google Scholar 

  57. Isahara, K. et al. Regulation of a novel pathway for cell death by lysosomal aspartic and cysteine proteinases. Neuroscience 91, 233–249 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Xue, L., Fletcher, G. C. & Tolkovsky, A. M. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol. Cell. Neurosci. 14, 180–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Anglade, P. et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol. 12, 25–31 (1997).

    CAS  PubMed  Google Scholar 

  60. Tanaka, Y. et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902–906 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Kalimo, H. et al. X-linked myopathy with excessive autophagy: a new hereditary muscle disease. Ann. Neurol. 23, 258–265 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Russell, P. & Nurse, P. cdc25 functions as an inducer in the mitotic control of fission yeast. Cell 45, 145–153 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Nigg, E. A. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17, 471–480 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Kimura, K., Hirano, M., Kobayashi, R. & Hirano, T. Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 282, 487–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Gonczy, P. Nuclear envelope: torn apart at mitosis. Curr. Biol. 12, R242–R244 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Karsenti, E. & Vernos, I. The mitotic spindle: a self-made machine. Science 294, 543–547 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Noton, E. & Diffley, J. F. CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Mol. Cell 5, 85–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Hermeking, H. et al. 14-3-3σ is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1, 3–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W. & Vogelstein, B. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620 (1999). The 14-3-3σ−/− cells examined in this report were unable to maintain cell-cycle arrest and died by mitotic catastrophe. This was one of the first indications that a mechanism for maintaining the G2/M checkpoint and preventing mitotic cell death existed.

    Article  CAS  PubMed  Google Scholar 

  72. Kawabe, T. et al. Cdc25C interacts with PCNA at G2/M transition. Oncogene 21, 1717–1726 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. de Klein, A. et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 10, 479–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Takai, H. et al. Aberrant cell cycle checkpoint function and early embryonic death in Chk1−/− mice. Genes Dev. 14, 1439–1447 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Merritt, A. J., Allen, T. D., Potten, C. S. & Hickman, J. A. Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after γ-irradiation. Oncogene 14, 2759–2766 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922–927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fernandez-Capetillo, O. et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nature Cell Biol. 4, 993–997 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. DiTullio, R. A. et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nature Cell Biol. 4, 998–1002 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, B., Matsuoka, S., Carpenter, P. B. & Elledge, S. J. 53BP1, a mediator of the DNA damage checkpoint. Science 298, 1435–1438 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Ward, I. M., Minn, K., van Deursen, J. & Chen, J. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol. Cell. Biol. 23, 2556–2563 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yarden, R. I., Pardo-Reoyo, S., Sgagias, M., Cowan, K. H. & Brody, L. C. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nature Genet. 30, 285–289 (2002).

    Article  PubMed  Google Scholar 

  84. Stewart, G. S., Wang, B., Bignell, C. R., Taylor, A. M. & Elledge, S. J. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421, 961–966 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Lou, Z., Minter-Dykhouse, K., Wu, X. & Chen, J. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 421, 957–961 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Goldberg, M. et al. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421, 952–956 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Jordan, M. A. et al. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res. 56, 816–825 (1996).

    CAS  PubMed  Google Scholar 

  88. Takada, S., Kelkar, A. & Theurkauf, W. E. Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell 113, 87–99 (2003). This study showed that Drosophila Chk2 regulates death by mitotic catastrophe in a p53-independent manner.

    Article  CAS  PubMed  Google Scholar 

  89. Ogawa, O. et al. Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe? Acta Neuropathol. (Berl.) 105, 524–528 (2003).

    Article  CAS  Google Scholar 

  90. Erenpreisa, J. & Roach, H. I. Aberrations of cell cycle and cell death in normal development of the chick embryo growth plate. Mech. Ageing Dev. 108, 227–238 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Okada, H. et al. Survivin loss in thymocytes triggers p53-mediated growth arrest and p53-independent cell death. J. Exp. Med. 199, 399–410 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lens, S. M. et al. Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J. 22, 2934–2947 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Carvalho, A., Carmena, M., Sambade, C., Earnshaw, W. C. & Wheatley, S. P. Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J. Cell Sci. 116, 2987–2998 (2003). References 92 and 93 provide evidence that survivin is involved in the spindle checkpoint in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  94. Harrington, E. A., Fanidi, A. & Evan, G. I. Oncogenes and cell death. Curr. Opin. Genet. Dev. 4, 120–129 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Evan, G. & Littlewood, T. A matter of life and cell death. Science 281, 1317–1322 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C. & Croce, C. M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226, 1097–1099 (1984).

    Article  CAS  PubMed  Google Scholar 

  97. Tsujimoto, Y. et al. Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224, 1403–1406 (1984). References 96 and 97 describe the first demonstrations that abnormalities in BCL2 function are involved in tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  98. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    Article  CAS  PubMed  Google Scholar 

  99. McDonnell, T. J. et al. bcl-2–immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57, 79–88 (1989).

    Article  CAS  PubMed  Google Scholar 

  100. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D. & Korsmeyer, S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334–336 (1990).

    Article  CAS  PubMed  Google Scholar 

  101. Strasser, A., Harris, A. W., Bath, M. L. & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331–333 (1990). References 98–101 established that BCL2 is an anti-apoptotic molecule and that the oncogenic activity of BCL2 depends on this activity in vivo and in vitro.

    Article  CAS  PubMed  Google Scholar 

  102. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347 (1991).

    Article  CAS  PubMed  Google Scholar 

  105. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    Article  CAS  Google Scholar 

  106. Clarke, A. R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Routes, J. M. et al. Adenovirus E1A oncogene expression in tumor cells enhances killing by TNF-related apoptosis-inducing ligand (TRAIL). J. Immunol. 165, 4522–4527 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, J. R. et al. Dysfunctional apoptosome activation in ovarian cancer: implications for chemoresistance. Cancer Res. 62, 924–931 (2002).

    CAS  PubMed  Google Scholar 

  111. Wolf, B. B. et al. Defective cytochrome c-dependent caspase activation in ovarian cancer cell lines due to diminished or absent apoptotic protease activating factor-1 activity. J. Biol. Chem. 276, 34244–34251 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Shi, Y. et al. Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science 257, 212–214 (1992).

    Article  CAS  PubMed  Google Scholar 

  113. Hueber, A. O. et al. Requirement for the CD95 receptor-ligand pathway in c-Myc-induced apoptosis. Science 278, 1305–1309 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Nagata, S. Fas ligand-induced apoptosis. Annu. Rev. Genet. 33, 29–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Landowski, T. H., Qu, N., Buyuksal, I., Painter, J. S. & Dalton, W. S. Mutations in the Fas antigen in patients with multiple myeloma. Blood 90, 4266–4270 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Gronbaek, K. et al. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood 92, 3018–3024 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Park, W. S. et al. Somatic mutations in the death domain of the Fas (Apo-1/CD95) gene in gastric cancer. J. Pathol. 193, 162–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Teitz, T. et al. Caspase-8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nature Med. 6, 529–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Mayo, L. D. & Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA 98, 11598–11603 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gottlob, K. et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 15, 1406–1418 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Barthel, A. et al. Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J. Biol. Chem. 274, 20281–20286 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Stambolic, V., Mak, T. W. & Woodgett, J. R. Modulation of cellular apoptotic potential: contributions to oncogenesis. Oncogene 18, 6094–6103 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, C. Y., Mayo, M. W. & Baldwin, A. S. Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274, 784–777 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNFα-induced apoptosis by NF-κB. Science 274, 787–789 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C. & Kornberg, T. B. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Taipale, J. & Beachy, P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Momand, J., Jung, D., Wilczynski, S. & Niland, J. The MDM2 gene amplification database. Nucleic Acids Res. 26, 3453–3459 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kaelin, W. G. Molecular basis of the VHL hereditary cancer syndrome. Nature Rev. Cancer 2, 673–682 (2002).

    Article  CAS  Google Scholar 

  134. Semenza, G. L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell. Dev. Biol. 15, 551–578 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Mochizuki, T. et al. Akt protein kinase inhibits non-apoptotic programmed cell death induced by ceramide. J. Biol. Chem. 277, 2790–2797 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Castedo, M., Ferri, K. F. & Kroemer, G. Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ. 9, 99–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Arico, S. et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem. 276, 35243–35246 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Ogier-Denis, E. & Codogno, P. Autophagy: a barrier or an adaptive response to cancer. Biochim. Biophy.s Acta 1603, 113–128 (2003).

    CAS  Google Scholar 

  139. Tsuneoka, M. et al. c-myc induces autophagy in rat 3Y1 fibroblast cells. Cell Struct. Funct. 28, 195–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Mizushima, N., Ohsumi, Y. & Yoshimori, T. Autophagosome formation in mammalian cells. Cell Struct. Funct. 27, 421–429 (2002).

    Article  PubMed  Google Scholar 

  141. Tassa, A., Roux, M. P., Attaix, D. & Bechet, D. M. Class III phosphoinositide 3-kinase—Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem. J. 376, 577–586 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Aita, V. M. et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59, 59–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077–15082 (2003). References 143 and 144 show that autophagy gene BECN1 is a tumour suppressor in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol 72, 8586–8596 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell Biol. 2, 21–32 (2001).

    Article  CAS  Google Scholar 

  147. Cogswell, J. P., Brown, C. E., Bisi, J. E. & Neill, S. D. Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function. Cell Growth Differ. 11, 615–623 (2000).

    CAS  PubMed  Google Scholar 

  148. Burns, T. F., Fei, P., Scata, K. A., Dicker, D. T. & El-Deiry, W. S. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in Paclitaxel (taxol)-exposed cells. Mol. Cell. Biol. 23, 5556–5571 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sen, S., Zhou, H. & White, R. A. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 14, 2195–2200 (1997).

    Article  CAS  PubMed  Google Scholar 

  150. Kimura, M. et al. Assignment of STK6 to human chromosome 20q13.2--;q13.3 and a pseudogene STK6P to 1q41--;q42. Cytogenet. Cell. Genet. 79, 201–203 (1997).

    Article  CAS  PubMed  Google Scholar 

  151. Meraldi, P., Honda, R. & Nigg, E. A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 21, 483–492 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Katayama, H. et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nature Genet. 36, 55–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Hawkins, D. S., Demers, G. W. & Galloway, D. A. Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res. 56, 892–898 (1996).

    CAS  PubMed  Google Scholar 

  154. Vikhanskaya, F. et al. Inactivation of p53 in a human ovarian cancer cell line increases the sensitivity to paclitaxel by inducing G2/M arrest and apoptosis. Exp. Cell Res. 241, 96–101 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Wahl, A. F. et al. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nature Med. 2, 72–79 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Yin, D. X. & Schimke, R. T. BCL-2 expression delays drug-induced apoptosis but does not increase clonogenic survival after drug treatment in HeLa cells. Cancer Res. 55, 4922–4928 (1995).

    CAS  PubMed  Google Scholar 

  157. Lock, R. B. & Stribinskiene, L. Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Res. 56, 4006–4012 (1996).

    CAS  PubMed  Google Scholar 

  158. Kyprianou, N., King, E. D., Bradbury, D. & Rhee, J. G. bcl-2 overexpression delays radiation-induced apoptosis without affecting the clonogenic survival of human prostate cancer cells. Int. J. Cancer 70, 341–348 (1997).

    Article  CAS  PubMed  Google Scholar 

  159. Milner, A. E., Grand, R. J., Vaughan, A. T., Armitage, R. J. & Gregory, C. D. Differential effects of BCL-2 on survival and proliferation of human B-lymphoma cells following γ-irradiation. Oncogene 15, 1815–1822 (1997).

    Article  CAS  PubMed  Google Scholar 

  160. Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335–346 (2002). An elegant in vivo study showing that both senescence and apoptosis have crucial roles in the outcome of anticancer treatments. B-cell-lymphoma cells derived from Eμ–Myc mice responded well to cyclophosphamide therapy only when p53 or INK4A and ARF (but not ARF alone) were intact.

    Article  CAS  PubMed  Google Scholar 

  161. Bursch, W. et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17, 1595–1607 (1996).

    Article  CAS  PubMed  Google Scholar 

  162. Adams, R. R., Carmena, M. & Earnshaw, W. C. Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol. 11, 49–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Silke, J. & Vaux, D. L. Two kinds of BIR-containing protein — inhibitors of apoptosis, or required for mitosis. J. Cell Sci. 114, 1821–1827 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Altieri, D. C. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22, 8581–8589 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Li, F. et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nature Cell Biol. 1, 461–466 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Wang, H. W., Sharp, T. V., Koumi, A., Koentges, G. & Boshoff, C. Characterization of an anti-apoptotic glycoprotein encoded by Kaposi's sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J. 21, 2602–2615 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Marusawa, H. et al. HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J. 22, 2729–2740 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xing, Z., Conway, E. M., Kang, C. & Winoto, A. Essential role of survivin, an inhibitor of apoptosis protein, in T cell development, maturation, and homeostasis. J. Exp. Med. 199, 69–80 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Speliotes, E. K., Uren, A., Vaux, D. & Horvitz, H. R. The survivin-like C. elegans BIR-1 protein acts with the Aurora-like kinase AIR-2 to affect chromosomes and the spindle midzone. Mol. Cell 6, 211–223 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Uren, A. G. et al. Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc. Natl Acad. Sci. USA 96, 10170–10175 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Uren, A. G. et al. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr. Biol. 10, 1319–1328 (2000).

    Article  CAS  PubMed  Google Scholar 

  172. Li, F. et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584 (1998).

    Article  CAS  PubMed  Google Scholar 

  173. Kobayashi, K., Hatano, M., Otaki, M., Ogasawara, T. & Tokuhisa, T. Expression of a murine homologue of the inhibitor of apoptosis protein is related to cell proliferation. Proc. Natl Acad. Sci. USA 96, 1457–1462 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fraser, A. G., James, C., Evan, G. I. & Hengartner, M. O. Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homologue BIR-1 plays a conserved role in cytokinesis. Curr. Biol. 9, 292–301 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Blagosklonny, M. V. et al. Taxol induction of p21WAF1 and p53 requires c-raf-1. Cancer Res. 55, 4623–4626 (1995).

    CAS  PubMed  Google Scholar 

  176. Lanni, J. S. & Jacks, T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol. Cell. Biol. 18, 1055–1064 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G. F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744–1747 (1996).

    Article  CAS  PubMed  Google Scholar 

  178. Chen, S. S., Chang, P. C., Cheng, Y. W., Tang, F. M. & Lin, Y. S. Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function. EMBO J. 21, 4491–4499 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank numerous current and former members of the Mak laboratory, and all colleagues and collaborators, for comments and helpful discussions. We also thank L. Harrington for critical reading of the manuscript and M. Saunders for scientific editing. We sincerely apologize that we are unable to refer to and fully acknowledge the many important contributions to this field.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

non-Hodgkin's lymphoma

ovarian cancer

prostate cancer

Entrez Gene

14-3-3σ

ATM

ATR

aurora-A

aurora-B

beclin 1

BCL2

caspases

CDC25C

CDK1

CDKN1A

CDKN2A

CHK1

CHK2

FAS

FASL

MDM2

p53

PLK1

PLK2

RB

survivin

TNF

TOR

Glossary

CRE–LOXP RECOMBINATION

A site-specific recombination system derived from bacteriophage P1. By flanking a gene of interest with loxP sites and expressing CRE recombinase under the control of an appropriate promoter, genomic manipulations such as deletion, integration, inversion or translocation of a gene of interest can be carried out in a tissue- or stage-specific manner.

ENDODUPLICATION

A modified cell cycle in which S phase (DNA synthesis) occurs without M phase (mitosis and cell division). Large, polyploid cells result.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, H., Mak, T. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4, 592–603 (2004). https://doi.org/10.1038/nrc1412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1412

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing