Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Paraneoplastic neurological degenerations: keys to tumour immunity

Key Points

  • The study of paraneoplastic neurological degenerations (PNDs) provides a means to observe naturally occurring, successful human antitumour immune responses.

  • PND antigens, which are identified using antisera from patients with PNDs to screen expression complementary DNA libraries, can be used to study the specific nature of the associated antitumour immune response.

  • The PND tumour immune response is characterized by the presence of PND antigen-specific CD8+ killer T cells in the blood of patients.

  • An important trigger of PND antigen-specific CD8+ killer T cells in patients with cancer is likely to be the capture of apoptotic tumour cells by tissue dendritic cells, which then migrate to the lymph node to activate T cells.

  • The activation of CD8+ killer T cells in the lymph node appears to depend on the presence of CD4+ helper T cells; in their absence, CD8+ T cells might become tolerized.

Abstract

Paraneoplastic neurological degenerations (PNDs) are neurological disorders that develop in patients with cancer. PNDs are triggered by an effective antitumour immune response against neuronal antigens that are expressed in cancer cells, which subsequently develops into autoimmune neurodegenerative disease. Studying patients with PND has offered the opportunity to gain unique insights into mechanisms of tumour immunity and has provided the potential to apply this knowledge to patients with cancer in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD8+ T-cell immunity.
Figure 2: Model for the development of effective tumour immunity in paraneoplastic neurological disease.

Similar content being viewed by others

References

  1. Burnet, F. M. Cancer: a biological approach. Brit. Med. J. 1, 841–847 (1957).

    Article  CAS  Google Scholar 

  2. Thomas, L. Cellular and humoral aspects of the hypersensitivity states. in Discussion to P. B. Medawar's paper. (ed. Lawrence, H. S.) 529–534 (Harper, New York, 1959).

    Google Scholar 

  3. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol. 3, 991–998 (2002). An up-to-date review of tumour immunology, including historical aspects, animal models and a partial discussion of human tumour immunity issues.

    Article  CAS  Google Scholar 

  4. Dickey, C. Review reopens old disagreements. Nature Med. 8, 1337 (2002).

    Article  CAS  Google Scholar 

  5. Darnell, R. B. & Posner, J. B. Observing the invisible: successful tumor immunity in humans. Nat Immunol. 4, 201 (2003).

    Article  CAS  Google Scholar 

  6. Darnell, R. B. & Posner, J. B. Paraneoplastic syndromes of the nervous system. N. Engl. J. Med. 349, 1543–1554 (2003).

    Article  CAS  Google Scholar 

  7. Voltz, R. D., Posner, J. B., Dalmau, J. & Graus, F. Paraneoplastic encephalomyelitis: an update of the effects of the anti-Hu immune response on the nervous system and tumour. J. Neurol. Neurosurg. Psychiatr. 63, 133–136 (1997).

    Article  CAS  Google Scholar 

  8. Anderson, N. E., Cunningham, J. M. & Posner, J. B. Autoimmune pathogenesis of paraneoplastic neurological syndromes. Crit. Rev. Neurobiol. 3, 245–299 (1987).

    CAS  PubMed  Google Scholar 

  9. Darnell, R. B. & Posner, J. B. Paraneoplastic syndromes involving the nervous system. N. Engl. J. Med. 349, 1543–1554 (2003).

    Article  CAS  Google Scholar 

  10. Rojas, I. et al. Long-term clinical outcome of paraneoplastic cerebellar degeneration and anti-Yo antibodies. Neurology 55, 713–715 (2000).

    Article  CAS  Google Scholar 

  11. Dalmau, J., Graus, F., Rosenblum, M. K. & Posner, J. B. Anti-Hu associated paraneoplastic encephalomyelitis/ sensory neuropathy: a clinical study of 71 patients. Medicine 71, 59–72 (1991). Classic overview of 71 patients with the Hu PND syndrome.

    Article  Google Scholar 

  12. Posner, J. B. & Furneaux, H. M. Paraneoplastic syndromes. in Immunologic mechanisms in neurologic and psychiatric disease (ed. Waksman, B. H.) 187–219 (Raven Press Ltd., New York, 1990).

    Google Scholar 

  13. Dalmau, J., Furneaux, H. M., Rosenblum, M. K., Graus, F. & Posner, J. B. Detection of the anti-Hu antibody in specific regions of the nervous system and tumor from patients with paraneoplastic encephalomyelitis/sensory neuronopathy. Neurology 41, 1757–1764 (1991).

    Article  CAS  Google Scholar 

  14. Anderson, N. E., Rosenblum, M. K. & Posner, J. B. Paraneoplastic cerebellar degeneration: clinical-immunological correlations. Ann. Neurol. 24, 559–567 (1988).

    Article  CAS  Google Scholar 

  15. Hetzel, D., Stanhope, C., O'Neill, B. & Lennon, V. Gynecologic cancer in patients with subacute cerebellar degeneration predicted by anti-Purkinje cell antibodies and limited in metastatic volume. Mayo Clin. Proc. 65, 1558–1563 (1990).

    Article  CAS  Google Scholar 

  16. Graus, F. et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain 124, 1138–1148 (2001).

    Article  CAS  Google Scholar 

  17. Peterson, K., Rosenblum, M. K., Kotanides, H. & Posner, J. B. Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology 42, 1931–1937 (1992). Analysis of 55 patients with the PCD syndrome.

    Article  CAS  Google Scholar 

  18. DeVita, V. T., Hellman, S. & Rosenberg, S. Cancer, Principles and Practice of Oncology. (J. B. Lippincott Company, Philadelphia, 1993).

    Google Scholar 

  19. Maddison, P., Newsom-Davis, J., Mills, K. R. & Souhami, R. L. Favourable prognosis in Lambert-Eaton myasthenic syndrome and small-cell lung carcinoma. Lancet 353, 117–118 (1999).

    Article  CAS  Google Scholar 

  20. Graus, F. et al. Anti-Hu antibodies in patients with small-cell lung cancer: association with complete response to therapy and improved survival. J. Clin. Oncol. 15, 2866–2872 (1997).

    Article  CAS  Google Scholar 

  21. Darnell, R. B. The importance of defining the paraneoplastic neurologic disorders. N. Engl. J. Med. 340, 1831–1833 (1999).

    Article  CAS  Google Scholar 

  22. Rosenblum, M. K. Paraneoplasia and autoimmunologic injury of the nervous system: the anti-Hu syndrome. Brain Pathol. 3, 199–212 (1993).

    Article  CAS  Google Scholar 

  23. Mason, W. P., Dalmau, J., Curtin, J. P. & Posner, J. B. Normalization of the tumor marker CA-125 after oophorectomy in a patient with paraneoplastic cerebellar degeneration without detectable cancer. Gynecol. Oncol. 65, 173–176 (1997).

    Article  CAS  Google Scholar 

  24. Darnell, R. B. & DeAngelis, L. M. Regression of small-cell lung carcinoma in patients with paraneoplastic neuronal antibodies. Lancet 341, 21–22 (1993). First clear description of patients with PND that had well-documented spontaneous regression of tumours upon PND onset.

    Article  CAS  Google Scholar 

  25. Zaheer, W. et al. Spontaneous regression of small cell carcinoma of lung associated with severe neuropathy. Cancer Invest. 11, 306–309 (1993).

    Article  CAS  Google Scholar 

  26. Byrne, T., Mason, W. P., Posner, J. B. & Dalmau, J. Spontaneous neurological improvement in anti-Hu associated encephalomyelitis. J. Neurol. Neurosurg. Psychiatr. 62, 276–278 (1997).

    Article  CAS  Google Scholar 

  27. Verschuuren, J. et al. Inflammatory infiltrates and complete absence of Purkinje cells in anti-Yo-associated paraneoplastic cerebellar degeneration. Acta Neuropathol. 91, 519–525 (1996).

    Article  CAS  Google Scholar 

  28. Wilkinson, P. C. & Zeromski, J. Immunofluorescent detection of antibodies against neurones in sensory carcinomatous neuropathy. Brain 88, 529–583 (1965).

    Article  CAS  Google Scholar 

  29. Trotter, J., Hendin, B. & Osterland, C. Cerebellar degeneration with Hodgkin's disease: an immunological study. Arch. Neurol. 33, 660–661 (1976).

    Article  CAS  Google Scholar 

  30. Croft, P. B., Henson, R. A., Urich, H. & Wilkinson, P. C. Sensory neuropathy with bronchial carcinoma a study of four cases showing serological abnormalities. Brain 88, 501–514 (1965).

    Article  CAS  Google Scholar 

  31. Henson, R. A. & Urich, H. Cancer and the nervous system: The neurologic manifestaions of systemic malignant disease. (Blackwell Scientific, London, 1982).

    Google Scholar 

  32. Jaeckle, K. et al. Autoimmune response of patients with paraneoplastic cerebellar degeneration to a Purkinje cell cytoplasmic protein antigen. Ann. Neurol. 18, 592–600 (1985).

    Article  CAS  Google Scholar 

  33. Cunningham, J., Graus, F., Anderson, N. & Posner, J. B. Partial characterization of the Purkinje cell antigens in paraneoplastic cerebellar degeneration. Neurology 36, 1163–1168 (1986).

    Article  CAS  Google Scholar 

  34. Graus, F., Cordon-Cardo, C. & Posner, J. Neuronal antinuclear antibody in sensory neuronopathy from lung cancer. Neurology 35, 538–543 (1985).

    Article  CAS  Google Scholar 

  35. Graus, F., Elkon, K. B., Cordon-Cardo, C. & Posner, J. B. Sensory neuronopathy and small cell lung cancer; antineuronal antibody that also reacts with the tumor. Am. J. Med. 80, 45–52 (1986).

    Article  CAS  Google Scholar 

  36. Furneaux, H. F., Reich, L. & Posner, J. B. Autoantibody synthesis in the central nervous system of patients with paraneoplastic syndromes. Neurology 40, 1085–1091 (1990).

    Article  CAS  Google Scholar 

  37. Darnell, R. B. Onconeural antigens and the paraneoplastic neurologic disorders: at the intersection of cancer, immunity and the brain. Proc. Natl Acad. Sci. USA 93, 4529–4536 (1996).

    Article  CAS  Google Scholar 

  38. Musunuru, K. & Darnell, R. B. Paraneoplastic neurologic disease antigens: RNA-binding proteins and signaling proteins in neuronal degeneration. Annu. Rev. Neurosci. 24, 239–262 (2001).

    Article  CAS  Google Scholar 

  39. Folli, F. et al. Autoantibodies to a 128-kd synaptic protein in three women with the stiff-man syndrome and breast cancer. N. Engl. J. Med. 328, 546–551 (1993).

    Article  CAS  Google Scholar 

  40. Okano, H. J., Park, W. Y., Corradi, J. P. & Darnell, R. B. The cytoplasmic Purkinje antigen cdr2 downregulates Myc function: implications for neuronal and tumor cell survival. Genes Dev. 13, 2087–2098 (1999).

    Article  CAS  Google Scholar 

  41. Corradi, J. P., Yang, C. W., Darnell, J. C., Dalmau, J. & Darnell, R. B. A post-transcriptional regulatory mechanism restricts expression of the paraneoplastic cerebellar degeneration antigen cdr2 to immune privileged tissues. J. Neurosci. 17, 1406–1415 (1997).

    Article  CAS  Google Scholar 

  42. Dredge, B. K. & Darnell, R. B. Nova regulates GABA(A) receptor γ2 alternative splicing via a distal downstream UCAU-rich intronic splicing enhancer. Mol. Cell. Biol. 23, 4687–4700 (2003).

    Article  CAS  Google Scholar 

  43. Dredge, B. K., Polydorides, A. D. & Darnell, R. B. The splice of life: alternative splicing and neurological disease. Nature Rev. Neurosci. 2, 43–50 (2001).

    Article  CAS  Google Scholar 

  44. Jensen, K. B. et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25, 359–371 (2000).

    Article  CAS  Google Scholar 

  45. Brennan, C. M. & Steitz, J. A. HuR and mRNA stability. Cell. Mol. Life Sci. 58, 266–277 (2001).

    Article  CAS  Google Scholar 

  46. Keene, J. D. Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc. Natl Acad. Sci. USA 96, 5–7 (1999).

    Article  CAS  Google Scholar 

  47. Furneaux, H. M. et al. Selective expression of Purkinje-cell antigens in tumor tissue from patients with paraneoplastic cerebellar degeneration. N. Engl. J. Med. 322, 1844–1851 (1990).

    Article  CAS  Google Scholar 

  48. Manley, G. T., Smitt, P. S., Dalmau, J. & Posner, J. B. Hu antigens: reactivity with Hu antibodies, tumor expression, and major immunogenic sites. Ann. Neurol. 38, 102–110 (1995).

    Article  CAS  Google Scholar 

  49. Dalmau, J., Furneaux, H. M., Cordon-Cardo, C. & Posner, J. B. The expression of the Hu (paraneoplastic encephalomyelitis/ sensory neuronopathy) antigen in human normal and tumor tissues. Am. J. Pathol. 141, 881–886 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Darnell, J. C., Albert, M. L. & Darnell, R. B. cdr2, a target antigen of naturally occuring human tumor immunity, is widely expressed in gynecological tumors. Cancer Res. 60, 2136–2139 (2000).

    CAS  PubMed  Google Scholar 

  51. Dalmau, J., Furneaux, H. M., Gralla, R. J., Kris, M. G. & Posner, J. B. Detection of the anti-Hu antibody in the serum of patients with small cell lung cancer: a quantitative western blot analysis. Ann. Neurol. 27, 544–552 (1990). Original description of improved prognosis in patients with Hu+ small-cell lung cancer, low-titres of anti-Hu antibodies and no neurological disease.

    Article  CAS  Google Scholar 

  52. Corriveau, R. A., Huh, G. S. & Shatz, C. J. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21, 505–520 (1998).

    Article  CAS  Google Scholar 

  53. Darnell, R. B. Immunologic complexity in neurons. Neuron 21, 947–950 (1998).

    Article  CAS  Google Scholar 

  54. Albert, M. L. et al. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nature Med. 4, 1321–1324 (1998). First identification of PND antigen-specific CTLs in patients with PND antitumour immune responses and demonstration of potency of apoptotic tumour cells as a source of PND antigen for CTL activation.

    Article  CAS  Google Scholar 

  55. Albert, M. L., Austin, L. M. & Darnell, R. B. Detection and treatment of activated T cells in the cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration. Ann. Neurol. 47, 9–17 (2000).

    Article  CAS  Google Scholar 

  56. Voltz, R., Dalmau, J., Posner, J. B. & Rosenfeld, M. R. T-cell receptor analysis in anti-Hu associated paraneoplastic encephalomyelitis. Neurology 51, 1146–1150 (1998).

    Article  CAS  Google Scholar 

  57. Okano, H. J. & Darnell, R. B. A hierarchy of Hu RNA binding proteins in developing and adult neurons. J. Neurosci. 17, 3024–3037 (1997).

    Article  CAS  Google Scholar 

  58. Buckanovich, R. J., Posner, J. B. & Darnell, R. B. Nova, the paraneoplastic Ri antigen, is homologous to an RNA-binding protein and is specifically expressed in the developing motor system. Neuron 11, 657–672 (1993).

    Article  CAS  Google Scholar 

  59. Buckanovich, R. J., Yang, Y. Y. & Darnell, R. B. The onconeural antigen Nova-1 is a neuron-specific RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies. J. Neurosci. 16, 1114–1122 (1996).

    Article  CAS  Google Scholar 

  60. Bevan, M. J. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med. 143, 1283–1288 (1976).

    Article  CAS  Google Scholar 

  61. Casciola-Rosen, L. A., Anhalt, G. & Rosen, A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179, 1317–1330 (1994).

    Article  CAS  Google Scholar 

  62. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998). First identification of apoptotic virally infected cells as a source of antigen for CTL activation.

    Article  CAS  Google Scholar 

  63. Albert, M. L. & Bhardwaj, N. Resurrecting the dead: dendritic cells acquire antigen from apoptotic cells. The Immunologist 6, 194–198 (1998).

    CAS  Google Scholar 

  64. Albert, M. L. et al. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188, 1359–1368 (1998). Identification of apoptotic pathway as a means of 'default' tolerization of CD8+ T cells in the absence of CD4 help.

    Article  CAS  Google Scholar 

  65. Heath, W. R. & Carbone, F. R. Cross-presentation in viral immunity and self–tolerance. Nature Rev. Immunol. 1, 126–134 (2001).

    Article  CAS  Google Scholar 

  66. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  Google Scholar 

  67. Cyster, J. G. Leukocyte migration: scent of the T zone. Curr. Biol. 10, R30–R33 (2000).

    Article  CAS  Google Scholar 

  68. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  69. Heath, W. R. & Carbone, F. R. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19, 47–64 (2001).

    Article  CAS  Google Scholar 

  70. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    Article  CAS  Google Scholar 

  71. Albert, M. L., Jegathesan, M. & Darnell, R. B. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nature Immunol. 9, 1–8 (2001).

    Google Scholar 

  72. Bennett, S. R., Carbone, F. R., Karamalis, F., Miller, J. F. & Heath, W. R. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med. 186, 65–70 (1997).

    Article  CAS  Google Scholar 

  73. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  Google Scholar 

  74. Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T- helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  Google Scholar 

  75. Carpentier, A. F. et al. DNA vaccination with HuD inhibits growth of a neuroblastoma in mice. Clin. Cancer Res. 4, 2819–2824 (1998).

    CAS  PubMed  Google Scholar 

  76. Orange, D. E. et al. Effective antigen cross-presentation by prostate cancer patients' dendritic cells: implications for prostate cancer immunotherapy. Prostate Cancer Prostatic Dis (in the press).

  77. Albert, M. L., Kim, J. I. & Birge, R. B. αvβ5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nature Cell Biol. 2, 899–905 (2000).

    Article  CAS  Google Scholar 

  78. Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. & Heath, W. R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    Article  CAS  Google Scholar 

  79. Kurts, C. et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med. 184, 923–930 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Howard Hughes Medical Institute, the Burroughs Wellcome Fund and the National Institutes of Health. R.B.D. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Darnell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

ovarian cancer

small-cell lung cancer

thymomas

LocusLink

amphiphysin

CCR7

CD4

CD8

CDR2

HuC

HuD

NOVA

FURTHER INFORMATION

Robert Darnell's web site

PND's

Glossary

MAJOR HISTOCOMPATIBILITY COMPLEX

(MHC). Highly polymorphic genes that encode cell-surface proteins that bind peptides non-covalently. MHC class I molecules present peptide to CD8+ class T cells and MHC class II molecules present peptides to CD4+ class T cells.

CELLULAR IMMUNITY

Immunity that is mediated by T cells, as opposed to humoral immunity, which is mediated by antibodies.

OOPHORECTOMY

Sugical removal of an ovary or ovaries.

PAN-SENSORY NEUROPATHY

A disease that involves all fibres in the peripheral nerves, including small fibres (pain and temperature) and large fibres (vibration and joint position sense).

SALPINGO-OOPHORECTOMY

Removal of the fallopian tubes and ovaries.

PURKINJE NEURONS

Large inhibitory neurons of the cerebellar cortex.

KOCH'S POSTULATES

Conditions for establishing pathogenicity of a disease-causing agent — for example, it must be present in all cases of the disease; passive transfer of the agent must cause disease in animals; the agent must then be able to be recovered and purified from these animals.

T-CELL TOLERANCE

Involves T cells that do not become activated following exposure to an antigen.

CYTOTOXIC T LYMPHOCYTES

CD8+ T cells that recognize and kill target cells through a binding between the T-cell receptor and a target-cell-surface complex of a peptide antigen attached to a major histocompatibility complex class I molecule.

ANTIGEN-PRESENTING CELL

(APC). A cell that displays peptide–major-histocompatibility-complex complexes in a form that is recognized by T cells.

MINOR HISTOCOMPATIBILITY ANTIGENS

Peptides of polymorphic cellular proteins bound to major-histocompatibility-complex molecules that can lead to graft rejection when they are recognized by T cells.

EXOGENOUS ANTIGEN

A peptide that is expressed outside of, but processed within, an antigen-presenting cell (dendritic cell) for immune stimulation. Classically, extracellular proteins bind to major histocompatibility complex (MHC) class II molecules and are presented to CD4+ T cells. Exogenous antigens that are derived from apoptotic cells are presented on both MHC class I and II molecules, and are presented to CD4+ and CD8+ T cells.

CD4 HELPER CELL

CD4+ T cells that provide stimuli for B cells and, through interactions with dendritic cells, for cytotoxic T cells. They recognize antigen in the context of major histocompatibility complex class II molecules on the surface of antigen-presenting cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albert, M., Darnell, R. Paraneoplastic neurological degenerations: keys to tumour immunity. Nat Rev Cancer 4, 36–44 (2004). https://doi.org/10.1038/nrc1255

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1255

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing