Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Guidelines for the automated evaluation of Elispot assays

Abstract

The presented protocol for Elispot plate evaluation summarizes how to implement the recommendations developed following the establishment of a large-scale international Elispot plate-reading panel and subsequent multistep consensus-finding process. The panel involved >100 scientists from various immunological backgrounds. The protocol includes the description and justification of steps for setting reading parameters to obtain accurate, reliable and precise automated analysis results of Elispot plates. Further, necessary adjustments for out-of-specification situations are described and examples are provided. The plate analysis, including parameter adjustments, auditing of results and necessary annotations, should be achievable within a time range of 10–30 min per plate. Adoption of these guidelines should enable a further reduction in assay variability and an increase in the reliability and comparability of results obtained by Elispot. These guidelines conclude the ongoing harmonization efforts for the enzymatic Elispot assay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of Elispot plate evaluation issues observed at the 2011 Cancer Immunotherapy Consortium Elispot panel.
Figure 2: Summary of evaluation results of three plates by panelists.
Figure 3: Stages of an Elispot experiment.
Figure 4: Differences in well appearance owing to the biological system character of samples.
Figure 5: Overall plate reading approaches documented in the Cancer Immunotherapy Consortium Elispot panel.
Figure 6: Plate reading steps and decision.
Figure 7: Elispot well examples with artifacts.
Figure 8: Examples of background spots.
Figure 9: Examples for spot diffuseness and disintegration.
Figure 10: Examples of spot crowdedness.
Figure 11: Example of differences in PBMC sample reactivity levels from the same donor at two different time points.
Figure 12: The influence of reader settings on reported spot counts.

Similar content being viewed by others

References

  1. Czerkinsky, C.C., Nilsson, L.A., Nygren, H., Ouchterlony, O. & Tarkowski, A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods 65, 109–121 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Streeck, H., Frahm, N. & Walker, B.D. The role of IFN-γ Elispot assay in HIV vaccine research. Nat. Protoc. 4, 461–469 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Saletti, G., Cuburu, N., Yang, J.S., Dey, A. & Czerkinsky, C. Enzyme-linked immunospot assays for direct ex vivo measurement of vaccine-induced human humoral immune responses in blood. Nat. Protoc. 8, 1073–1087 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Meier, T., Eulenbruch, H.P., Wrighton-Smith, P., Enders, G. & Regnath, T. Sensitivity of a new commercial enzyme-linked immunospot assay (T SPOT-TB) for diagnosis of tuberculosis in clinical practice. Eur. J. Clin. Microbiol. Infect Dis. 24, 529–536 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Ewer, K.J. et al. Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation. Nat. Commun. 4, 2836 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Kenter, G.G. et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 361, 1838–1847 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Walter, S. et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med. 18, 1254–1261 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Sheikh, N.A. et al. Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol. Immunother. 62, 137–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Dillenbeck, T., Gelius, E., Fohlstedt, J. & Ahlborg, N. Triple cytokine FluoroSpot analysis of human antigen-specific IFN-γ, IL-17A and IL-22 responses. Cells 3, 1116–1130 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gazagne, A. et al. A Fluorospot assay to detect single T lymphocytes simultaneously producing multiple cytokines. J. Immunol. Methods 283, 91–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Janetzki, S. et al. Results and harmonization guidelines from two large-scale international Elispot proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI). Cancer Immunol. Immunother. 57, 303–315 (2008).

    Article  PubMed  Google Scholar 

  12. van der Burg, S.H. et al. Harmonization of immune biomarker assays for clinical studies. Sci. Transl. Med. 3, 108ps144 (2011).

    Article  Google Scholar 

  13. Britten, C.M. et al. The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays. Cancer Immunol. Immunother. 57, 289–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Janetzki, S. & Britten, C.M. The impact of harmonization on ELISPOT assay performance. Methods Mol. Biol. 792, 25–36 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Karulin, A.Y. & Lehmann, P.V. How ELISPOT morphology reflects on the productivity and kinetics of cells′ secretory activity. Methods Mol. Biol. 792, 125–143 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Czerkinsky, C. et al. Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells. J. Immunol. Methods 110, 29–36 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Janetzki, S., Cox, J.H., Oden, N. & Ferrari, G. Standardization and validation issues of the ELISPOT assay. Methods Mol. Biol. 302, 51–86 (2005).

    CAS  PubMed  Google Scholar 

  18. Santos, R. et al. Improvement of IFN-γ ELISPOT performance following overnight resting of frozen PBMC samples confirmed through rigorous statistical analysis. Cells 4, 1–18 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cox, J.H. et al. Results of an ELISPOT proficiency panel conducted in 11 laboratories participating in international human immunodeficiency virus type 1 vaccine trials. AIDS Res. Hum. Retroviruses 21, 68–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Janetzki, S. et al. Evaluation of Elispot assays: influence of method and operator on variability of results. J. Immunol. Methods 291, 175–183 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Smith, S.G. et al. Identification of major factors influencing ELISpot-based monitoring of cellular responses to antigens from Mycobacterium tuberculosis. PLoS ONE 4, e7972 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Britten, C.M. et al. T cell assays and MIATA: the essential minimum for maximum impact. Immunity 37, 1–2 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Moodie, Z. et al. Response definition criteria for ELISPOT assays revisited. Cancer Immunol. Immunother. 59, 1489–1501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chattopadhyay, P.K., Gierahn, T.M., Roederer, M. & Love, J.C. Single-cell technologies for monitoring immune systems. Nat. Immunol. 15, 128–135 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han, A., Glanville, J., Hansmann, L. & Davis, M.M. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32, 684–692 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lamoreaux, L., Roederer, M. & Koup, R. Intracellular cytokine optimization and standard operating procedure. Nat. Protoc. 1, 1507–1516 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Perfetto, S.P., Ambrozak, D., Nguyen, R., Chattopadhyay, P. & Roederer, M. Quality assurance for polychromatic flow cytometry. Nat. Protoc. 1, 1522–1530 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. McNeil, L.K. et al. A harmonized approach to intracellular cytokine staining gating: results from an international multiconsortia proficiency panel conducted by the Cancer Immunotherapy Consortium (CIC/CRI). Cytometry A 83, 728–738 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Janetzki, S., Rueger, M. & Dillenbeck, T. Stepping up ELISpot: multi-level analysis in FluoroSpot assays. Cells 3, 1102–1115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lenders, K. et al. The effect of apoptotic cells on virus-specific immune responses detected using IFN-γ ELISPOT. J. Immunol. Methods 357, 51–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Mallone, R. et al. Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society. Clin. Exp. Immunol. 163, 33–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kutscher, S. et al. Overnight resting of PBMC changes functional signatures of antigen specific T cell responses: impact for immune monitoring within clinical trials. PLoS ONE 8, e76215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chudley, L. et al. Harmonisation of short-term in vitro culture for the expansion of antigen-specific CD8+ T cells with detection by ELISPOT and HLA-multimer staining. Cancer Immunol. Immunother. 63, 1199–1211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jahnmatz, M. et al. Optimization of a human IgG B-cell ELISpot assay for the analysis of vaccine-induced B-cell responses. J. Immunol. Methods 391, 50–59 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Shafer-Weaver, K. et al. The Granzyme B ELISPOT assay: an alternative to the 51Cr-release assay for monitoring cell-mediated cytotoxicity. J. Transl. Med. 1, 14 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Janetzki, S. & Rabin, R. Enzyme-linked ImmunoSpot (ELISpot) for single cell analysis. Methods Mol. Biol. in the press (2015).

  37. De Rose, R., Taylor, E.L., Law, M.G., van der Meide, P.H. & Kent, S.J. Granulocyte contamination dramatically inhibits spot formation in AIDS virus-specific ELISpot assays: analysis and strategies to ameliorate. J. Immunol. Methods 297, 177–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Herr, W. et al. Quantification of CD8+ T lymphocytes responsive to human immunodeficiency virus (HIV) peptide antigens in HIV-infected patients and seronegative persons at high risk for recent HIV exposure. J. Infect. Dis. 178, 260–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Dubey, S. et al. Detection of HIV vaccine-induced cell-mediated immunity in HIV-seronegative clinical trial participants using an optimized and validated enzyme-linked immunospot assay. J. Acquir. Immune. Defic. Syndr. 45, 20–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Moodie, Z., Price, L., Janetzki, S. & Britten, C.M. Response determination criteria for ELISPOT: toward a standard that can be applied across laboratories. Methods Mol. Biol. 792, 185–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Welters, M.J. et al. Harmonization of the intracellular cytokine staining assay. Cancer Immunol. Immunother. 61, 967–978 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Begley, C.G. & Ellis, L.M. Drug development: raise standards for preclinical cancer research. Nature 483, 531–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Currier, J.R. et al. A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays. J. Immunol. Methods 260, 157–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Maecker, H.T. et al. Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J. Immunol. Methods 255, 27–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Janetzki, S. et al. Performance of serum-supplemented and serum-free media in IFN-γ Elispot assays for human T cells. Cancer Immunol. Immunother. 59, 609–618 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Mascotti, K., McCullough, J. & Burger, S.R. HPC viability measurement: trypan blue versus acridine orange and propidium iodide. Transfusion 40, 693–696 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Weiss, A.J. Overview of membranes and membrane plates used in research and diagnostic ELISPOT assays. Methods Mol. Biol. 792, 243–256 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.M.B. and H.S. were supported by a grant from the Wallace Coulter Foundation (Florida, USA). We thank all participants in the Elispot plate reading panel and consensus process. The full list of participants, including several authors of this paper, is given in the Supplementary Note. We also thank A. Szterenfeld for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.J., L.P., C.M.B. and M.J.P.W. designed the study. S.J., L.P., H.S., C.M.B., M.J.P.W. and A.H. organized and led the panel. All panelists listed under acknowledgement provided data and feedback leading to the final protocol. S.J. and L.P. compiled and analyzed the data. S.J. wrote the manuscript.

Corresponding author

Correspondence to Sylvia Janetzki.

Ethics declarations

Competing interests

S.J. is founder and president of ZellNet Consulting, Inc. L.P. is the founder and director of LBPrice Statistical Consulting, Ltd. All other authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Data, Supplementary Table 1 and Supplementary Note (PDF 2985 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janetzki, S., Price, L., Schroeder, H. et al. Guidelines for the automated evaluation of Elispot assays. Nat Protoc 10, 1098–1115 (2015). https://doi.org/10.1038/nprot.2015.068

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.068

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing