Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors

Abstract

Transport parameters determine the access of drugs to tumors. However, technical difficulties preclude the measurement of these parameters deep inside living tissues. To this end, we adapted and further optimized two-photon fluorescence correlation microscopy (TPFCM) for in vivo measurement of transport parameters in tumors. TPFCM extends the detectable range of diffusion coefficients in tumors by one order of magnitude, and reveals both a fast and a slow component of diffusion. The ratio of these two components depends on molecular size and can be altered in vivo with hyaluronidase and collagenase. These studies indicate that TPFCM is a promising tool to dissect the barriers to drug delivery in tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key steps in TPFCM.
Figure 2: Effect of tracer size on diffusion.
Figure 3: Tumor matrix components.
Figure 4: Effect of matrix modification on diffusion.

Similar content being viewed by others

References

  1. Jain, R.K. The next frontier of molecular medicine: delivery of therapeutics. Nat. Med. 4, 655–657 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Chary, S.R. & Jain, R.K. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl. Acad. Sci. USA 86, 5385–5389 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flamion, B., Bungay, P.M., Gibson, C.C. & Spring, K.R. Flow rate measurements in isolated perfused kidney tubules by fluorescence photobleaching recovery. Biophys. J. 60, 1229–1242 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pluen, A. et al. Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc. Natl. Acad. Sci. USA 98, 4628–4633 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Netti, P.A., Berk, D.A., Swartz, M.A., Grodzinsky, A.J. & Jain, R.K. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60, 2497–2503 (2000).

    CAS  PubMed  Google Scholar 

  6. Elson, E.L. & Magde, D. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13, 1–27 (1974).

    Article  CAS  Google Scholar 

  7. Magde, D., Elson, E.L. & Webb, W.W. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29–61 (1974).

    Article  CAS  PubMed  Google Scholar 

  8. Qian, H. & Elson, E.L. Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy. Appl. Opt. 30, 1185–1195 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Rigler, R., Mets, U., Windegren, J. & Kask, P. Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur. Biophys. J. 22, 169–175 (1993).

    Article  CAS  Google Scholar 

  10. Brock, R., Hink, M.A. & Jovin, T.M. Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys. J. 75, 2547–2557 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brock, R., Vamosi, G., Vereb, G. & Jovin, T.M. Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy. Proc. Natl. Acad. Sci. USA 96, 10123–10128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berland, K.M., So, P.T. & Gratton, E. Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys. J. 68, 694–701 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schwille, P., Haupts, U., Maiti, S. & Webb, W.W. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J. 77, 2251–2265 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berk, D.A., Yuan, F., Leunig, M. & Jain, R.K. Direct in vivo measurement of targeted binding in a human tumor xenograft. Proc. Natl. Acad. Sci. USA 94, 1785–1790 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aukland, K. & Reed, R.K. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol. Rev. 73, 1–78 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Jain, R.K. Transport of molecules in the tumor interstitium: a review. Cancer Res. 47, 3039–3051 (1987).

    CAS  PubMed  Google Scholar 

  17. Brown, E.B. et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nature Med. 9, 796–800 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Brown, E.B., Wu, E.S., Zipfel, W. & Webb, W.W. Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys. J. 77, 2837–2849 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramanujan, S. et al. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys. J. 83, 1650–1660 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shenoy, V. & Rosenblatt, J. Diffusion of macromolecules in collagen and hyaluronic acid, rigid-rod—flexible polymer, composite matrices. Macromolecules 28, 8751–8758 (1995).

    Article  CAS  Google Scholar 

  21. Smith, K.J., Skelton, H.G., Turiansky, G. & Wagner, K.F. Hyaluronidase enhances the therapeutic effect of vinblastine in intralesional treatment of Kaposi's sarcoma. Military Medical Consortium for the Advancement of Retroviral Research (MMCARR). J. Am. Acad. Dermatol. 36, 239–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Beckenlehner, K. et al. Hyaluronidase enhances the activity of adriamycin in breast cancer models in vitro and in vivo. J. Cancer Res. Clin. Oncol. 118, 591–596 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Masuda, A., Ushida, K., Koshino, H., Yamashita, K. & Kluge, T. Novel distance dependence of diffusion constants in hyaluronan aqueous solution resulting from its characteristic nano-microstructure. J. Am. Chem. Soc. 123, 11468–11471 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. De Smedt, S. et al. Structural information on hyaluronic acid solutions as studied by probe diffusion experiments. Macromolecules 27, 141–146 (1994).

    Article  CAS  Google Scholar 

  25. Qiu, X.L. et al. Effect of hyaluronidase on albumin diffusion in lung interstitium. Lung 177, 273–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Pluen, A., Netti, P.A., Jain, R.K. & Berk, D.A. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys. J. 77, 542–552 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Szoka, F. Jr. & Papahadjopoulos, D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng. 9, 467–508 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Leunig, M. et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 52, 6553–6560 (1992).

    CAS  PubMed  Google Scholar 

  29. Brown, E.B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 7, 864–868 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Wohland, T., Rigler, R. & Vogel, H. The standard deviation in fluorescence correlation spectroscopy. Biophys. J. 80, 2987–2999 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Kahn for dorsal skinfold chamber preparations; S. Roberge and R. Delgiacco for histological preparations; W. Zipfel for discussion and help with software analysis; and Z. Demou and M. Booth for comments on the manuscript. This work was supported by National Cancer Institute fellowships to G.A. (T32CA73479 and F32CA97818) and E.B.B. (F32CA88490), a National Science Foundation Graduate Research Fellowship to R.T.T., a Biotechnology Fellowship (T32GM08334) to T.D.M., and a Bioengineering Research Partnership Grant (R24 CA85140) and Program Project Grant (P01CA80124) to R.K.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K Jain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrakis, G., Brown, E., Tong, R. et al. Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nat Med 10, 203–207 (2004). https://doi.org/10.1038/nm981

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm981

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing