Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium

Abstract

Infection with Helicobacter pylori (H. pylori) is a risk factor for the development of gastric cancer. Here we show that infection of gastric epithelial cells with 'cag' pathogenicity island (cagPAI)-positive H. pylori induced aberrant expression of activation-induced cytidine deaminase (AID), a member of the cytidine-deaminase family that acts as a DNA- and RNA-editing enzyme, via the IκB kinase–dependent nuclear factor-κB activation pathway. H. pylori–mediated upregulation of AID resulted in the accumulation of nucleotide alterations in the TP53 tumor suppressor gene in gastric cells in vitro. Our findings provide evidence that aberrant AID expression caused by H. pylori infection might be a mechanism of mutation accumulation in the gastric mucosa during H. pylori–associated gastric carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infection with cagPAI-positive H. pylori induces endogenous AID expression in gastric epithelial cells.
Figure 2: H. pylori–induced AID expression is mediated by NF-κB signaling.
Figure 3: AID expression is regulated by NF-κB signaling in gastric epithelial cells.
Figure 4: Immunohistochemical analysis of AID expression in 84 human gastric tissue specimens, including H. pylori–positive chronic gastritis (n = 35) and gastric cancer (n = 27), H. pylori-negative gastritis (n = 11) and gastric cancer (n = 2), and normal gastric mucosa lacking H. pylori infection (n = 9).

Similar content being viewed by others

References

  1. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7–14 June 1994 IARC Monogr. Eval. Carcinog. Risks Hum. 61, 1–241 (1994).

  2. Tomb, J.F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).

    Article  CAS  Google Scholar 

  3. Blaser, M.J. Helicobacter pylori and gastric diseases. Br. Med. J. 316, 1507–1510 (1998).

    Article  CAS  Google Scholar 

  4. Peek, R.M., Jr et al. Heightened inflammatory response and cytokine expression in vivo to cagA+ Helicobacter pylori strains. Lab. Invest. 73, 760–770 (1995).

    CAS  PubMed  Google Scholar 

  5. Crabtree, J.E. et al. Systemic and mucosal humoral responses to Helicobacter pylori in gastric cancer. Gut 34, 1339–1343 (1993).

    Article  CAS  Google Scholar 

  6. Blaser, M.J. et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 55, 2111–2115 (1995).

    CAS  PubMed  Google Scholar 

  7. Parsonnet, J., Friedman, G.D., Orentreich, N. & Vogelman, H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40, 297–301 (1997).

    Article  CAS  Google Scholar 

  8. Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003).

    Article  CAS  Google Scholar 

  9. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  Google Scholar 

  10. Wedekind, J.E., Dance, G.S., Sowden, M.P. & Smith, H.C. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet. 19, 207–216 (2003).

    Article  CAS  Google Scholar 

  11. Cascalho, M. Advantages and disadvantages of cytidine deamination. J. Immunol. 172, 6513–6518 (2004).

    Article  CAS  Google Scholar 

  12. Kinoshita, K. & Nonaka, T. The dark side of activation-induced cytidine deaminase: relationship with leukemia and beyond. Int. J. Hematol. 83, 201–207 (2006).

    Article  CAS  Google Scholar 

  13. Okazaki, I.M. et al. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med. 197, 1173–1181 (2003).

    Article  CAS  Google Scholar 

  14. Kou, T. et al. Expression of activation-induced cytidine deaminase in human hepatocytes during hepatocarcinogenesis. Int. J. Cancer 120, 469–476 (2007).

    Article  CAS  Google Scholar 

  15. Greeve, J. et al. Expression of activation-induced cytidine deaminase in human B-cell non-Hodgkin lymphomas. Blood 101, 3574–3580 (2003).

    Article  CAS  Google Scholar 

  16. Albesiano, E. et al. Activation-induced cytidine deaminase in chronic lymphocytic leukemia B cells: expression as multiple forms in a dynamic, variably sized fraction of the clone. Blood 102, 3333–3339 (2003).

    Article  CAS  Google Scholar 

  17. Pasqualucci, L. et al. Expression of the AID protein in normal and neoplastic B cells. Blood 104, 3318–3325 (2004).

    Article  CAS  Google Scholar 

  18. Lossos, I.S., Levy, R. & Alizadeh, A.A. AID is expressed in germinal center B-cell-like and activated B-cell-like diffuse large-cell lymphomas and is not correlated with intraclonal heterogeneity. Leukemia 18, 1775–1779 (2004).

    Article  CAS  Google Scholar 

  19. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C.C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  Google Scholar 

  20. Segal, E.D., Falkow, S. & Tompkins, L.S. Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc. Natl. Acad. Sci. USA 93, 1259–1264 (1996).

    Article  CAS  Google Scholar 

  21. Faili, A. et al. AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nat. Immunol. 3, 815–821 (2002).

    Article  CAS  Google Scholar 

  22. Babbage, G., Ottensmeier, C.H., Blaydes, J., Stevenson, F.K. & Sahota, S.S. Immunoglobulin heavy chain locus events and expression of activation-induced cytidine deaminase in epithelial breast cancer cell lines. Cancer Res. 66, 3996–4000 (2006).

    Article  CAS  Google Scholar 

  23. Peek, R.M., Jr. IV. Helicobacter pylori strain-specific activation of signal transduction cascades related to gastric inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G525–G530 (2001).

    Article  CAS  Google Scholar 

  24. Keates, S., Hitti, Y.S., Upton, M. & Kelly, C.P. Helicobacter pylori infection activates NF-κB in gastric epithelial cells. Gastroenterology 113, 1099–1109 (1997).

    Article  CAS  Google Scholar 

  25. Doi, T., Kinoshita, K., Ikegawa, M., Muramatsu, M. & Honjo, T. De novo protein synthesis is required for the activation-induced cytidine deaminase function in class-switch recombination. Proc. Natl. Acad. Sci. USA 100, 2634–2638 (2003).

    Article  CAS  Google Scholar 

  26. Stock, M. & Otto, F. Gene deregulation in gastric cancer. Gene 360, 1–19 (2005).

    Article  CAS  Google Scholar 

  27. Ramiro, A.R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M.C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol. 4, 452–456 (2003).

    Article  CAS  Google Scholar 

  28. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  Google Scholar 

  29. Peek, R.M., Jr. & Blaser, M.J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2, 28–37 (2002).

    Article  CAS  Google Scholar 

  30. Morgan, C. et al. Detection of p53 mutations in precancerous gastric tissue. Br. J. Cancer 89, 1314–1319 (2003).

    Article  CAS  Google Scholar 

  31. Yoshikawa, K. et al. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296, 2033–2036 (2002).

    Article  CAS  Google Scholar 

  32. Fenoglio-Preiser, C.M., Wang, J., Stemmermann, G.N. & Noffsinger, A. TP53 and gastric carcinoma: a review. Hum. Mutat. 21, 258–270 (2003).

    Article  CAS  Google Scholar 

  33. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    Article  CAS  Google Scholar 

  34. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  Google Scholar 

  35. Dedeoglu, F., Horwitz, B., Chaudhuri, J., Alt, F.W. & Geha, R.S. Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NF-κB. Int. Immunol. 16, 395–404 (2004).

    Article  CAS  Google Scholar 

  36. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 5, 1166–1174 (2004).

    Article  CAS  Google Scholar 

  37. Chiba, T., Seno, H., Marusawa, H., Wakatsuki, Y. & Okazaki, K. Host factors are important in determining clinical outcomes of Helicobacter pylori infection. J. Gastroenterol. 41, 1–9 (2006).

    Article  Google Scholar 

  38. Glickman, J.N. & Antonioli, D.A. Gastritis. Gastrointest. Endosc. Clin. N. Am. 11, 717–740 (2001).

    Article  CAS  Google Scholar 

  39. Uchida, K. et al. Analysis of cytokines in the early development of gastric secondary lymphoid follicles in Helicobacter pylori-infected BALB/c mice with neonatal thymectomy. Infect. Immun. 69, 6749–6754 (2001).

    Article  CAS  Google Scholar 

  40. Matsumoto, Y. et al. Eradication of Helicobacter pylori and resolution of gastritis in the gastric mucosa of IL-10-deficient mice. Helicobacter 10, 407–415 (2005).

    Article  CAS  Google Scholar 

  41. Marusawa, H., Hijikata, M., Watashi, K., Chiba, T. & Shimotohno, K. Regulation of Fas-mediated apoptosis by NF-κB activity in human hepatocyte derived cell lines. Microbiol. Immunol. 45, 483–489 (2001).

    Article  CAS  Google Scholar 

  42. Ta, V.T. et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat. Immunol. 4, 843–848 (2003).

    Article  CAS  Google Scholar 

  43. Iwai, A. et al. Role of a novel oncogenic protein, gankyrin, in hepatocyte proliferation. J. Gastroenterol. 38, 751–758 (2003).

    Article  CAS  Google Scholar 

  44. Toda, Y. et al. Application of tyramide signal amplification system to immunohistochemistry: a potent method to localize antigens that are not detectable by ordinary method. Pathol. Int. 49, 479–483 (1999).

    Article  CAS  Google Scholar 

  45. Kanda, N. et al. Involvement of cyclooxygenase-2 in gastric mucosal hypertrophy in gastrin transgenic mice. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G519–G527 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.C. Weill (Faculte de Medecine Necker-Enfants Malades) for AID-deficient BL2 cells; A. Nomura, S. Sato and Y. Sakai (Kyoto University) for gastric tissue specimens; and H. Haga (Kyoto University) for assistance in the staining of H. pylori. This study was supported by a grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science (15209024, 16790378 and 17002015).

Author information

Authors and Affiliations

Authors

Contributions

Y.M. conducted all the experiments except the analyses of Ig gene, and contributed to manuscript preparations. H.M. designed the study, supervised the project and contributed to manuscript preparations. K.K. performed the analyses of Ig gene, supervised the project and contributed to manuscript preparations. Y.E. worked on in vitro analyses related to NF-κB signaling. T.K. collected human samples and conducted analyses on them. T.M. analysed the transgenic mice. T.A. generated the isogenic cagE-knockout mutant of H. pylori. I.-M.O. generated and analysed the transgenic mice. T.H. and T.C. supervised the project and contributed to manuscript preparations.

Corresponding author

Correspondence to Tsutomu Chiba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

CagPAI-positive H. pylori infection induces morphologic changes in AGS gastric epithelial cells. (PDF 546 kb)

Supplementary Fig. 2

Detection of variable (V)-region gene rearrangement of the Ig gene. (PDF 255 kb)

Supplementary Fig. 3

Treatment with NF-κB signaling regulators did not affect the expression levels of transcripts encoding the cell cycle regulators cyclin D and E in gastric epithelial cells. (PDF 160 kb)

Supplementary Fig. 4

AID-induced mutagenesis in cancer-related genes in association with H. pylori infection. (PDF 155 kb)

Supplementary Fig. 5

AID induction and Trp53 mutation frequencies in wild type mice after H. pylori infection. (PDF 350 kb)

Supplementary Fig. 6

Immunohistochemical analysis of AID expression in H. pylori-positive human gastric mucosa. (PDF 1104 kb)

Supplementary Table 1

TP53 mutation frequencies in human gastric cancers, gastritis and normal mucosa in association with AICDA expression levels. (PDF 93 kb)

Supplementary Table 2

The oligonucleotide primers used in this study. (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, Y., Marusawa, H., Kinoshita, K. et al. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med 13, 470–476 (2007). https://doi.org/10.1038/nm1566

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1566

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing