Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells

Abstract

Regulatory CD4+CD25+ T cells are important in suppressing immune responses. The requirements for the maintenance of peripheral CD4+CD25+ T cells remain incompletely understood. Receptor activator of NF-κB (RANK) and its ligand (RANKL; also known as CD254, OPGL and TRANCE) are key regulators of bone remodeling, mammary gland formation, lymph node development and T-cell/dendritic cell communication. Here we report that RANKL is expressed in keratinocytes of the inflamed skin. RANKL overexpression in keratinocytes resulted in functional alterations of epidermal dendritic cells and systemic increases of regulatory CD4+CD25+ T cells. Thus, epidermal RANKL expression can change dendritic cell functions to maintain the number of peripheral CD4+CD25+ regulatory T cells. Epidermal RANKL mediated ultraviolet-induced immunosuppression and overexpression of epidermal RANKL suppressed allergic contact hypersensitivity responses and the development of systemic autoimmunity. Therefore, environmental stimuli at the skin can rewire the local and systemic immune system by means of RANKL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epidermal RANKL overexpression suppresses cutaneous contact hypersensitivity (CHS) responses.
Figure 2: Epidermal RANKL controls the number of peripheral CD4+CD25+ regulatory T cells.
Figure 3: Epidermal Langerhans cells control systemic homeostasis of CD4+CD25+ regulatory T cells.
Figure 4: Phenotypic and functional differences between Langerhans cells from wild-type and K14-RANKL Tg mice.
Figure 5: Epidermal RANKL suppressed CD40L-induced systemic autoimmunity.
Figure 6: RANKL mediates ultraviolet-induced immunosuppression.

Similar content being viewed by others

References

  1. Cavani, A. et al. Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J. Immunol. 171, 5760–5768 (2003).

    Article  CAS  Google Scholar 

  2. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  Google Scholar 

  3. Viglietta, V., Baecher-Allan, C., Weiner, H.L. & Hafler, D.A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    Article  CAS  Google Scholar 

  4. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  5. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  Google Scholar 

  6. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  7. Malek, T.R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    Article  CAS  Google Scholar 

  8. Papiernik, M., de Moraes, M.L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2R α chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 10, 371–378 (1998).

    Article  CAS  Google Scholar 

  9. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  Google Scholar 

  10. Yamazaki, S. et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247 (2003).

    Article  CAS  Google Scholar 

  11. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A.H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    Article  CAS  Google Scholar 

  12. Mehling, A. et al. Overexpression of CD40 ligand in murine epidermis results in chronic skin inflammation and systemic autoimmunity. J. Exp. Med. 194, 615–628 (2001).

    Article  CAS  Google Scholar 

  13. Anderson, D.M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    Article  CAS  Google Scholar 

  14. Wong, B.R. et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25190–25194 (1997).

    Article  CAS  Google Scholar 

  15. Theill, L.E., Boyle, W.J. & Penninger, J.M. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 20, 795–823 (2002).

    Article  CAS  Google Scholar 

  16. Fata, J.E. et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103, 41–50 (2000).

    Article  CAS  Google Scholar 

  17. Grabbe, S. & Schwarz, T. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol. Today 19, 37–44 (1998).

    Article  CAS  Google Scholar 

  18. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    Article  CAS  Google Scholar 

  19. Laufer, T.M., DeKoning, J., Markowitz, J.S., Lo, D. & Glimcher, L.H. Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature 383, 81–85 (1996).

    Article  CAS  Google Scholar 

  20. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  Google Scholar 

  21. Lehmann, J. et al. Expression of the integrin α Eβ 7 identifies unique subsets of CD25+ as well as CD25- regulatory T cells. Proc. Natl. Acad. Sci. USA 99, 13031–13036 (2002).

    Article  CAS  Google Scholar 

  22. Bruder, D. et al. Neuropilin-1: a surface marker of regulatory T cells. Eur. J. Immunol. 34, 623–630 (2004).

    Article  CAS  Google Scholar 

  23. Shevach, E.M. CD4+ CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2, 389–400 (2002).

    Article  CAS  Google Scholar 

  24. Cremer, I. et al. Long-lived immature dendritic cells mediated by TRANCE-RANK interaction. Blood 100, 3646–3655 (2002).

    Article  CAS  Google Scholar 

  25. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  26. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  Google Scholar 

  27. Loser, K. et al. Enhanced contact hypersensitivity and antiviral immune responses in vivo by keratinocyte-targeted overexpression of IL-15. Eur. J. Immunol. 34, 2022–2031 (2004).

    Article  CAS  Google Scholar 

  28. Mahnke, K., Quian, Y., Knop, J. & Enk, A.H. Induction of CD4+CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 101, 4862–4869 (2003).

    Article  CAS  Google Scholar 

  29. Salomon, B. et al. Development of spontaneous autoimmune peripheral polyneuropathy in B7–2-deficient NOD mice. J. Exp. Med. 194, 677–684 (2001).

    Article  CAS  Google Scholar 

  30. Dombrecht, E.J. et al. Influence of anti-tumor necrosis factor therapy (Adalimumab) on regulatory T cells and dendritic cells in rheumatoid arthritis. Clin. Exp. Rheumatol. 24, 31–37 (2006).

    CAS  PubMed  Google Scholar 

  31. Bynoe, M.S., Evans, J.T., Viret, C. & Janeway, C.A., Jr. Epicutaneous immunization with autoantigenic peptides induces T suppressor cells that prevent experimental allergic encephalomyelitis. Immunity 19, 317–328 (2003).

    Article  CAS  Google Scholar 

  32. Geissmann, F. et al. Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J. Exp. Med. 196, 417–430 (2002).

    Article  CAS  Google Scholar 

  33. Scheinecker, C., McHugh, R., Shevach, E.M. & Germain, R.N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    Article  CAS  Google Scholar 

  34. Schwarz, A. et al. Ultraviolet radiation-induced regulatory T cells not only inhibit the induction but can suppress the effector phase of contact hypersensitivity. J. Immunol. 172, 1036–1043 (2004).

    Article  CAS  Google Scholar 

  35. Kong, Y.Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

    Article  CAS  Google Scholar 

  36. Ashcroft, A.J. et al. Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 19, 849–861 (2003).

    Article  CAS  Google Scholar 

  37. Green, E.A., Choi, Y. & Flavell, R.A. Pancreatic lymph node-derived CD4+CD25+ Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 16, 183–191 (2002).

    Article  CAS  Google Scholar 

  38. Kragballe, K. Vitamin D analogues in the treatment of psoriasis. J. Cell. Biochem. 49, 46–52 (1992).

    Article  CAS  Google Scholar 

  39. Barrat, F.J. et al. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med. 195, 603–616 (2002).

    Article  CAS  Google Scholar 

  40. Leung, D.Y., Boguniewicz, M., Howell, M.D., Nomura, I. & Hamid, Q.A. New insights into atopic dermatitis. J. Clin. Invest. 113, 651–657 (2004).

    Article  CAS  Google Scholar 

  41. Kuhn, A. et al. Phototesting in lupus erythematosus: a 15-year experience. J. Am. Acad. Dermatol. 45, 86–95 (2001).

    Article  CAS  Google Scholar 

  42. Vassar, R., Rosenberg, M., Ross, S., Tyner, A. & Fuchs, E. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc. Natl. Acad. Sci. USA 86, 1563–1567 (1989).

    Article  CAS  Google Scholar 

  43. Loser, K. et al. FK506 controls CD40L-induced systemic autoimmunity in mice. J. Invest. Dermatol. 126, 1307–1315 (2006).

    Article  CAS  Google Scholar 

  44. Loser, K. et al. In vitro-generated regulatory T cells induced by Foxp3-retrovirus infection control murine contact allergy and systemic autoimmunity. Gene Ther. 12, 1294–1304 (2005).

    Article  CAS  Google Scholar 

  45. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+CD25+CD4+ regulatory T cells by interleukin(IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735 (2005).

    Article  CAS  Google Scholar 

  46. Labeur, M.S. et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J. Immunol. 162, 168–175 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Voskort and B. Geng for technical assistance. The Tnfs11 (Rankl) cDNA was provided by L. Galibert (Immunex), and the antibody to CD207 by S. Saeland (Institut National de la Santé et de la Recherche Médicale (INSERM) Lyon). This work was supported by the German Research Association (SFB 293, BE 1580/6-2 and BE 1580/7-1 to S.B.; KU 1559/1-1 to A.K.), the Interdisciplinary Center of Clinical Research (Lo2/017/07 to K.L. and S.B.), and by the Innovative Medical Research fund of the University of Münster Medical School (Lo11/06 03 to K.L. and S.B.). J.M.P. is supported by grants from the Austrian National Bank, the Austrian Academy of Sciences, the Austrian Ministry of Science and Education, the 6th EU framework (EuroThymaide), an EU Marie Curie Excellence grant, and a program project grant from the Austrian Fonds zur Foerderung der Wissenschaftlichen Forschung (FWF).

Author information

Authors and Affiliations

Authors

Contributions

K.L. performed cell-culture experiments and animal experiments, generated figures, and helped to write the manuscript. A.M. generated the K14-RANKL Tg transgenic mouse strains. S.L. bred and provided the Tnfs11−/− mice. J.A. assisted with human immunofluorescence experiments. A.K. assisted with skin samples and provided expertise in immunohistochemistry. S.G. provided methodological expertise and helped design some experiments. T.S. provided expertise in ultraviolet animal experiments. J.M.P. analyzed the data and helped design the study and write the manuscript. S.B. (principal investigator) designed the experiments, interpreted and analyzed data, and drafted and edited the manuscript.

Corresponding author

Correspondence to Stefan Beissert.

Ethics declarations

Competing interests

A patent based on our findings has been filed.

Supplementary information

Supplementary Fig. 1

Systemic administration of mometason fuorate or in vitro mometason fuorate-treatment does not affect T cells. (PDF 88 kb)

Supplementary Fig. 2

Blocking the RANK-RANKL signaling pathway restores suppression of contact hypersensitivity responses by UV-irradiation. (PDF 55 kb)

Supplementary Methods (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loser, K., Mehling, A., Loeser, S. et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 12, 1372–1379 (2006). https://doi.org/10.1038/nm1518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing