Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies

Abstract

Alterations in α-synuclein dosage lead to familial Parkinson's disease (PD), and its accumulation results in synucleinopathies that include PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Furthermore, α-synuclein contributes to the fibrilization of amyloid-b and tau, two key proteins in Alzheimer's disease, which suggests a central role for α-synuclein toxicity in neurodegeneration. Recent studies of factors contributing to α-synuclein toxicity and its disruption of downstream cellular pathways have expanded our understanding of disease pathogenesis in synucleinopathies. In this Review, we discuss these emerging themes, including the contributions of aging, selective vulnerability and non-cell-autonomous factors such as α-synuclein cell-to-cell propagation and neuroinflammation. Finally, we summarize recent efforts toward the development of targeted therapies for PD and related synucleinopathies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways implicated in α-synuclein toxicity.

Kim Caesar/Springer Nature

Figure 2: Therapeutically targeting α-synuclein toxicity.

Kim Caesar/Springer Nature

Similar content being viewed by others

References

  1. Spillantini, M.G. et al. α-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Burré, J. et al. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bendor, J.T., Logan, T.P. & Edwards, R.H. The function of α-synuclein. Neuron 79, 1044–1066 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Polymeropoulos, M.H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Krüger, R. et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet. 18, 106–108 (1998).

    Article  PubMed  Google Scholar 

  6. Zarranz, J.J. et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Appel-Cresswell, S. et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson's disease. Mov. Disord. 28, 811–813 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Proukakis, C. et al. A novel α-synuclein missense mutation in Parkinson disease. Neurology 80, 1062–1064 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lesage, S. et al. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann. Neurol. 73, 459–471 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Pasanen, P. et al. Novel alpha-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson's disease-type pathology. Neurobiol. Aging 35, 2180e.1–2180.e5 (2014).

    Article  CAS  Google Scholar 

  11. Singleton, A.B. et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Chartier-Harlin, M.C. et al. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Simón-Sánchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nalls, M.A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat. Genet. 46, 989–993 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Soldner, F. et al. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 533, 95–99 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spillantini, M.G. et al. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies. Neurosci. Lett. 251, 205–208 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Spillantini, M.G., Crowther, R.A., Jakes, R., Hasegawa, M. & Goedert, M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc. Natl. Acad. Sci. USA 95, 6469–6473 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shachar, T. et al. Lysosomal storage disorders and Parkinson′s disease: Gaucher disease and beyond. Mov. Disord. 26, 1593–1604 (2011).

    Article  PubMed  Google Scholar 

  19. Bachhuber, T. et al. Inhibition of amyloid-β plaque formation by α-synuclein. Nat. Med. 21, 802–807 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Guo, J.L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Yoshimoto, M. et al. NACP, the precursor protein of the non-amyloid beta/A4 protein (A beta) component of Alzheimer disease amyloid, binds A beta and stimulates A beta aggregation. Proc. Natl. Acad. Sci. USA 92, 9141–9145 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Masliah, E. et al. beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease. Proc. Natl. Acad. Sci. USA 98, 12245–12250 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Giasson, B.I. et al. Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300, 636–640 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Kalia, L.V. & Lang, A.E. Parkinson's disease. Lancet 386, 896–912 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Frigerio, R. et al. Incidental Lewy body disease: do some cases represent a preclinical stage of dementia with Lewy bodies? Neurobiol. Aging 32, 857–863 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Paisán-Ruíz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).

    Article  PubMed  Google Scholar 

  27. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Trinh, J., Guella, I. & Farrer, M.J. Disease penetrance of late-onset parkinsonism: a meta-analysis. JAMA Neurol. 71, 1535–1539 (2014).

    Article  PubMed  Google Scholar 

  29. Lin, X. et al. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein. Neuron 64, 807–827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Daher, J.P. et al. Leucine-rich repeat kinase 2 (LRRK2) pharmacological inhibition abates α-synuclein gene-induced neurodegeneration. J. Biol. Chem. 290, 19433–19444 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Daher, J.P., Volpicelli-Daley, L.A., Blackburn, J.P., Moehle, M.S. & West, A.B. Abrogation of α-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proc. Natl. Acad. Sci. USA 111, 9289–9294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Volpicelli-Daley, L.A. et al. G2019S-LRRK2 expression augments α-synuclein sequestration into inclusions in neurons. J. Neurosci. 36, 7415–7427 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fanciulli, A. & Wenning, G.K. Multiple-system atrophy. N. Engl. J. Med. 372, 249–263 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. Goldman, J.G., Williams-Gray, C., Barker, R.A., Duda, J.E. & Galvin, J.E. The spectrum of cognitive impairment in Lewy body diseases. Mov. Disord. 29, 608–621 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang, Y. & Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell 148, 1204–1222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Larson, M.E. et al. Soluble α-synuclein is a novel modulator of Alzheimer's disease pathophysiology. J. Neurosci. 32, 10253–10266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blanz, J. & Saftig, P. Parkinson's disease: acid-glucocerebrosidase activity and alpha-synuclein clearance. J. Neurochem. 139 (Suppl. 1), 198–215 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N. Engl. J. Med. 361, 1651–1661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arber, C.E., Li, A., Houlden, H. & Wray, S. Review: Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol. Appl. Neurobiol. 42, 220–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A. & Lansbury, P.T. Jr. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35, 13709–13715 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Iwai, A., Yoshimoto, M., Masliah, E. & Saitoh, T. Non-A beta component of Alzheimer's disease amyloid (NAC) is amyloidogenic. Biochemistry 34, 10139–10145 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Rodriguez, J.A. et al. Structure of the toxic core of α-synuclein from invisible crystals. Nature 525, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iwai, A. et al. The precursor protein of non-A beta component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467–475 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Kahle, P.J. et al. Subcellular localization of wild-type and Parkinson's disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J. Neurosci. 20, 6365–6373 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davidson, W.S., Jonas, A., Clayton, D.F. & George, J.M. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Varkey, J. et al. Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins. J. Biol. Chem. 285, 32486–32493 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chandra, S., Gallardo, G., Fernández-Chacón, R., Schlüter, O.M. & Südhof, T.C. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123, 383–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Cabin, D.E. et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J. Neurosci. 22, 8797–8807 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murphy, D.D., Rueter, S.M., Trojanowski, J.Q. & Lee, V.M. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 20, 3214–3220 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scott, D. & Roy, S. α-Synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis. J. Neurosci. 32, 10129–10135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Diao, J. et al. Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. eLife 2, e00592 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vargas, K.J. et al. Synucleins regulate the kinetics of synaptic vesicle endocytosis. J. Neurosci. 34, 9364–9376 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Choi, B.K. et al. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proc. Natl. Acad. Sci. USA 110, 4087–4092 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, L. et al. α-synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr. Biol. 24, 2319–2326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nemani, V.M. et al. Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65, 66–79 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burré, J., Sharma, M. & Südhof, T.C. α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc. Natl. Acad. Sci. USA 111, E4274–E4283 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Burré, J., Sharma, M. & Südhof, T.C. Systematic mutagenesis of α-synuclein reveals distinct sequence requirements for physiological and pathological activities. J. Neurosci. 32, 15227–15242 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Abeliovich, A. et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Mosharov, E.V. et al. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62, 218–229 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Masliah, E. et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Janezic, S. et al. Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc. Natl. Acad. Sci. USA 110, E4016–E4025 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lundblad, M., Decressac, M., Mattsson, B. & Björklund, A. Impaired neurotransmission caused by overexpression of α-synuclein in nigral dopamine neurons. Proc. Natl. Acad. Sci. USA 109, 3213–3219 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martin, L.J. et al. Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26, 41–50 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Choubey, V. et al. Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J. Biol. Chem. 286, 10814–10824 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, L., Xie, Z., Turkson, S. & Zhuang, X. A53T human α-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J. Neurosci. 35, 890–905 (2015).

    Article  PubMed  CAS  Google Scholar 

  67. Kamp, F. et al. Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J. 29, 3571–3589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakamura, K. et al. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J. Biol. Chem. 286, 20710–20726 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dauer, W. et al. Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc. Natl. Acad. Sci. USA 99, 14524–14529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luth, E.S., Stavrovskaya, I.G., Bartels, T., Kristal, B.S. & Selkoe, D.J. Soluble, prefibrillar α-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. J. Biol. Chem. 289, 21490–21507 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Di Maio, R. et al. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease. Sci. Transl. Med. 8, 342ra78 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Eschbach, J. et al. Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization. Ann. Neurol. 77, 15–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Zheng, B. et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson's disease. Sci. Transl. Med. 2, 52ra73 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Ryan, S.D. et al. Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell 155, 1351–1364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Outeiro, T.F. & Lindquist, S. Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302, 1772–1775 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cooper, A.A. et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313, 324–328 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gitler, A.D. et al. The Parkinson's disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc. Natl. Acad. Sci. USA 105, 145–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Chung, C.Y. et al. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tardiff, D.F. et al. Yeast reveal a “druggable” Rsp5/Nedd4 network that ameliorates α-synuclein toxicity in neurons. Science 342, 979–983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mazzulli, J.R. et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mazzulli, J.R., Zunke, F., Isacson, O., Studer, L. & Krainc, D. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc. Natl. Acad. Sci. USA 113, 1931–1936 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Thayanidhi, N. et al. Alpha-synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol. Biol. Cell 21, 1850–1863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oaks, A.W., Marsh-Armstrong, N., Jones, J.M., Credle, J.J. & Sidhu, A. Synucleins antagonize endoplasmic reticulum function to modulate dopamine transporter trafficking. PLoS One 8, e70872 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Caraveo, G. et al. Calcineurin determines toxic versus beneficial responses to α-synuclein. Proc. Natl. Acad. Sci. USA 111, E3544–E3552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Luo, J. et al. A calcineurin- and NFAT-dependent pathway is involved in α-synuclein-induced degeneration of midbrain dopaminergic neurons. Hum. Mol. Genet. 23, 6567–6574 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bellucci, A. et al. Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson's disease. J. Neurochem. 116, 588–605 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Colla, E. et al. Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J. Neurosci. 32, 3306–3320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Colla, E. et al. Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J. Neurosci. 32, 3301–3305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wong, Y.C. & Holzbaur, E.L. Autophagosome dynamics in neurodegeneration at a glance. J. Cell Sci. 128, 1259–1267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Winslow, A.R. et al. α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 190, 1023–1037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T. & Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Martinez-Vicente, M. et al. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118, 777–788 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanik, S.A., Schultheiss, C.E., Volpicelli-Daley, L.A., Brunden, K.R. & Lee, V.M. Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J. Biol. Chem. 288, 15194–15210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Volpicelli-Daley, L.A. et al. Formation of α-synuclein Lewy neurite-like aggregates in axons impedes the transport of distinct endosomes. Mol. Biol. Cell 25, 4010–4023 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wong, Y.C. & Krainc, D. Lysosomal trafficking defects link Parkinson′s disease with Gaucher's disease. Mov. Disord. 31, 1610–1618 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maroteaux, L., Campanelli, J.T. & Scheller, R.H. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8, 2804–2815 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rousseaux, M.W. et al. TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau. eLife 5, e19809 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kontopoulos, E., Parvin, J.D. & Feany, M.B. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum. Mol. Genet. 15, 3012–3023 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Fares, M.B. et al. The novel Parkinson's disease linked mutation G51D attenuates in vitro aggregation and membrane binding of α-synuclein, and enhances its secretion and nuclear localization in cells. Hum. Mol. Genet. 23, 4491–4509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Decressac, M. et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc. Natl. Acad. Sci. USA 110, E1817–E1826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Phillips, M.J. & Voeltz, G.K. Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17, 69–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Calì, T., Ottolini, D., Negro, A. & Brini, M. α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J. Biol. Chem. 287, 17914–17929 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Guardia-Laguarta, C. et al. α-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 34, 249–259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chu, Y. et al. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease. Brain 135, 2058–2073 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Prots, I. et al. α-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J. Biol. Chem. 288, 21742–21754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tilve, S., Difato, F. & Chieregatti, E. Cofilin 1 activation prevents the defects in axon elongation and guidance induced by extracellular alpha-synuclein. Sci. Rep. 5, 16524 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mazzulli, J.R. et al. Activation of β-glucocerebrosidase reduces pathological α-synuclein and restores lysosomal function in Parkinson's patient midbrain neurons. J. Neurosci. 36, 7693–7706 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bousset, L. et al. Structural and functional characterization of two alpha-synuclein strains. Nat. Commun. 4, 2575 (2013).

    Article  PubMed  CAS  Google Scholar 

  109. Auluck, P.K., Chan, H.Y., Trojanowski, J.Q., Lee, V.M. & Bonini, N.M. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295, 865–868 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Ihara, M. et al. Sept4, a component of presynaptic scaffold and Lewy bodies, is required for the suppression of alpha-synuclein neurotoxicity. Neuron 53, 519–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Outeiro, T.F. et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 317, 516–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, L. & Feany, M.B. Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat. Neurosci. 8, 657–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Bender, A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38, 515–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Vilchez, D., Saez, I. & Dillin, A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5, 5659 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Li, W. et al. Stabilization of alpha-synuclein protein with aging and familial parkinson's disease-linked A53T mutation. J. Neurosci. 24, 7400–7409 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chu, Y. & Kordower, J.H. Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson's disease? Neurobiol. Dis. 25, 134–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Finkel, T. & Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Giasson, B.I. et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290, 985–989 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Paxinou, E. et al. Induction of alpha-synuclein aggregation by intracellular nitrative insult. J. Neurosci. 21, 8053–8061 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hodara, R. et al. Functional consequences of alpha-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J. Biol. Chem. 279, 47746–47753 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Zecca, L. et al. Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson's disease. J. Neurochem. 106, 1866–1875 (2008).

    CAS  PubMed  Google Scholar 

  122. Halliday, G.M., Macdonald, V. & Henderson, J.M. A comparison of degeneration in motor thalamus and cortex between progressive supranuclear palsy and Parkinson's disease. Brain 128, 2272–2280 (2005).

    Article  PubMed  Google Scholar 

  123. Sulzer, D. & Surmeier, D.J. Neuronal vulnerability, pathogenesis, and Parkinson′s disease. Mov. Disord. 28, 41–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  125. Conway, K.A., Rochet, J.C., Bieganski, R.M. & Lansbury, P.T. Jr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294, 1346–1349 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Mazzulli, J.R., Armakola, M., Dumoulin, M., Parastatidis, I. & Ischiropoulos, H. Cellular oligomerization of alpha-synuclein is determined by the interaction of oxidized catechols with a C-terminal sequence. J. Biol. Chem. 282, 31621–31630 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Mazzulli, J.R. et al. Cytosolic catechols inhibit alpha-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J. Neurosci. 26, 10068–10078 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hirsch, E., Graybiel, A.M. & Agid, Y.A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334, 345–348 (1988).

    Article  CAS  PubMed  Google Scholar 

  129. Chakrabarty, P. et al. Interferon-γ induces progressive nigrostriatal degeneration and basal ganglia calcification. Nat. Neurosci. 14, 694–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yazawa, I. et al. Mouse model of multiple system atrophy alpha-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron 45, 847–859 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Lindersson, E. et al. p25alpha Stimulates alpha-synuclein aggregation and is co-localized with aggregated alpha-synuclein in alpha-synucleinopathies. J. Biol. Chem. 280, 5703–5715 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Ubhi, K. et al. Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors. J. Neurosci. 30, 6236–6246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kordower, J.H., Chu, Y., Hauser, R.A., Freeman, T.B. & Olanow, C.W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat. Med. 14, 504–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Li, J.Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc. Natl. Acad. Sci. USA 106, 13010–13015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Luk, K.C. et al. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl. Acad. Sci. USA 106, 20051–20056 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Volpicelli-Daley, L.A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Luk, K.C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sacino, A.N. et al. Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc. Natl. Acad. Sci. USA 111, 10732–10737 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Peelaerts, W. et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Rey, N.L. et al. Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson's disease. J. Exp. Med. 213, 1759–1778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Danzer, K.M. et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol. Neurodegener. 7, 42 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tsunemi, T., Hamada, K. & Krainc, D. ATP13A2/PARK9 regulates secretion of exosomes and α-synuclein. J. Neurosci. 34, 15281–15287 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Kong, S.M. et al. Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-Synuclein externalization via exosomes. Hum. Mol. Genet. 23, 2816–2833 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Chutna, O. et al. The small GTPase Rab11 co-localizes with α-synuclein in intracellular inclusions and modulates its aggregation, secretion and toxicity. Hum. Mol. Genet. 23, 6732–6745 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Emmanouilidou, E. et al. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30, 6838–6851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Oh, S.H. et al. Mesenchymal stem cells inhibit transmission of α-Synuclein by modulating clathrin-mediated endocytosis in a Parkinsonian model. Cell Rep. 14, 835–849 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Mao, X. et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, aah3374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Abounit, S. et al. Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J. 35, 2120–2138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Brettschneider, J., Del Tredici, K., Lee, V.M. & Trojanowski, J.Q. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16, 109–120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Walsh, D.M. & Selkoe, D.J. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat. Rev. Neurosci. 17, 251–260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lee, H.J. et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J. Biol. Chem. 285, 9262–9272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ouchi, Y. et al. Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann. Neurol. 57, 168–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Stefanova, N. et al. Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Mov. Disord. 22, 2196–2203 (2007).

    Article  PubMed  Google Scholar 

  155. Chung, C.Y., Koprich, J.B., Siddiqi, H. & Isacson, O. Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV alpha-synucleinopathy. J. Neurosci. 29, 3365–3373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Theodore, S., Cao, S., McLean, P.J. & Standaert, D.G. Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J. Neuropathol. Exp. Neurol. 67, 1149–1158 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Lastres-Becker, I. et al. α-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson's disease. Hum. Mol. Genet. 21, 3173–3192 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Gao, H.M. et al. Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J. Neurosci. 28, 7687–7698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Harms, A.S. et al. MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J. Neurosci. 33, 9592–9600 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kim, C. et al. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562 (2013).

    Article  PubMed  CAS  Google Scholar 

  161. Daniele, S.G. et al. Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Sci. Signal. 8, ra45 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wang, S. et al. α-Synuclein, a chemoattractant, directs microglial migration via H2O2-dependent Lyn phosphorylation. Proc. Natl. Acad. Sci. USA 112, E1926–E1935 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Thome, A.D., Harms, A.S., Volpicelli-Daley, L.A. & Standaert, D.G. microRNA-155 regulates alpha-synuclein-induced inflammatory responses in models of Parkinson disease. J. Neurosci. 36, 2383–2390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ejlerskov, P. et al. Lack of neuronal IFN-β-IFNAR causes Lewy body- and Parkinson's disease-like dementia. Cell 163, 324–339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hamza, T.H. et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease. Nat. Genet. 42, 781–785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Roy, B. & Jackson, G.R. Interactions between Tau and α-synuclein augment neurotoxicity in a Drosophila model of Parkinson's disease. Hum. Mol. Genet. 23, 3008–3023 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lewis, J. et al. In vivo silencing of alpha-synuclein using naked siRNA. Mol. Neurodegener. 3, 19 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Cooper, J.M. et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 29, 1476–1485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rott, R. et al. α-Synuclein fate is determined by USP9X-regulated monoubiquitination. Proc. Natl. Acad. Sci. USA 108, 18666–18671 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tofaris, G.K. et al. Ubiquitin ligase Nedd4 promotes alpha-synuclein degradation by the endosomal-lysosomal pathway. Proc. Natl. Acad. Sci. USA 108, 17004–17009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Oueslati, A., Schneider, B.L., Aebischer, P. & Lashuel, H.A. Polo-like kinase 2 regulates selective autophagic α-synuclein clearance and suppresses its toxicity in vivo. Proc. Natl. Acad. Sci. USA 110, E3945–E3954 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. McGlinchey, R.P. & Lee, J.C. Cysteine cathepsins are essential in lysosomal degradation of α-synuclein. Proc. Natl. Acad. Sci. USA 112, 9322–9327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Masliah, E. et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One 6, e19338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bae, E.J. et al. Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J. Neurosci. 32, 13454–13469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sardi, S.P. et al. Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies. Proc. Natl. Acad. Sci. USA 110, 3537–3542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rocha, E.M. et al. Glucocerebrosidase gene therapy prevents α-synucleinopathy of midbrain dopamine neurons. Neurobiol. Dis. 82, 495–503 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Rockenstein, E. et al. Glucocerebrosidase modulates cognitive and motor activities in murine models of Parkinson's disease. Hum. Mol. Genet. 25, 2645–2660 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Aflaki, E. et al. A new glucocerebrosidase chaperone reduces α-synuclein and glycolipid levels in iPSC-derived dopaminergic neurons from patients with Gaucher disease and parkinsonism. J. Neurosci. 36, 7441–7452 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Pchelina, S.N. et al. Increased plasma oligomeric alpha-synuclein in patients with lysosomal storage diseases. Neurosci. Lett. 583, 188–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Rothaug, M. et al. LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance. Proc. Natl. Acad. Sci. USA 111, 15573–15578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gitler, A.D. et al. α-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41, 308–315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Tsunemi, T. & Krainc, D. Zn2+ dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Hum. Mol. Genet. 23, 2791–2801 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Fonseca-Ornelas, L. et al. Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation. Nat. Commun. 5, 5857 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Lindström, V. et al. Immunotherapy targeting α-synuclein protofibrils reduced pathology in (Thy-1)-h[A30P] α-synuclein mice. Neurobiol. Dis. 69, 134–143 (2014).

    Article  PubMed  CAS  Google Scholar 

  185. Dettmer, U. et al. Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat. Commun. 6, 7314 (2015).

    Article  PubMed  Google Scholar 

  186. Schneeberger, A., Tierney, L. & Mandler, M. Active immunization therapies for Parkinson′s disease and multiple system atrophy. Mov. Disord. 31, 214–224 (2016).

    Article  PubMed  Google Scholar 

  187. Games, D. et al. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson's disease-like models. J. Neurosci. 34, 9441–9454 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Tran, H.T. et al. A-synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep. 7, 2054–2065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Masliah, E. et al. Effects of alpha-synuclein immunization in a mouse model of Parkinson's disease. Neuron 46, 857–868 (2005).

    Article  CAS  PubMed  Google Scholar 

  190. Bergstrom, A.L., Kallunki, P. & Fog, K. Development of passive immunotherapies for synucleinopathies. Mov. Disord. 31, 203–213 (2016).

    Article  PubMed  CAS  Google Scholar 

  191. Beal, M.F. et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol. 71, 543–552 (2014).

    Article  PubMed  Google Scholar 

  192. Sybertz, E. & Krainc, D. Development of targeted therapies for Parkinson's disease and related synucleinopathies. J. Lipid Res. 55, 1996–2003 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chen-Plotkin, A.S. Unbiased approaches to biomarker discovery in neurodegenerative diseases. Neuron 84, 594–607 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Van der Perren, A. et al. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinson's disease. Neurobiol. Aging 36, 1559–1568 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Qin, H. et al. Inhibition of the JAK/STAT pathway protects against α-synuclein-induced neuroinflammation and dopaminergic neurodegeneration. J. Neurosci. 36, 5144–5159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Valera, E., Mante, M., Anderson, S., Rockenstein, E. & Masliah, E. Lenalidomide reduces microglial activation and behavioral deficits in a transgenic model of Parkinson's disease. J. Neuroinflammation 12, 93 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Kim, C. et al. Hypoestoxide reduces neuroinflammation and α-synuclein accumulation in a mouse model of Parkinson's disease. J. Neuroinflammation 12, 236 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Burre, J. et al. Properties of native brain α-synuclein. Nature 498, E4–E6, discussion E6–7 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Theillet, F.X. et al. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530, 45–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Gould, N. et al. Evidence of native α-synuclein conformers in the human brain. J. Biol. Chem. 289, 7929–7934 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang, W. et al. A soluble α-synuclein construct forms a dynamic tetramer. Proc. Natl. Acad. Sci. USA 108, 17797–17802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bartels, T., Choi, J.G. & Selkoe, D.J. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107–110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Dettmer, U., Newman, A.J., von Saucken, V.E., Bartels, T. & Selkoe, D. KTKEGV repeat motifs are key mediators of normal α-synuclein tetramerization: Their mutation causes excess monomers and neurotoxicity. Proc. Natl. Acad. Sci. USA 112, 9596–9601 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sharon, R. et al. The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 37, 583–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  205. Ferreon, A.C., Gambin, Y., Lemke, E.A. & Deniz, A.A. Interplay of alpha-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc. Natl. Acad. Sci. USA 106, 5645–5650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Buell, A.K. et al. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc. Natl. Acad. Sci. USA 111, 7671–7676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Galvagnion, C. et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11, 229–234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Cremades, N. et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 149, 1048–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Conway, K.A. et al. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Winner, B. et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. USA 108, 4194–4199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Pieri, L., Madiona, K., Bousset, L. & Melki, R. Fibrillar α-synuclein and huntingtin exon 1 assemblies are toxic to the cells. Biophys. J. 102, 2894–2905 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Fares, M.B. et al. Induction of de novo α-synuclein fibrillization in a neuronal model for Parkinson's disease. Proc. Natl. Acad. Sci. USA 113, E912–E921 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Luk, K.C. et al. Molecular and biological compatibility with host alpha-synuclein influences fibril pathogenicity. Cell Rep. 16, 3373–3387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Prusiner, S.B. et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc. Natl. Acad. Sci. USA 112, E5308–E5317 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Woerman, A.L. et al. Propagation of prions causing synucleinopathies in cultured cells. Proc. Natl. Acad. Sci. USA 112, E4949–E4958 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NINDS R01 NS076054 (D.K.) and NIH/NINDS 5T32NS041234 (Y.C.W.).

Author information

Authors and Affiliations

Authors

Contributions

Y.C.W. and D.K. wrote and reviewed the manuscript.

Corresponding author

Correspondence to Dimitri Krainc.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, Y., Krainc, D. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 23, 1–13 (2017). https://doi.org/10.1038/nm.4269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing