Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genome-wide RNA interference screen reveals an essential CREB3L2-ATF5-MCL1 survival pathway in malignant glioma with therapeutic implications

Abstract

Activating transcription factor-5 (ATF5) is highly expressed in malignant glioma and has a key role in promoting cell survival. Here we perform a genome-wide RNAi screen to identify transcriptional regulators of ATF5. Our results reveal an essential survival pathway in malignant glioma, whereby activation of a RAS–mitogen-activated protein kinase or phosphoinositide-3-kinase signaling cascade leads to induction of the transcription factor cAMP response element–binding protein-3–like-2 (CREB3L2), which directly activates ATF5 expression. ATF5, in turn, promotes survival by stimulating transcription of myeloid cell leukemia sequence-1 (MCL1), an antiapoptotic B cell leukemia-2 family member. Analysis of human malignant glioma samples indicates that ATF5 expression inversely correlates with disease prognosis. The RAF kinase inhibitor sorafenib suppresses ATF5 expression in glioma stem cells and inhibits malignant glioma growth in cell culture and mouse models. Our results demonstrate that ATF5 is essential in malignant glioma genesis and reveal that the ATF5-mediated survival pathway described here provides potential therapeutic targets for treatment of malignant glioma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A genome-wide RNAi screen reveals a signaling pathway required for ATF5 expression.
Figure 2: ATF5 promotes survival through upregulation of MCL1.
Figure 3: ATF5 expression correlates with poor prognosis in human malignant glioma.
Figure 4: The ATF5-mediated survival pathway is essential for viability of human malignant glioma cells.
Figure 5: Inhibition of MAPK signaling suppresses development of malignant glioma in mouse xenografts.
Figure 6: Sorafenib synergizes with temozolomide to inhibit tumor cell growth.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  2. Luo, J., Solimini, N.L. & Elledge, S.J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  Google Scholar 

  3. Persengiev, S.P. & Green, M.R. The role of ATF/CREB family members in cell growth, survival and apoptosis. Apoptosis 8, 225–228 (2003).

    Article  CAS  Google Scholar 

  4. Greene, L.A., Lee, H.Y. & Angelastro, J.M. The transcription factor ATF5: role in neurodevelopment and neural tumors. J. Neurochem. 108, 11–22 (2009).

    Article  CAS  Google Scholar 

  5. Monaco, S.E., Angelastro, J.M., Szabolcs, M. & Greene, L.A. The transcription factor ATF5 is widely expressed in carcinomas, and interference with its function selectively kills neoplastic, but not nontransformed, breast cell lines. Int. J. Cancer 120, 1883–1890 (2007).

    Article  CAS  Google Scholar 

  6. Angelastro, J.M. et al. Selective destruction of glioblastoma cells by interference with the activity or expression of ATF5. Oncogene 25, 907–916 (2006).

    Article  CAS  Google Scholar 

  7. Persengiev, S.P., Devireddy, L.R. & Green, M.R. Inhibition of apoptosis by ATFx: a novel role for a member of the ATF/CREB family of mammalian bZIP transcription factors. Genes Dev. 16, 1806–1814 (2002).

    Article  CAS  Google Scholar 

  8. Collier, R.J. Diphtheria toxin: mode of action and structure. Bacteriol. Rev. 39, 54–85 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Silva, J.M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet. 37, 1281–1288 (2005).

    Article  CAS  Google Scholar 

  10. Sato, T. & Gotoh, N. The FRS2 family of docking/scaffolding adaptor proteins as therapeutic targets of cancer treatment. Expert Opin. Ther. Targets 13, 689–700 (2009).

    Article  CAS  Google Scholar 

  11. da Fonseca, C.O. et al. Recent advances in the molecular genetics of malignant gliomas disclose targets for antitumor agent perillyl alcohol. Surg. Neurol. 65 Suppl. 1, S1:2–1:8; discussion S1:8–1:9 (2006).

    Google Scholar 

  12. Kumar, R., Gururaj, A.E. & Barnes, C.J. p21-activated kinases in cancer. Nat. Rev. Cancer 6, 459–471 (2006).

    Article  CAS  Google Scholar 

  13. Kondo, S. et al. BBF2H7, a novel transmembrane bZIP transcription factor, is a new type of endoplasmic reticulum stress transducer. Mol. Cell. Biol. 27, 1716–1729 (2007).

    Article  CAS  Google Scholar 

  14. Lonze, B.E. & Ginty, D.D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623 (2002).

    Article  CAS  Google Scholar 

  15. Mohammadi, M. et al. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J. 17, 5896–5904 (1998).

    Article  CAS  Google Scholar 

  16. Discafani, C.M. et al. Irreversible inhibition of epidermal growth factor receptor tyrosine kinase with in vivo activity by N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide (CL-387,785). Biochem. Pharmacol. 57, 917–925 (1999).

    Article  CAS  Google Scholar 

  17. Hara, M. et al. Identification of Ras farnesyltransferase inhibitors by microbial screening. Proc. Natl. Acad. Sci. USA 90, 2281–2285 (1993).

    Article  CAS  Google Scholar 

  18. Wilhelm, S. & Chien, D.S. BAY 43–9006: preclinical data. Curr. Pharm. Des. 8, 2255–2257 (2002).

    Article  CAS  Google Scholar 

  19. Favata, M.F. et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623–18632 (1998).

    Article  CAS  Google Scholar 

  20. Ohori, M. et al. Identification of a selective ERK inhibitor and structural determination of the inhibitor-ERK2 complex. Biochem. Biophys. Res. Commun. 336, 357–363 (2005).

    Article  CAS  Google Scholar 

  21. Vlahos, C.J., Matter, W.F., Hui, K.Y. & Brown, R.F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H–1-benzopyran-4-one (LY294002). J. Biol. Chem. 269, 5241–5248 (1994).

    CAS  PubMed  Google Scholar 

  22. Cuenda, A. et al. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364, 229–233 (1995).

    Article  CAS  Google Scholar 

  23. Bonny, C., Oberson, A., Negri, S., Sauser, C. & Schorderet, D.F. Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. Diabetes 50, 77–82 (2001).

    Article  CAS  Google Scholar 

  24. Yu, C. et al. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43–9006. Oncogene 24, 6861–6869 (2005).

    Article  CAS  Google Scholar 

  25. Rhodes, D.R. et al. Oncomine 3.0: genes, pathways and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9, 166–180 (2007).

    Article  CAS  Google Scholar 

  26. Sun, L. et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9, 287–300 (2006).

    Article  CAS  Google Scholar 

  27. Fischer, U. et al. A different view on DNA amplifications indicates frequent, highly complex, and stable amplicons on 12q13–21 in glioma. Mol. Cancer Res. 6, 576–584 (2008).

    Article  CAS  Google Scholar 

  28. Aoki, H. et al. Phosphorylated Pak1 level in the cytoplasm correlates with shorter survival time in patients with glioblastoma. Clin. Cancer Res. 13, 6603–6609 (2007).

    Article  CAS  Google Scholar 

  29. Pelloski, C.E. et al. Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. Clin. Cancer Res. 12, 3935–3941 (2006).

    Article  CAS  Google Scholar 

  30. Parsons, D.W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  Google Scholar 

  31. Rahmani, M. et al. The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol. Cell. Biol. 27, 5499–5513 (2007).

    Article  CAS  Google Scholar 

  32. Rahmani, M., Davis, E.M., Bauer, C., Dent, P. & Grant, S. Apoptosis induced by the kinase inhibitor BAY 43–9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J. Biol. Chem. 280, 35217–35227 (2005).

    Article  CAS  Google Scholar 

  33. Alcantara Llaguno, S. et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15, 45–56 (2009).

    Article  Google Scholar 

  34. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  Google Scholar 

  35. Li, L. et al. EGFRvIII expression and PTEN loss synergistically induce chromosomal instability and glial tumors. Neuro-oncol. 11, 9–21 (2009).

    Article  Google Scholar 

  36. Villano, J.L., Seery, T.E. & Bressler, L.R. Temozolomide in malignant gliomas: current use and future targets. Cancer Chemother. Pharmacol. 64, 647–655 (2009).

    Article  CAS  Google Scholar 

  37. Weiss, W.A., Taylor, S.S. & Shokat, K.M. Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nat. Chem. Biol. 3, 739–744 (2007).

    Article  CAS  Google Scholar 

  38. Sparidans, R.W. et al. Liquid chromatography–tandem mass spectrometric assay for sorafenib and sorafenib-glucuronide in mouse plasma and liver homogenate and identification of the glucuronide metabolite. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877, 269–276 (2009).

    Article  CAS  Google Scholar 

  39. Lagas, J.S. et al. Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol. Cancer Ther. 9, 319–326 (2010).

    Article  CAS  Google Scholar 

  40. Hu, S. et al. Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin. Cancer Res. 15, 6062–6069 (2009).

    Article  CAS  Google Scholar 

  41. Awada, A. et al. Phase I safety and pharmacokinetics of BAY 43–9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br. J. Cancer 92, 1855–1861 (2005).

    Article  CAS  Google Scholar 

  42. Strumberg, D. et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43–9006 in patients with advanced refractory solid tumors. J. Clin. Oncol. 23, 965–972 (2005).

    Article  CAS  Google Scholar 

  43. Clark, J.W., Eder, J.P., Ryan, D., Lathia, C. & Lenz, H.J. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43–9006, in patients with advanced, refractory solid tumors. Clin. Cancer Res. 11, 5472–5480 (2005).

    Article  CAS  Google Scholar 

  44. Richly, H. et al. Results of a phase I trial of sorafenib (BAY 43–9006) in combination with doxorubicin in patients with refractory solid tumors. Ann. Oncol. 17, 866–873 (2006).

    Article  CAS  Google Scholar 

  45. McCubrey, J.A. et al. Emerging Raf inhibitors. Expert Opin. Emerg. Drugs 14, 633–648 (2009).

    Article  CAS  Google Scholar 

  46. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  Google Scholar 

  47. Gazin, C., Wajapeyee, N., Gobeil, S., Virbasius, C.M. & Green, M.R. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 449, 1073–1077 (2007).

    Article  CAS  Google Scholar 

  48. Sheng, Z., Wang, S.Z. & Green, M.R. Transcription and signalling pathways involved in BCR-ABL–mediated misregulation of 24p3 and 24p3R. EMBO J. 28, 866–876 (2009).

    Article  CAS  Google Scholar 

  49. Sen, A., Kallos, M.S. & Behie, L.A. New tissue dissociation protocol for scaled-up production of neural stem cells in suspension bioreactors. Tissue Eng. 10, 904–913 (2004).

    Article  CAS  Google Scholar 

  50. Ihaka, R. & Gentleman, R. A language for data analysis and graphics. J. Comput. Graph. Statist. 5, 299–314 (1996).

    Google Scholar 

  51. Ruxton, G.D. The unequal variance t-test is an underused alternative to Student's t-test and the Mann-Whitney U test. Behav. Ecol. 17, 688–690 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Gillespie (University of Alabama at Birmingham) for GL261 cells, D. Bigner (Duke University) for D456MG cells and R. Lang (University of Cincinnati) for mCD11C-DTR-EFGP; the University of Massachusetts Medical School (UMMS) RNAi Core Facility for providing shRNAs; the UMMS Department of Pathology for providing human tissue sections and the UMMS Diabetes and Endocrinology Research Center core for performing the immunohistochemistry; K. Rock for suggesting the diphtheria toxin strategy; Y. Sun for critical advice on MRI; C. Gilbert for maintaining GS9-6 cells; S. Griggs for technical support; and S. Evans for editorial assistance. This work is supported by US National Institutes of Health grant RO1CA115817 to M.R.G. M.R.G. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Z.S. and M.R.G. designed all experiments. Z.S. performed all experiments. Z.S. and M.R.G. prepared the manuscript. L.L. and A.H.R. assisted with intracranial injections. T.W.S., A.D. and R.P.M. helped analyze human malignant gliomas. L.J.Z. performed all statistical analyses.

Corresponding author

Correspondence to Michael R Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 2567 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, Z., Li, L., Zhu, L. et al. A genome-wide RNA interference screen reveals an essential CREB3L2-ATF5-MCL1 survival pathway in malignant glioma with therapeutic implications. Nat Med 16, 671–677 (2010). https://doi.org/10.1038/nm.2158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing