Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self

Abstract

The intestinal epithelium functions to absorb nutrients and to protect the organism against microbes. To prevent autoimmune attack on this vital tissue, T cell tolerance to intestinal self-antigens must be established. Central tolerance mechanisms involve medullary thymic epithelial cells (mTECs), which use endogenously expressed peripheral-tissue antigens (PTAs) to delete self-reactive thymocytes. The prevailing model for the induction of peripheral tolerance involves cross-presentation of tissue antigens by quiescent dendritic cells. Here we show that lymph node stromal cells present endogenously expressed PTAs to T cells. Moreover, antigen presentation by lymph node stroma is sufficient to induce primary activation and subsequent tolerance among CD8+ T cells. Thus, lymph node stromal cells are functionally akin to mTECs and provide a direct strategy for purging the peripheral repertoire of self-reactive T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OT-I T cells proliferate in GALT and the peripheral lymph nodes of iFABP-tOVA transgenic mice.
Figure 2: OT-I T cells encounter antigens in the peripheral lymph nodes of iFABP-tOVA transgenic mice.
Figure 3: CD8+ dendritic cells present OVA in MLNs but not peripheral lymph nodes.
Figure 4: Lymph node stromal cells express OVA in iFABP-tOVA transgenic mice.
Figure 5: Lymph node stromal cells activate naive OT-I T cells in iFABP-tOVA transgenic mice.
Figure 6: Peripheral-tissue antigens are expressed by lymph node stroma.
Figure 7: Lymph node stromal cells express Aire.
Figure 8: UEA-I+ lymph node cells express and present intestine-associated antigens.
Figure 9: Lymph node stromal cells induce deletion of OT-I T cells in iFABP-tOVA transgenic mice.

Similar content being viewed by others

References

  1. Kyewski, B. & Klein, L. A central role for central tolerance. Annu. Rev. Immunol. 24, 571–606 (2006).

    Article  CAS  Google Scholar 

  2. Gallegos, A.M. & Bevan, M.J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004).

    Article  CAS  Google Scholar 

  3. Gallegos, A.M. & Bevan, M.J. Central tolerance: good but imperfect. Immunol. Rev. 209, 290–296 (2006).

    Article  Google Scholar 

  4. Klein, L. & Kyewski, B. Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr. Opin. Immunol. 12, 179–186 (2000).

    Article  CAS  Google Scholar 

  5. Redmond, W.L. & Sherman, L.A. Peripheral tolerance of CD8 T lymphocytes. Immunity 22, 275–284 (2005).

    Article  CAS  Google Scholar 

  6. Heath, W.R. & Carbone, F.R. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19, 47–64 (2001).

    Article  CAS  Google Scholar 

  7. Steinman, R.M. et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann. NY Acad. Sci. 987, 15–25 (2003).

    Article  CAS  Google Scholar 

  8. Kurts, C. et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med. 184, 923–930 (1996).

    Article  CAS  Google Scholar 

  9. Adler, A.J. et al. CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J. Exp. Med. 187, 1555–1564 (1998).

    Article  CAS  Google Scholar 

  10. Morgan, D.J. et al. Ontogeny of T cell tolerance to peripherally expressed antigens. Proc. Natl. Acad. Sci. USA 96, 3854–3858 (1999).

    Article  CAS  Google Scholar 

  11. Belz, G.T. et al. The CD8alpha(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med. 196, 1099–1104 (2002).

    Article  CAS  Google Scholar 

  12. Vezys, V., Olson, S. & Lefrancois, L. Expression of intestine-specific antigen reveals novel pathways of CD8 T cell tolerance induction. Immunity 12, 505–514 (2000).

    Article  CAS  Google Scholar 

  13. Mayerova, D., Parke, E.A., Bursch, L.S., Odumade, O.A. & Hogquist, K.A. Langerhans cells activate naive self-antigen-specific CD8 T cells in the steady state. Immunity 21, 391–400 (2004).

    Article  CAS  Google Scholar 

  14. Azukizawa, H. et al. Induction of T-cell-mediated skin disease specific for antigen transgenically expressed in keratinocytes. Eur. J. Immunol. 33, 1879–1888 (2003).

    Article  CAS  Google Scholar 

  15. Scheinecker, C., McHugh, R., Shevach, E.M. & Germain, R.N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    Article  CAS  Google Scholar 

  16. Kelsall, B.L. & Leon, F. Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol. Rev. 206, 132–148 (2005).

    Article  CAS  Google Scholar 

  17. Izcue, A., Coombes, J.L. & Powrie, F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol. Rev. 212, 256–271 (2006).

    Article  CAS  Google Scholar 

  18. Lefrancois, L. & Puddington, L. Intestinal and pulmonary mucosal T cells: local heroes fight to maintain the status quo. Annu. Rev. Immunol. 24, 681–704 (2006).

    Article  CAS  Google Scholar 

  19. Vermaelen, K.Y., Carro-Muino, I., Lambrecht, B.N. & Pauwels, R.A. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J. Exp. Med. 193, 51–60 (2001).

    Article  CAS  Google Scholar 

  20. Turley, S., Poirot, L., Hattori, M., Benoist, C. & Mathis, D. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J. Exp. Med. 198, 1527–1537 (2003).

    Article  CAS  Google Scholar 

  21. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  Google Scholar 

  22. van Stipdonk, M.J., Lemmens, E.E. & Schoenberger, S.P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2, 423–429 (2001).

    Article  CAS  Google Scholar 

  23. Kaech, S.M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2, 415–422 (2001).

    Article  CAS  Google Scholar 

  24. Bevan, M.J. & Fink, P.J. The CD8 response on autopilot. Nat. Immunol. 2, 381–382 (2001).

    Article  CAS  Google Scholar 

  25. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  Google Scholar 

  26. Lindquist, R.L. et al. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5, 1243–1250 (2004).

    Article  CAS  Google Scholar 

  27. Limmer, A. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat. Med. 6, 1348–1354 (2000).

    Article  CAS  Google Scholar 

  28. Arnold, B. Parenchymal cells in immune and tolerance induction. Immunol. Lett. 89, 225–228 (2003).

    Article  CAS  Google Scholar 

  29. Staton, T.L. et al. CD8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium. Nat. Immunol. 7, 482–488 (2006).

    Article  CAS  Google Scholar 

  30. Cose, S., Brammer, C., Khanna, K.M., Masopust, D. & Lefrancois, L. Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway. Eur. J. Immunol. 36, 1423–1433 (2006).

    Article  CAS  Google Scholar 

  31. Johnstone, C.N. et al. Characterization of mouse A33 antigen, a definitive marker for basolateral surfaces of intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G500–G510 (2000).

    Article  CAS  Google Scholar 

  32. Abud, H.E., Johnstone, C.N., Tebbutt, N.C. & Heath, J.K. The murine A33 antigen is expressed at two distinct sites during development, the ICM of the blastocyst and the intestinal epithelium. Mech. Dev. 98, 111–114 (2000).

    Article  CAS  Google Scholar 

  33. Anderson, M.S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239 (2005).

    Article  CAS  Google Scholar 

  34. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  35. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    Article  CAS  Google Scholar 

  36. Maemura, K. et al. Antigen-presenting cells expressing glutamate decarboxylase 67 were identified as epithelial cells in glutamate decarboxylase 67-GFP knock-in mouse thymus. Tissue Antigens 67, 198–206 (2006).

    Article  CAS  Google Scholar 

  37. Hecht, N.B. The making of a spermatozoon: a molecular perspective. Dev. Genet. 16, 95–103 (1995).

    Article  CAS  Google Scholar 

  38. Garcia, C.A. et al. Dendritic cells in human thymus and periphery display a proinsulin epitope in a transcription-dependent, capture-independent fashion. J. Immunol. 175, 2111–2122 (2005).

    Article  CAS  Google Scholar 

  39. Delamarre, L., Pack, M., Chang, H., Mellman, I. & Trombetta, E.S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307, 1630–1634 (2005).

    Article  CAS  Google Scholar 

  40. Steinman, R.M. The control of immunity and tolerance by dendritic cell. Pathol. Biol. (Paris) 51, 59–60 (2003).

    Article  CAS  Google Scholar 

  41. Heath, W.R., Kurts, C., Miller, J.F. & Carbone, F.R. Cross-tolerance: a pathway for inducing tolerance to peripheral tissue antigens. J. Exp. Med. 187, 1549–1553 (1998).

    Article  CAS  Google Scholar 

  42. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  43. Vallon-Eberhard, A., Landsman, L., Yogev, N., Verrier, B. & Jung, S. Transepithelial pathogen uptake into the small intestinal lamina propria. J. Immunol. 176, 2465–2469 (2006).

    Article  CAS  Google Scholar 

  44. Huang, F.P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    Article  CAS  Google Scholar 

  45. Macpherson, A.J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  Google Scholar 

  46. Turley, S.J., Lee, J-W., Dutton-Swain, N., Mathis, D. & Benoist, C. Endocrine self and gut non-self intersect in the pancreatic lymph nodes. Proc. Natl. Acad. Sci. USA 102, 17729–17733 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Nussenzweig (Rockefeller University) and L. Lefrancois (University of Connecticut) for the gifts of CD11c-EYFP transgenic mice and iFABP-tOVA transgenic mice, respectively; W. Heath, G. Losyev, K. Irving, A. Bellemare-Pelletier and M. Werneck for technical advice or support; and C. Benoist, K. Wucherpfennig and A. Goldrath for critically reading the manuscript. Supported by the Claudia Adams Barr Program for Innovative Cancer Research, the Diabetes and Endocrinology Research Center of the National Institute of Diabetes and Digestive and Kidney Diseases (P30 DK36836-19 to S.J.T.) and the Institut National de la Recherche Agronomique (M.E.).

Author information

Authors and Affiliations

Authors

Contributions

J.-W.L. and S.J.T. contributed to every aspect of this manuscript (experimentation, mouse work, writing and figure composition); S.J.T. provided most of the funding; M.E. did the cell trafficking experiments; J.S. did the in vitro presentation assays with purified IECs; J.E.B. did the immunoblots; A.C.C. and A.Y. helped with immunofluorescence staining of tissue sections; and J.K.H. contributed reagents and guidance on experiments involving the A33 antigen.

Corresponding author

Correspondence to Shannon J Turley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

T cell proliferation in peripheral lymphoid tissues is not due to the direct presentation of OVA antigen by IECs. (PDF 2641 kb)

Supplementary Fig. 2

Analysis of bone marrow chimerism. (PDF 712 kb)

Supplementary Fig. 3

Analysis of A33 antigen expression in parenchymal tissues by fluorescence microscopy. (PDF 153 kb)

Supplementary Table 1

Primer sequences. (PDF 646 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JW., Epardaud, M., Sun, J. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol 8, 181–190 (2007). https://doi.org/10.1038/ni1427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing