Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Collaboration of epithelial cells with organized mucosal lymphoid tissues

Abstract

Immune surveillance of mucosal surfaces requires the delivery of intact macromolecules and microorganisms across epithelial barriers to organized mucosal lymphoid tissues. Transport, processing and presentation of foreign antigens, as well as local induction and clonal expansion of antigen-specific effector lymphocytes, involves a close collaboration between organized lymphoid tissues and the specialized follicle-associated epithelium. M cells in the follicle-associated epithelium transport foreign macromolecules and microorganisms to antigen-presenting cells within and under the epithelial barrier. Determination of the earliest cellular interactions that occur in and under the follicle-associated epithelium could greatly facilitate the design of effective mucosal vaccines in the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association of FAE with cells of the mucosal immune system in rabbit Peyer's patches.
Figure 2: Secretory IgA: possible role in sampling of antigens by M cells.
Figure 3: Fates of antigens and pathogens after M cell transport.

Similar content being viewed by others

References

  1. Forstner, J. F., Oliver, M. G. & Sylvester, F. A. in Infections of the Gastrointestinal Tract (eds Blaser, M., Smith, P. D., Ravdin, J. I., Greenberg, H. B. & Guerrant, R. L.) 71–88 (Raven Press, New York, 1995).

    Google Scholar 

  2. Ouellette, A. & Selsted, M. E. Paneth cell defensins: endogenous components of intestinal host defense. FASEB J. 10, 1280–1289 (1996).

    CAS  PubMed  Google Scholar 

  3. Lamm, M. E. Interactions of antigens and antibodies at mucosal surfaces. Annu. Rev. Microbiol. 51, 311–340 (1997).

    CAS  PubMed  Google Scholar 

  4. Madara, J. L., Nash, S., Moore, R. & Atisook, K. Structure and function of the intestinal epithelial barrier in health and disease. Monogr. Pathol. 31, 306–324 (1990).

    Google Scholar 

  5. Frey, A. et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: Implications for microbial attachment and vaccine targeting. J. Exp. Med. 184, 1045–1059 (1996).

    CAS  PubMed  Google Scholar 

  6. Brandtzaeg, P. et al. Regional specialization in the mucosal immune system: what happens in the microcompartments? Immunol. Today 20, 141–151 (1999).

    CAS  PubMed  Google Scholar 

  7. Kraehenbuhl, J. P. & Neutra, M. R. Epithelial M cells: differentiation and function. Annu. Rev. Cell Dev. Biol. 16, 301–332 (2000).

    CAS  PubMed  Google Scholar 

  8. McGhee, J. R., Lamm, M. E. & Strober, W. in Mucosal Immunology (eds Ogra, P. et al.) 485–506 (Academic Press, New York, 1999).

    Google Scholar 

  9. Hein, W. R. in Defense of Mucosal Surfaces: Pathogenesis, immunity and vaccines (eds Kraehenbuhl, J. P. & Neutra, M. R.) 1–16 (Springer-Verlag, Berlin, 1999).

    Google Scholar 

  10. Bienenstock, J., McDermott, M. R. & Clancy, R. L. in Mucosal Immunology (eds Ogra, P. et al.) 283–292 (Academic Press, New York, 1999).

    Google Scholar 

  11. O'Leary, A. D. & Sweeney, E. C. Lymphoglandular complexes of the colon: structure and distribution. Histopathology 10, 267–283 (1986).

    CAS  PubMed  Google Scholar 

  12. Kelsall, B. & Strober, W. Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer's patch. J. Exp. Med. 183, 237–247 (1996).

    CAS  PubMed  Google Scholar 

  13. Kelsall, B. & Strober, W. in Mucosal Immunology (eds Ogra, P. et al.) 293–318 (Academic Press, New York, 1999).

    Google Scholar 

  14. Butcher, E. & Picker, L. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    CAS  PubMed  Google Scholar 

  15. Bargatze, R. F., Jutila, M. A. & Butcher, E. C. Distinct roles of L-selectin and integrins α4β7 and LFA-1 in lymphocyte homing to Peyer's patch-HEV in situ: the multistep model confirmed and refined. Immunity 3, 99–108 (1995).

    CAS  PubMed  Google Scholar 

  16. Iwasaki, A. & Kelsall, B. L. Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3α, MIP-3β, and secondary lymphoid organ chemokine. J. Exp. Med. 191, 1381–1394 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Neutra, M. R., Frey, A. & Kraehenbuhl, J. P. Epithelial M cells: Gateways for mucosal infection and immunization. Cell 86, 345–348 (1996).

    CAS  PubMed  Google Scholar 

  18. Neutra, M. R., Pringault, E. & Kraehenbuhl, J. P. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu. Rev. Immunol. 14, 275–300 (1996).

    CAS  PubMed  Google Scholar 

  19. Owen, R. L. Uptake and transport of intestinal macromolecules and microorganisms by M cells in Peyer's patches–a personal and historical perspective. Semin. Immunol. 11, 157–163 (1999).

    CAS  PubMed  Google Scholar 

  20. Siebers, A. & Finlay, B. M cells and the pathogenesis of mucosal and systemic infections. Trends Microbiol. 4, 22–29 (1996).

    CAS  PubMed  Google Scholar 

  21. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    CAS  PubMed  Google Scholar 

  22. Maury, J., Nicoletti, C., Guzzo-Chambraud, L. & Maroux, S. The filamentous brush border glycocalyx, a mucin-like marker of enterocyte hyper-polarization. Eur. J. Biochem. 228, 323–331 (1995).

    CAS  PubMed  Google Scholar 

  23. Owen, R. & Bhalla, D. Cytochemical analysis of alkaline phosphatase and esterase activities and of lectin-binding and anionic sites in rat and mouse Peyer's Patch M cells. Am. J. Anat. 168, 199–212 (1983).

    CAS  PubMed  Google Scholar 

  24. Savidge, T. C. & Smith, M. W. Evidence that membranous (M) cell genesis is immuno-regulated. Adv. Exp. Med. Biol. 371, 239–241 (1995).

    Google Scholar 

  25. Giannasca, P. J., Giannasca, K. T., Falk, P., Gordon, J. I. & Neutra, M. R. Regional differences in glycoconjugates of intestinal M cells in mice: potential targets for mucosal vaccines. Am. J. Physiol. 267, 1108–1121 (1994).

    Google Scholar 

  26. Pappo, J. & Owen, R. L. Absence of secretory component expression by epithelial cells overlying rabbit gut-associated lymphoid tissue. Gastroenterology 95, 1173–1174 (1988).

    CAS  PubMed  Google Scholar 

  27. Gebert, A. & Hach, G. Differential binding of lectins to M cells and enterocytes in the rabbit cecum. Gastroenterology 105, 1350–1361 (1993).

    CAS  PubMed  Google Scholar 

  28. Giannasca, P. J., Giannasca, K. T., Leichtner, A. M. & Neutra, M. R. Human intestinal M cells display the sialyl Lewis A antigen. Infect. Immun. 67, 946–953 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma, R., van Damme, E. J. M., Peumans, W. J., Sarsfield, P. & Schumacher, U. Lectin binding reveals divergent carbohydrate expression in human and mouse Peyer's patches. Histochem. Cell Biol. 105, 459–465 (1996).

    CAS  PubMed  Google Scholar 

  30. Sierro, F., Pringault, E., Assman, P. S., Kraehenbuhl, J. P. & Debard, N. Transient expression of M-cell phenotype by enterocyte-like cells of the follicle-associated epithelium of mouse Peyer's patches. Gastroenterology 119, 734–743 (2000).

    CAS  PubMed  Google Scholar 

  31. McClugage, S. G., Low, F. N. & Zimmy, M. L. Porosity of the basement membrane overlying Peyer's patches in rats and monkeys. Gastroenterology 91, 1128–1133 (1986).

    CAS  PubMed  Google Scholar 

  32. Cook, D. G., Fantini, J., Spitalnik, S. L. & Gonzalez-Scarano, F. Binding of human immunodeficiency virus type I (HIV-1) to galactosylceramide (GalCer):Relationship to the V3 loop. Virology 201, 206–214 (1994).

    CAS  PubMed  Google Scholar 

  33. Ermak, T. H., Steger, H. J. & Pappo, J. Phenotypically distinct subpopulations of T cells in domes and M-cell pockets of rabbit gut-associated lymphoid tissue. Immunology 71, 530–537 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ermak, T. H., Bhagat, H. R. & Pappo, J. Lymphocyte compartments in antigen-sampling regions of rabbit mucosal lymphoid organs. Am. J. Trop. Med. Hyg. 50, 14–28 (1994).

    CAS  PubMed  Google Scholar 

  35. Farstad, I. N., Halstensen, T. S., Fausa, O. & Brandtzaeg, P. Heterogeneity of M-cell-associated B and T cells in human Peyer's patches. Immunology 83, 457–464 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bye, W., Allan, C. & Trier, J. Structure, distribution, and origin of M cells in Peyer's patches of mouse Ileum. Gastroenterology 86, 789–801 (1984).

    CAS  PubMed  Google Scholar 

  37. Neutra, M., Phillips, T., Mayer, E. & Fishkind, D. Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer's patch. Cell Tiss. Res. 247, 537–546 (1987).

    CAS  Google Scholar 

  38. Sicinski, P. et al. Poliovirus type 1 enters the human host through intestinal M cells. Gastroenterology 98, 56–58 (1990).

    CAS  PubMed  Google Scholar 

  39. Neutra, M. R., Giannasca, P. J., Giannasca, K. T. & Kraehenbuhl, J. P. in Infections of the Gastrointestinal Tract (eds Blaser, M. J., Smith, P. D., Ravdin, J. I., Greenberg, H. B. & Guerrant, R. L.) 163–178 (Raven Press Ltd., New York, 1995).

    Google Scholar 

  40. Jones, B., Ghori, N. & Falkow, S. Salmonella typhimurium initiated murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J. Exp. Med. 180, 15–23 (1994).

    CAS  PubMed  Google Scholar 

  41. Mantis, N. J., Frey, A. & Neutra, M. R. Accessibility of glycolipid and glycoprotein epitopes on rabbit villus and follicle-associated epitheliaum. Am. J. Physiol. 278, 915–924 (2000).

    Google Scholar 

  42. Bhalla, D. K. & Owen, R. L. Migration of B and T lymphocytes to M cells in Peyer's patch follicle associated epithelium: An audioradiographic study in mice. Cell. Immunol. 81, 105–117 (1983).

    CAS  PubMed  Google Scholar 

  43. Ueki, T., Mizuno, M., Ueso, T., Kiso, T. & Tsuji, T. Expression of ICAM-1 on M cells covering isolated lymphoid follicles of the human colon. Acta Med. Okayama 49, 145–151 (1995).

    CAS  PubMed  Google Scholar 

  44. Huang, G. T. J., Eckmann, L., Savidge, T. & Kagnoff, M. F. Infection of human intestinal epithelial cells with invasive bacteria upregulates apical intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil adhesion. J. Clin. Invest. 98, 572–583 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Clark, M. A., Hirst, B. H. & Jepson, M. A. M cell surface β-1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells. Infect. Immun. 66, 1237–1243 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Marra, A. & Isberg, R. R. Invasin-dependent and invasin-independent pathways for translocatino of Yersinia pseudotubeculosis across Peyer's patch intestinal epithelium. Infect. Immun. 65, 3412–3421 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lelouard, H., Reggio, H., Manget, P., Neutra, M. & Mountcourrier, P. Mucin related epitopes distinguish M cells and enterocytes in rabbit appendix and Peyer's patches. Infect. Immun. 67, 357–367 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Neutra, M. R., Mantis, N. J., Frey, A. & Giannasca, P. J. The composition and function of M cell apical membranes: implications for microbial pathogenesis. Semin. Immunol. 11, 171–181 (1999).

    CAS  PubMed  Google Scholar 

  49. Silvey, K. J., Vajdy, M., Mantis, N. J. & Neutra, M. R. Reovirus: a model to study M cell-specific interactions and secretory antibody function in the intestine. Immunol. Lett. 69, 65 Abstr. 12.9 (1999).

    Google Scholar 

  50. Roy, M. J. & Varvayanis, M. Development of dome epithelium in gut-associated lymphoid tissues association of IgA with M cells. Cell Tiss. Res. 248, 645–651 (1987).

    CAS  Google Scholar 

  51. Weltzin, R. et al. Binding and transepithelial transport of immunoglobulins by intestinal M cells: demonstration using monoclonal IgA antibodies against enteric viral proteins. J. Cell Biol. 108, 1673–1685 (1989).

    CAS  PubMed  Google Scholar 

  52. Corthesy, B. et al. A pathogen-specific epitope inserted into recombinant secretory immunoglobulin A is immunogenic by the oral route. J. Biol. Chem. 271, 33670–33677 (1996).

    CAS  PubMed  Google Scholar 

  53. Zhou, F., Kraehenbuhl, J. P. & Neutra, M. R. Mucosal IgA response to recally administered antigen formulated liposomes in IgA coated liposomes. Vaccine 13, 637–644 (1995).

    CAS  PubMed  Google Scholar 

  54. Sakamoto, N. et al. A novel Fc receptor for IgA and IgM is expressed on both hematopoietic and non-hematopoietic tissues. Eur. J. Immunol. 31, 1310–1316 (2001).

    CAS  PubMed  Google Scholar 

  55. Shibuya, A. et al. Fc α/μ receptor mediates endocytosis of IgM-coated microbes. Nature Immunol. 1, 441–446 (2000).

    CAS  Google Scholar 

  56. Allan, C. H. & Trier, J. S. Structure and permeability differ in subepithelial villus and Peyer's patch follicle capillaries. Gastroenterology 100, 1172–1179 (1991).

    CAS  PubMed  Google Scholar 

  57. Finzi, G. et al. Cathepsin E in follicle associated epithelium of intestine and tonsils: localization to M cells and possible role in antigen processing. Histochemistry 99, 201–211 (1993).

    CAS  PubMed  Google Scholar 

  58. Phalipon, A. & Sansonetti, P. J. Microbial-host interactions at mucosal sites. Host response to pathogenic bacteria at mucosal sites. Curr. Top. Microbiol. Immunol. 236, 163–189 (1999).

    CAS  PubMed  Google Scholar 

  59. Andino, R. et al. Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science 265, 1448–1451 (1994).

    CAS  PubMed  Google Scholar 

  60. Hantman, M. J., Hohmann, E. L., Murphy, C. G., Knipe, D. M. & Miller, S. I. in Mucosal Immunology (eds Ogra, P. et al.) 779–791 (Academic Press, New York, 1999).

    Google Scholar 

  61. Iwasaki, A. & Kelsall, B. Unique functions of CD11b+, CD8a+, and double negative Peyer's patch dendritic cells. J. Immunol. 166, 4884–4890 (2001).

    CAS  PubMed  Google Scholar 

  62. Yamanaka, T. et al. M cell pockets of human Peyer's patches are specialized extensions of germinal centers. Eur. J. Immunol. 31, 107–117 (2001).

    CAS  PubMed  Google Scholar 

  63. Cepek, K. L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature 372, 190–193 (1994).

    CAS  PubMed  Google Scholar 

  64. Schon, M. P. et al. Mucosal T lymphocyte numbers are selectively reduced in integrin aE (CD103)-deficient mice. J. Immunol. 162, 6641–6649 (1999).

    CAS  PubMed  Google Scholar 

  65. Ruedl, C., Rieser, C., Bock, G., Wick, G. & Wolf, H. Phenotypic and functiponal characterization of CD11c+ dendritic cell population in mouse Peyer's patches. Eur. J. Immunol. 26, 1801–1806 (1996).

    CAS  PubMed  Google Scholar 

  66. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    CAS  Google Scholar 

  67. Maldonado-Lopez, R. et al. CD8α+ and CD8α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl Acad. Sci. USA 96, 1036–1041 (1999).

    CAS  PubMed  Google Scholar 

  69. Maric, I., Holt, P. G., Perdue, M. H. & Bienenstock, J. Class II MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine. J. Immunol. 156, 1408–1414 (1996).

    CAS  PubMed  Google Scholar 

  70. Cook, D. N. et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503 (2000).

    CAS  PubMed  Google Scholar 

  71. Izadpanah, A., Dwinell, M. B., Eckmann, L., Varki, N. M. & Kagnoff, M. F. Regulated MIP-3α/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am. J. Physiol. 280, 710–719 (2001).

    Google Scholar 

  72. Sierro, F. et al. Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc. Natl Acad. Sci. USA (in the press, 2001).

  73. Tanaka, Y. et al. Selective expression of liver and activation-regulated chemokine (LARC) in intestinal epithelium in mice and humans. Eur. J. Immunol. 29, 633–642 (1999).

    CAS  PubMed  Google Scholar 

  74. Hopkins, S. A., Niedergang, F., Corthesy-Theulaz, I. E. & Kraehenbuhl, J. P. A recombinant Salmonella typhimurium vaccine strain is taken up and survives within murine Peyer's patch dendritic cells. Cell. Microbiol. 2, 59–68 (2000).

    CAS  PubMed  Google Scholar 

  75. Pron, B. et al. Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host. Cell. Microbiol. 3, 331–340 (2001).

    CAS  PubMed  Google Scholar 

  76. Masurier, C. et al. Dendritic cells route human immunodeficiency virus to lymph nodes after vaginal or intravenous administration to mice. J. Virol. 72, 7822–7829 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    CAS  Google Scholar 

  78. Macpherson, A. J. et al. IgA production without μ or δ chain expression in developing B cells. Nature Immunol. 2, 625–631 (2001).

    CAS  Google Scholar 

  79. Mowatt, A. M. & Weiner, H. L. in Mucosal Immunology (eds Ogra, P. et al.) 587–618 (Academic Press, New York, 1999).

    Google Scholar 

  80. Iwasaki, A. & Kelsall, B. L. Mucosal immunity and inflammation. I. Mucosal dendritic cells: their specialized role in initiating T cell responses. Am. J. Physiol. 276, 1074–1078 (1999).

    Google Scholar 

  81. Kellermann, S. A. & McEvoy, L. M. The peyer's patch microenvironment suppresses T cell responses to chemokines and other stimuli. J. Immunol. 167, 682–690 (2001).

    CAS  PubMed  Google Scholar 

  82. Gebert, A., Hach, G. & Bartels, H. Co-localization of vimetin and cytokeratins in M cells of rabbit gut-associated lymphoid tissue (GALT). Cell Tiss. Res. 269, 331–340 (1992).

    CAS  Google Scholar 

  83. Debard, N., Sierro, F., Browning, J. & Kraehenbuhl, J. P. Effect of mature lymphocytes and lymphotoxin on the development of the follicle-associated epithelium and M cells in mouse Peyer's patches. Gastroenterology 120, 1173–1182 (2001).

    CAS  PubMed  Google Scholar 

  84. Gebert, A., Rothkotter, H. J. & Pabst, R. M cells in Peyer's patches of the intestine. Int. Rev. Cytol. 167, 91–159 (1996).

    CAS  PubMed  Google Scholar 

  85. Gebert, A., Fassbender, S., Werner, K. & Weissferdt, A. The development of M cells in Peyer's patches is restricted to specialized dome-associated crypts. Am. J. Pathol. 154, 1573–1582 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lelouard, H., Sahuquet, A., Reggio, H. & Montcourrier, P. Rabbit M cells and dome enterocytes are distinct cell lineages. J. Cell Sci. 114, 2077–2083 (2001).

    CAS  PubMed  Google Scholar 

  87. Kerneis, S., Bogdanova, A., Kraehenbuhl, J. P. & Pringualt, E. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277, 949–952 (1997).

    CAS  PubMed  Google Scholar 

  88. Borghesi, C., Taussig, M. J. & Nicoletti, C. Rapid appearance of M cells after microbial challenge is restricted at the periphery of the follicle-associated epithelium of Peyer's patch. Lab. Invest. 79, 1393–1401 (1999).

    CAS  PubMed  Google Scholar 

  89. Kitamura, D. & Rajewsky, K. Targeted disruption of μ chain membrane exon causes loss of heavy-chain allelic exclusion. Nature 356, 154–156 (1992).

    CAS  PubMed  Google Scholar 

  90. Chen, J. et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immunol. 5, 647–656 (1993).

    CAS  PubMed  Google Scholar 

  91. Golovkina, T. V., Shlomchik, M., Hannum, L. & Chervonsky, A. Organogenic role of B lymphocytes in mucosal immunity. Science 286, 1965–1968 (1999).

    CAS  PubMed  Google Scholar 

  92. Schulte, R. et al. Translocation of Yersinia enterocolitica across reconstituted intestinal epithelial monolayers is triggered by Yersinia invasin binding to β1 integrins apically expressed on M-like cells. Cell. Microbiol. 2, 173–183 (2000).

    CAS  PubMed  Google Scholar 

  93. Moxey, P. C. & Trier, J. S. Development of villus absorptive cells in the human fetal small intestine: a morphological and morphometric study. Anat. Rec 195, 463–482 (1979).

    CAS  PubMed  Google Scholar 

  94. Fu, Y. X. & Chaplin, D. D. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 17, 399–433 (1999).

    CAS  PubMed  Google Scholar 

  95. Koni, P. A. et al. Distinct roles in lymphoid organogenesis for lymphotoxins α and β revealed in lymphotoxin β-deficient mice. Immunity 6, 491–500 (1997).

    CAS  PubMed  Google Scholar 

  96. Kuprash, D. V. et al. TNF and lymphotoxin β cooperate in the maintenance of secondary lymphoid tissue microarchitecture but not in the development of lymph nodes. J. Immunol. 163, 6575–6580 (1999).

    CAS  PubMed  Google Scholar 

  97. Baggiolini, M. Chemokines and leukocyte traffic. Nature 392, 565–568 (1998).

    CAS  PubMed  Google Scholar 

  98. Kagnoff, M. F. & Eckmann, L. Epithelial cells as sensors for microbial infection. J. Clin. Invest. 100, 6–10 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wurbel, M. A. et al. The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur. J. Immunol. 30, 262–271 (2000).

    CAS  PubMed  Google Scholar 

  100. Czerkinsky, C. et al. Mucosal immunity and tolerance: relevance to vaccine development. Immunol. Rev. 170, 197–222 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian R. Neutra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neutra, M., Mantis, N. & Kraehenbuhl, JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol 2, 1004–1009 (2001). https://doi.org/10.1038/ni1101-1004

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1101-1004

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing