Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3

This article has been updated

Abstract

Interleukin 1 receptor (IL-1R) and Toll-like receptors (TLRs) induce inflammatory genes through the complex of MyD88, IL-1R-associated protein kinase (IRAK) and tumor necrosis factor receptor–associated factor 6 (TRAF6), which is believed to function 'upstream' of the cascades of IκB kinase (IKK) and nuclear factor-κB (NF-κB); extracellular signal-regulated protein kinase (ERK); c-Jun N-terminal kinase (JNK); and p38 mitogen-activated protein kinase (MAPK). Here we show that MAPK–ERK kinase kinase (MEKK3) is an essential signal transducer of the MyD88–IRAK–TRAF6 complex in IL-1R–TLR4 signaling. MEKK3 forms a complex with TRAF6 in response to IL-1 and lipopolysaccharide (LPS) but not CpG, and is required for IL-1R- and TLR4-induced IL-6 production. Furthermore, MEKK3 is crucial for IL-1- and LPS-induced activation of NF-κB and JNK-p38 but not ERK, indicating that MAPKs are differentially activated during IL-1R–TLR4 signaling. These data demonstrate that MEKK3 is crucial for IL-1R and TLR4 signaling through the IKK–NF-κB and JNK–p38 MAPK pathways.

*Note: In the version of this article originally published online, the third author's name was incorrect. The correct author name should be Yong Lin. This error has been corrected for the HTML and print versions of this article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-6 expression in MEFs requires MEKK3 but not MEKK2.
Figure 2: IL-6 induction in by IL-1, LPS and CpG.
Figure 3: MEKK3 is a downstream signal transducer of MyD88, IRAK1 and TRAF6 in the IL-1R signaling pathway.
Figure 4: Activation of JNK, ERK and p38 MAPK in wild-type and Mekk3−/− MEFs.

Similar content being viewed by others

Change history

  • 15 December 2003

    appended aop PDF with corrigendum (will be corrected for print issue), and placed footnote in SGML at abstract

References

  1. Dunne, A. & O'Neill, L.A. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003, re3 (2003).

  2. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Akira, S. & Hemmi, H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85, 85–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Medzhitov, R. & Janeway, C. Jr. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Takeuchi, O. & Akira, S. Toll-like receptors; their physiological role and signal transduction system. Int. Immunopharmacol. 1, 625–635 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Takeuchi, O. & Akira, S. MyD88 as a bottle neck in Toll/IL-1 signaling. Curr. Top Microbiol. Immunol. 270, 155–167 (2002).

    CAS  PubMed  Google Scholar 

  8. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-b promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-b induction. Nat. Immunol. 4, 161–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK-IkB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Kopp, E. et al. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev. 13, 2059–2071 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, F.S., Hagler, J., Chen, Z.J. & Maniatis, T. Activation of the IkBa kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88, 213–222 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Baud, V. et al. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 13, 1297–1308 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, Q. & Lee, F.S. Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-kB through IkB kinase-a and IkB kinase-b. J. Biol. Chem. 274, 8355–8358 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, J. et al. The essential role of MEKK3 in TNF-induced NF-kB activation. Nat. Immunol. 2, 620–624 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Malinin, N.L., Boldin, M.P., Kovalenko, A.V. & Wallach, D. MAP3K-related kinase involved in NF-kB induction by TNF, CD95 and IL-1. Nature 385, 540–544 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Dumitru, C.D. et al. TNF-a induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 103, 1071–1083 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-kB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Karin, M. & Delhase, M. JNK or IKK, AP-1 or NF-kB, which are the targets for MEK kinase 1 action? Proc. Natl. Acad. Sci. USA 95, 9067–9069 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghosh, S. & Karin, M. Missing pieces in the NF-kB puzzle. Cell 109, S81–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Xia, Y. et al. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc. Natl. Acad. Sci. USA 97, 5243–5248 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shinkura, R. et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding NF-kb-inducing kinase. Nat. Genet. 22, 74–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Yin, L. et al. Defective lymphotoxin-b receptor-induced NF-kB transcriptional activity in NIK-deficient mice. Science 291, 2162–2165 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Sanjo, H. et al. TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol. Cell Biol. 23, 1231–1238 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blank, J.L., Gerwins, P., Elliott, E.M., Sather, S. & Johnson, G.L. Molecular cloning of mitogen-activated protein/ERK kinase kinases (MEKK) 2 and 3. Regulation of sequential phosphorylation pathways involving mitogen-activated protein kinase and c-Jun kinase. J. Biol. Chem. 271, 5361–5368 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Ellinger-Ziegelbauer, H., Brown, K., Kelly, K. & Siebenlist, U. Direct activation of the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by an inducible mitogen-activated protein kinase/ERK kinase kinase 3 (MEKK) derivative. J. Biol. Chem. 272, 2668–2674 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Su, B., Cheng, J., Yang, J. & Guo, Z. MEKK2 is required for T-cell receptor signals in JNK activation and interleukin-2 gene expression. J. Biol. Chem. 276, 14784–14790 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, J. et al. Mekk3 is essential for early embryonic cardiovascular development. Nat. Genet. 24, 309–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Guo, Z. et al. Disruption of Mekk2 in mice reveals an unexpected role for MEKK2 in modulating T-cell receptor signal transduction. Mol. Cell Biol. 22, 5761–5768 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takaesu, G. et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell. 5, 649–658 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Naviaux, R.K., Costanzi, E., Haas, M. & Verma, I.M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Medzhitov, Y. Liu and Y.J. Liu for suggestions and critically reading the manuscript; M. Goode for editing the manuscript; X. Li for sharing plasmids; and B. Wang for technical assistance. Supported partially by the National Institutes of Health (AI44016 and HL070225) and Texas High Education (ARP; both to B.S.), by the Department of Defense (DAMD17-02-0449; Q.H.) and by a Cancer Center Core grant (CA16672; M.D. Anderson Cancer Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Su.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Q., Yang, J., Lin, Y. et al. Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 5, 98–103 (2004). https://doi.org/10.1038/ni1014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing