Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hierarchies of NF-κB target-gene regulation

Abstract

Members of the NF-κB family of transcription factors function as dominant regulators of inducible gene expression in almost all cell types in response to a broad range of stimuli, with particularly important roles in coordinating both innate and adaptive immunity. This review summarizes the present knowledge and recent progress toward elucidating the numerous regulatory layers that confer target-gene selectivity in response to an NF-κB-inducing stimulus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contributors to the selectivity of the NF-κB response.
Figure 2: Enhancers for NF-κB target genes may acquire competence for activation at early stages of development.

Similar content being viewed by others

References

  1. Sen, R. & Baltimore, D. Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47, 921–928 (1986).

    Article  CAS  Google Scholar 

  2. Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32, 317–328 (2010).

    Article  CAS  Google Scholar 

  3. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  Google Scholar 

  4. Saccani, S. & Natoli, G. Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes Dev. 16, 2219–2224 (2002).

    Article  CAS  Google Scholar 

  5. De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130, 1083–1094 (2007).

    Article  CAS  Google Scholar 

  6. De Santa, F. et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J. 28, 3341–3352 (2009).

    Article  CAS  Google Scholar 

  7. van Essen, D., Zhu, Y. & Saccani, S. A feed-forward circuit controlling inducible NF-κB target gene activation by promoter histone demethylation. Mol. Cell 39, 750–760 (2010).

    Article  CAS  Google Scholar 

  8. Fan, W. et al. FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. EMBO J. 29, 4223–4236 (2010).

    Article  CAS  Google Scholar 

  9. Ramirez-Carrozzi, V.R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114–128 (2009).

    Article  CAS  Google Scholar 

  10. De Santa, F. et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384 (2010).

    Article  Google Scholar 

  11. Chen, L.L. & Carmichael, G.G. Decoding the function of nuclear long non-coding RNAs. Curr. Opin. Cell Biol. 22, 357–364 (2010).

    Article  CAS  Google Scholar 

  12. Agalioti, T. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell 103, 667–678 (2000).

    Article  CAS  Google Scholar 

  13. Panne, D., Maniatis, T. & Harrison, S.C. Crystal structure of ATF-2/c-Jun and IRF-3 bound to the interferon-β enhancer. EMBO J. 23, 4384–4393 (2004).

    Article  CAS  Google Scholar 

  14. Panne, D., Maniatis, T. & Harrison, S.C. An atomic model of the interferon-β enhanceosome. Cell 129, 1111–1123 (2007).

    Article  CAS  Google Scholar 

  15. Perkins, N.D. Post-translational modifications regulating the activity and function of the nuclear factor κ B pathway. Oncogene 25, 6717–6730 (2006).

    Article  CAS  Google Scholar 

  16. Zhong, H., Voll, R.E. & Ghosh, S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the co-activator CBP/p300. Mol. Cell 1, 661–671 (1998).

    Article  CAS  Google Scholar 

  17. Zhong, H., May, M.J., Jimi, E. & Ghosh, S. Phosphorylation of nuclear NF-κB governs its association with either HDAC-1 or CBP/p300: a mechanism for regulating the transcriptional activity of NF-κB. Mol. Cell 9, 625–636 (2002).

    Article  CAS  Google Scholar 

  18. Dong, J., Jimi, E., Zhong, H., Hayden, M.S. & Ghosh, S. Epigenetic regulation of NF-κB dependent gene expression. Genes Dev. 22, 1159–1173 (2008).

    Article  CAS  Google Scholar 

  19. Levy, D. et al. Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat. Immunol. 12, 29–36 (2011).

    Article  CAS  Google Scholar 

  20. Oeckinghaus, A., Hayden, M.S. & Ghosh, S. Cross-talk in NF-κB signaling pathways. Nat. Immunol. 12, 695–708 (2011).

    Article  CAS  Google Scholar 

  21. Amir-Zilberstein, L. et al. Differential regulation of NF-κB by elongation factors is determined by core promoter type. Mol. Cell. Biol. 27, 5246–5259 (2007).

    Article  CAS  Google Scholar 

  22. Hargreaves, D.C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129–145 (2009).

    Article  CAS  Google Scholar 

  23. Ghosh, S., May, M.J. & Kopp, E.B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  Google Scholar 

  24. Hoffmann, A., Natoli, G. & Ghosh, G. Transcriptional regulation via the NF-κB signaling module. Oncogene 25, 6706–6716 (2004).

    Article  Google Scholar 

  25. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    Article  CAS  Google Scholar 

  26. Hoffmann, A. & Baltimore, D. Circuitry of NF-κB signaling. Immunol. Rev. 210, 171–186 (2006).

    Article  Google Scholar 

  27. Sen, R. & Smale, S.T. Selectivity of the NF-κB response. Cold Spr. Harb. Perspect. Biol. 2, a000257 (2010).

    Google Scholar 

  28. Ashall, L. et al. Pulsatile stimulation determines timing and specificity of NF-κB-dependent transcription. Science 324, 242–246 (2009).

    Article  CAS  Google Scholar 

  29. Tay, S. et al. Single-cell NF-κB dynamics reveal digital activation and analog information processing. Nature 466, 267–271 (2010).

    Article  CAS  Google Scholar 

  30. Lee, T.K. & Covert, M.W. High-throughput single-cell NF-κB dynamics. Curr. Opin. Genet. Dev. 20, 677–683 (2010).

    Article  CAS  Google Scholar 

  31. Paszek, P., Jackson, D.A. & White, M.R. Oscillatory control of signaling molecules. Curr. Opin. Genet. Dev. 20, 670–676 (2010).

    Article  CAS  Google Scholar 

  32. Wang, Y. et al. Interactions among oscillatory pathways in NF-κB signaling. BMC Syst. Biol. 5, 23 (2011).

    Article  Google Scholar 

  33. Ruland, J. Return to homeostasis: downregulation of NF-κB responses. Nat. Immunol. 12, 709–714 (2011).

    Article  CAS  Google Scholar 

  34. Ramirez-Carrozzi, V.R. et al. Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes Dev. 20, 282–296 (2006).

    Article  CAS  Google Scholar 

  35. Barish, G.D. et al. Bcl-6 and NF-κB cistromes mediate opposing regulation of the innate immune response. Genes Dev. 24, 2760–2765 (2010).

    Article  CAS  Google Scholar 

  36. Hao, S. & Baltimore, D. The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nat. Immunol. 10, 281–288 (2009).

    Article  CAS  Google Scholar 

  37. O'Connell, R.M., Rao, D.S., Chaudhuri, A.A. & Baltimore, D. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10, 111–122 (2010).

    Article  CAS  Google Scholar 

  38. Anderson, P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat. Rev. Immunol. 10, 24–35 (2010).

    Article  CAS  Google Scholar 

  39. Foster, S.L. & Medzhitov, R. Gene-specific control of the TLR-induced inflammatory response. Clin. Immunol. 130, 7–15 (2009).

    Article  CAS  Google Scholar 

  40. Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703 (2009).

    Article  CAS  Google Scholar 

  41. Smale, S.T. Selective transcription in response to an inflammatory stimulus. Cell 140, 833–844 (2010).

    Article  CAS  Google Scholar 

  42. Natoli, G. Maintaining cell identity through global control of genomic organization. Immunity 33, 12–24 (2010).

    Article  CAS  Google Scholar 

  43. Natoli, G., Ghisletti, S. & Barozzi, I. The genomic landscapes of inflammation. Genes Dev. 25, 101–106 (2011).

    Article  CAS  Google Scholar 

  44. Smale, S.T. Pioneer factors in embryonic stem cells and differentiation. Curr. Opin. Genet. Dev. 20, 519–526 (2010).

    Article  CAS  Google Scholar 

  45. Gualdi, R. et al. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 10, 1670–1682 (1996).

    Article  CAS  Google Scholar 

  46. Kontaraki, J., Chen, H.H., Riggs, A. & Bonifer, C. Chromatin fine structure profiles for a developmentally regulated gene: reorganization of the lysozyme locus before trans-activator binding and gene expression. Genes Dev. 14, 2106–2122 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zaret, K.S. et al. Pioneer factors, genetic competence, and inductive signaling: programming liver and pancreas progenitors from the endoderm. Cold Spring Harb. Symp. Quant. Biol. 73, 119–126 (2008).

    Article  CAS  Google Scholar 

  48. Scott, E.W., Simon, M.C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  Google Scholar 

  49. Schebesta, A. et al. Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function. Immunity 27, 49–63 (2007).

    Article  CAS  Google Scholar 

  50. Lin, Y.C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat. Immunol. 11, 635–643 (2010).

    Article  CAS  Google Scholar 

  51. Treiber, T. et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin. Immunity 32, 714–725 (2010).

    Article  CAS  Google Scholar 

  52. Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  Google Scholar 

  53. de Laat, W. & Grosveld, F. Spatial organization of gene expression: the active chromatin hub. Chromosome Res. 11, 447–459 (2003).

    Article  CAS  Google Scholar 

  54. Zhou, L. et al. An inducible enhancer required for Il12b promoter activity in an insulated chromatin environment. Mol. Cell. Biol. 27, 2698–2712 (2007).

    Article  CAS  Google Scholar 

  55. Xu, J. et al. Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc. Natl. Acad. Sci. USA 104, 12377–12382 (2007).

    Article  CAS  Google Scholar 

  56. Xu, J. et al. Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes Dev. 23, 2824–2838 (2009).

    Article  CAS  Google Scholar 

  57. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

    Article  CAS  Google Scholar 

  58. LeRoy, G., Rickards, B. & Flint, S.J. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol. Cell 30, 51–60 (2008).

    Article  CAS  Google Scholar 

  59. Jang, M.K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    Article  CAS  Google Scholar 

  60. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    Article  CAS  Google Scholar 

  61. Huang, B., Yang, X.D., Zhou, M.M., Ozato, K. & Chen, L.F. Brd4 coactivates transcriptional activation of NF-κB via specific binding to acetylated RelA. Mol. Cell. Biol. 29, 1375–1387 (2009).

    Article  CAS  Google Scholar 

  62. Yang, X.D. et al. Negative regulation of NF-κB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J. 28, 1055–1066 (2009).

    Article  CAS  Google Scholar 

  63. Ea, C.K. & Baltimore, D. Regulation of NF-κB activity through lysine monomethylation of p65. Proc. Natl. Acad. Sci. USA 106, 18972–18977 (2009).

    Article  CAS  Google Scholar 

  64. Yang, X.D., Tajkhorshid, E. & Chen, L.F. Functional interplay between acetylation and methylation of the RelA subunit of NF-κB. Mol. Cell. Biol. 30, 2170–2180 (2010).

    Article  CAS  Google Scholar 

  65. Leung, T.H., Hoffmann, A. & Baltimore, D. One nucleotide in a κB site can determine cofactor specificity for NF-κB dimers. Cell 118, 453–464 (2004).

    Article  CAS  Google Scholar 

  66. van Essen, D., Engist, B., Natoli, G. & Saccani, S. Two modes of transcriptional activation at native promoters by NF-κB p65. PLoS Biol. 7, e73 (2009).

    Article  Google Scholar 

  67. Yamamoto, M. & Takeda, K. Role of nuclear IκB proteins in the regulation of host immune responses. J. Infect. Chemother. 14, 265–269 (2008).

    Article  CAS  Google Scholar 

  68. Wan, F. et al. Ribosomal protein S3: a KH domain subunit in NF-κB complexes that mediates selective gene regulation. Cell 131, 927–939 (2007).

    Article  CAS  Google Scholar 

  69. Basehoar, A.D., Zanton, S.J. & Pugh, B.F. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116, 699–709 (2004).

    Article  CAS  Google Scholar 

  70. Tachibana, M. et al. Histone methyltransferase G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3–K9. Genes Dev. 19, 815–826 (2005).

    Article  CAS  Google Scholar 

  71. Duran, A., Diaz-Meco, M.T. & Moscat, J. Essential role of RelA Ser311 phosphorylation by ζPKC in NF-κB transcriptional activation. EMBO J. 22, 3910–3918 (2003).

    Article  CAS  Google Scholar 

  72. Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 12, 715–723 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T Smale.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smale, S. Hierarchies of NF-κB target-gene regulation. Nat Immunol 12, 689–694 (2011). https://doi.org/10.1038/ni.2070

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing