Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements

This article has been updated

Abstract

DNA double-strand breaks (DSBs) can lead to the development of genomic rearrangements, which are hallmarks of cancer. Fusions between TMPRSS2, encoding the transmembrane serine protease isoform 2, and ERG, encoding the v-ets erythroblastosis virus E26 oncogene homolog, are among the most common oncogenic rearrangements observed in human cancer. We show that androgen signaling promotes co-recruitment of androgen receptor and topoisomerase II beta (TOP2B) to sites of TMPRSS2-ERG genomic breakpoints, triggering recombinogenic TOP2B-mediated DSBs. Furthermore, androgen stimulation resulted in de novo production of TMPRSS2-ERG fusion transcripts in a process that required TOP2B and components of the DSB repair machinery. Finally, unlike normal prostate epithelium, prostatic intraepithelial neoplasia cells showed strong coexpression of androgen receptor and TOP2B. These findings implicate androgen-induced TOP2B-mediated DSBs in generating TMPRSS2-ERG rearrangements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TOP2B is required for efficient induction of androgen receptor target gene expression after androgen stimulation.
Figure 2: Androgen stimulation induced recruitment of androgen receptor–TOP2B and TOP2B catalytic cleavage at known regulatory regions of androgen receptor target genes.
Figure 3: Androgen stimulation induces androgen receptor–TOP2B recruitment and TOP2B catalytic cleavage at genomic breakpoints of TMPRSS2 and ERG observed in human prostate cancer.
Figure 4: Androgen stimulation results in TOP2B-dependent DSB formation.
Figure 5: Androgen-induced TOP2B-mediated DSBs are recombinogenic and promote de novo production of TMPRSS2-ERG fusion genes.
Figure 6: TMPRSS2-ERG rearrangements are observed in PIN prostate cancer precursor lesions and are associated with changes in TOP2B expression.
Figure 7: Proposed model for androgen-induced TOP2B-mediated double strand breaks and TOP2B instability (TIN) for the formation of TMPRSS2-ERG gene fusions.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Change history

  • 18 July 2010

    In the version of this article initially published online, there were four sentences (in the Results on pages 2 and 3, in the legend to Figure 3 and in the Online Methods) containing minor errors. These errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. Rowley, J.D. Chromosomal translocations: revisited yet again. Blood 112, 2183–2189 (2008).

    Article  CAS  Google Scholar 

  2. Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–245 (2007).

    Article  CAS  Google Scholar 

  3. Morgan, W.F. et al. DNA double-strand breaks, chromosomal rearrangements, and genomic instability. Mutat. Res. 404, 125–128 (1998).

    Article  CAS  Google Scholar 

  4. Richardson, C. & Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700 (2000).

    Article  CAS  Google Scholar 

  5. Kumar-Sinha, C., Tomlins, S.A. & Chinnaiyan, A.M. Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer 8, 497–511 (2008).

    Article  CAS  Google Scholar 

  6. Tomlins, S.A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  Google Scholar 

  7. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249 (2009).

    Article  Google Scholar 

  8. Pedersen-Bjergaard, J., Andersen, M.K. & Johansson, B. Balanced chromosome aberrations in leukemias following chemotherapy with DNA-topoisomerase II inhibitors. J. Clin. Oncol. 16, 1897–1898 (1998).

    Article  CAS  Google Scholar 

  9. Smith, M.A., McCaffrey, R.P. & Karp, J.E. The secondary leukemias: challenges and research directions. J. Natl. Cancer Inst. 88, 407–418 (1996).

    Article  CAS  Google Scholar 

  10. Zhang, Y. & Rowley, J.D. Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair (Amst.) 5, 1282–1297 (2006).

    Article  CAS  Google Scholar 

  11. Strick, R., Strissel, P.L., Borgers, S., Smith, S.L. & Rowley, J.D. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc. Natl. Acad. Sci. USA 97, 4790–4795 (2000).

    Article  CAS  Google Scholar 

  12. Ju, B.G. et al. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006).

    Article  CAS  Google Scholar 

  13. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  14. Irizarry, R.A., Wang, C., Zhou, Y. & Speed, T.P. Gene Set Enrichment Analysis Made Simple (The Berkeley Electronic Press, 2009).

  15. Nelson, W.G., Liu, L.F. & Coffey, D.S. Newly replicated DNA is associated with DNA topoisomerase II in cultured rat prostatic adenocarcinoma cells. Nature 322, 187–189 (1986).

    Article  CAS  Google Scholar 

  16. Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med. 15, 559–565 (2009).

    Article  CAS  Google Scholar 

  17. Demichelis, F. et al. Distinct genomic aberrations associated with ERG rearranged prostate cancer. Genes Chromosom. Cancer 48, 366–380 (2009).

    Article  CAS  Google Scholar 

  18. Liu, W. et al. Multiple genomic alterations on 21q22 predict various TMPRSS2/ERG fusion transcripts in human prostate cancers. Genes Chromosom. Cancer 46, 972–980 (2007).

    Article  CAS  Google Scholar 

  19. Wang, Q. et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell 27, 380–392 (2007).

    Article  Google Scholar 

  20. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  21. Kinner, A., Wu, W., Staudt, C. & Iliakis, G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 36, 5678–5694 (2008).

    Article  CAS  Google Scholar 

  22. Berkovich, E., Monnat, R.J. Jr. & Kastan, M.B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat. Cell Biol. 9, 683–690 (2007).

    Article  CAS  Google Scholar 

  23. Lavin, M.F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769 (2008).

    Article  CAS  Google Scholar 

  24. Clark, J. et al. Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene 27, 1993–2003 (2008).

    Article  CAS  Google Scholar 

  25. Perner, S. et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am. J. Surg. Pathol. 31, 882–888 (2007).

    Article  Google Scholar 

  26. Lin, C. et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139, 1069–1083 (2009).

    Article  CAS  Google Scholar 

  27. Ripple, M.O., Henry, W.F., Rago, R.P. & Wilding, G. Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. J. Natl. Cancer Inst. 89, 40–48 (1997).

    Article  CAS  Google Scholar 

  28. De Marzo, A.M. et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 256–269 (2007).

    Article  CAS  Google Scholar 

  29. Li, T.K. et al. Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev. 13, 1553–1560 (1999).

    Article  CAS  Google Scholar 

  30. Azarova, A.M. et al. Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc. Natl. Acad. Sci. USA 104, 11014–11019 (2007).

    Article  CAS  Google Scholar 

  31. Zhang, H., D'Arpa, P. & Liu, L.F. A model for tumor cell killing by topoisomerase poisons. Cancer Cells 2, 23–27 (1990).

    CAS  PubMed  Google Scholar 

  32. Nelson, W.G., De Marzo, A.M. & Isaacs, W.B. Prostate cancer. N. Engl. J. Med. 349, 366–381 (2003).

    Article  CAS  Google Scholar 

  33. Denmeade, S.R., Lin, X.S. & Isaacs, J.T. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28, 251–265 (1996).

    Article  CAS  Google Scholar 

  34. Marker, P.C. Does prostate cancer co-opt the developmental program? Differentiation 76, 736–744 (2008).

    Article  CAS  Google Scholar 

  35. Litvinov, I.V., De Marzo, A.M. & Isaacs, J.T. Is the Achilles' heel for prostate cancer therapy a gain of function in androgen receptor signaling? J. Clin. Endocrinol. Metab. 88, 2972–2982 (2003).

    Article  CAS  Google Scholar 

  36. Hällström, T.M. & Laiho, M. Genetic changes and DNA damage responses in the prostate. Prostate 68, 902–918 (2008).

    Article  Google Scholar 

  37. Carver, B.S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet. 41, 619–624 (2009).

    Article  CAS  Google Scholar 

  38. King, J.C. et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat. Genet. 41, 524–526 (2009).

    Article  CAS  Google Scholar 

  39. Klezovitch, O. et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc. Natl. Acad. Sci. USA 105, 2105–2110 (2008).

    Article  Google Scholar 

  40. Hermans, K.G. et al. Two unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in prostate cancer. Cancer Res. 68, 3094–3098 (2008).

    Article  CAS  Google Scholar 

  41. Mani, R.S. et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326, 1230 (2009).

    Article  CAS  Google Scholar 

  42. Aguilera, A. & Gomez-Gonzalez, B. Genome instability: a mechanistic view of its causes and consequences. Nat. Rev. Genet. 9, 204–217 (2008).

    Article  CAS  Google Scholar 

  43. Boonyaratanakornkit, V. et al. High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol. Cell. Biol. 18, 4471–4487 (1998).

    Article  CAS  Google Scholar 

  44. Wang, Q., Carroll, J.S. & Brown, M. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol. Cell 19, 631–642 (2005).

    Article  CAS  Google Scholar 

  45. Splinter, E., Grosveld, F. & de Laat, W. 3C technology: analyzing the spatial organization of genomic loci in vivo. Methods Enzymol. 375, 493–507 (2004).

    Article  CAS  Google Scholar 

  46. Spitzner, J.R., Chung, I.K. & Muller, M.T. Eukaryotic topoisomerase II preferentially cleaves alternating purine-pyrimidine repeats. Nucleic Acids Res. 18, 1–11 (1990).

    Article  CAS  Google Scholar 

  47. DeWeese, T.L. et al. Human papillomavirus E6 and E7 oncoproteins alter cell cycle progression but not radiosensitivity of carcinoma cells treated with low-dose-rate radiation. Int. J. Radiat. Oncol. Biol. Phys. 37, 145–154 (1997).

    Article  CAS  Google Scholar 

  48. Gurel, B. et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod. Pathol. 21, 1156–1167 (2008).

    Article  CAS  Google Scholar 

  49. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  Google Scholar 

  50. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

  51. Haffner, M.C. et al. Interaction and functional interference of glucocorticoid receptor and SOCS1. J. Biol. Chem. 283, 22089–22096 (2008).

    Article  CAS  Google Scholar 

  52. Padilla, P.I. et al. Association of guanine nucleotide-exchange protein BIG1 in HepG2 cell nuclei with nucleolin, U3 snoRNA, and fibrillarin. Proc. Natl. Acad. Sci. USA 105, 3357–3361 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Coffey for helpful comments and C. Heaphy, H. Zhang and L. Dasko-Vincent from the SKCCC Cell Imaging Core Facility for technical support. We also thank the Brady Urological Research Institute Prostate Specimen Repository for providing TMA sections. This work was supported by funding from the NIH/NCI, Department of Defense PCRP, Prostate Cancer Foundation, Maryland Cigarette Restitution Fund and the Patrick C. Walsh Prostate Cancer Research Fund/Dr. and Mrs. Peter S. Bing Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

M.C.H. executed and analyzed all experiments and assisted in writing the manuscript. M.J.A. analyzed microarray data and assisted with statistical analysis of data. A.T., R.A., B.G., A.K.M., G.N. and A.M.D.M. assisted with execution and analysis of FISH, immunostaining and pathology experiments. D.M.E. assisted with execution of experiments. W.B.I., G.S.B., W.L. and J.X. contributed to analysis of microarray data in determination of prostate cancer TMPRSS2-ERG genomic breakpoints. W.G.N. assisted in experimental design and analysis and contributed to writing the manuscript. S.Y. conceived the study together with W.G.N., assisted in experimental design, execution and analysis and wrote the manuscript. All authors assisted in editing the manuscript.

Corresponding authors

Correspondence to William G Nelson or Srinivasan Yegnasubramanian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19 and Supplementary Tables 1–4. (PDF 7983 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haffner, M., Aryee, M., Toubaji, A. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42, 668–675 (2010). https://doi.org/10.1038/ng.613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.613

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer