Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The concurrent chemoradiation paradigm—general principles

Abstract

During the past 20 years, the advent of neoadjuvant, primary, and adjuvant concurrent chemoradiotherapy has improved cancer care dramatically. Significant contributions have been made by technological improvements in radiotherapy, as well as by the introduction of novel chemotherapy agents and dosing schedules. This article will review the rationale for the use of concurrent chemoradiotherapy for treating malignancies. The molecular basis and mechanisms of action of combining classic cytotoxic agents (e.g. platinum-containing drugs, taxanes, etc.) and novel agents (e.g. tirapazamine, EGFR inhibitors and other targeted agents) with radiotherapy will be examined. This article is part one of two articles. In the subsequent article, the general principles outlined here will be applied to head and neck cancer, in which the impact of concurrent chemoradiotherapy is particularly evident.

Key Points

  • Concurrent chemoradiotherapy has improved cancer care during the past two decades in multiple diseases, and can be used in the neoadjuvant, primary (definitive), or adjuvant setting

  • Chemotherapy or targeted agents can increase the efficacy of radiation

  • Radiosensitizing effects (interaction within the radiation field) can be additive or supra-additive

  • Multiple mechanisms underlie radiosensitizing properties of chemotherapeutic agents and include increased radiation damage, inhibition of DNA repair, cell-cycle synchronization, increased cytotoxicity against hypoxic cells, inhibition of prosurvival pathways, and abrogation of rapid tumor cell repopulation

  • Radioresistance occurs through multiple mechanisms, such as a large tumor burden, hypoxia, rapid tumor cell repopulation, as well as the constitutive or acquired activation of radioresistance signaling pathways

  • In addition to the classic chemotherapeutic agents with radiosensitizing properties (i.e. cisplatin and paclitaxel), several novel agents show promising interactions with radiation (e.g. EGFR inhibitors, pemetrexed, tirapazamine, and potentially several other targeted therapies)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rationale for adding chemotherapy to radiation.
Figure 2: Schematic example of an isobologram depicting the combination of radiation and a systemic agent.
Figure 3: Schematic dose–response curves for tumor and normal tissue damage with radiation.
Figure 4: Cell-cycle schematic and respective sensitivity to chemotherapeutic agents.
Figure 5: Increased DNA damage by addition of cisplatin to radiation.

Similar content being viewed by others

References

  1. Steel GG and Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 5: 85–91

    Article  CAS  PubMed  Google Scholar 

  2. Brizel DM et al. (2000) Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol 18: 3339–3345

    Article  CAS  PubMed  Google Scholar 

  3. Buentzel J et al. (2006) Intravenous amifostine during chemoradiotherapy for head-and-neck cancer: a randomized placebo-controlled phase III study. Int J Radiat Oncol Biol Phys 64: 684–691

    Article  CAS  PubMed  Google Scholar 

  4. Komaki R et al. (2004) Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non-small-cell lung cancer: report of a randomized comparative trial. Int J Radiat Oncol Biol Phys 58: 1369–1377

    Article  CAS  PubMed  Google Scholar 

  5. Malik R et al. (2005) Meta-analysis of the effect of amifostine on response rates in advanced non-small cell lung cancer patients treated on randomized trials. Int J Radiat Oncol Biol Phys 63 (Suppl 1): S117

    Article  Google Scholar 

  6. Sasse AD et al. (2006) Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. Int J Radiat Oncol Biol Phys 64: 784–791

    Article  CAS  PubMed  Google Scholar 

  7. Grdina DJ et al. (2002) Radioprotectants: current status and new directions. Oncology 63 (Suppl 2): S2–S10

    Article  CAS  Google Scholar 

  8. Stiff PJ et al. (2006) Palifermin reduces patient-reported mouth and throat soreness and improves patient functioning in the hematopoietic stem-cell transplantation setting. J Clin Oncol [doi: 10.1200/JCO.2005.02.8340]

    Article  CAS  PubMed  Google Scholar 

  9. Rosen LS et al. (2006) Palifermin reduces the incidence of oral mucositis in patients with metastatic colorectal cancer treated with fluorouracil-based chemotherapy. J Clin Oncol 24: 5194–5200

    Article  CAS  PubMed  Google Scholar 

  10. Giocanti N et al. (1993) DNA repair and cell cycle interactions in radiation sensitization by the topoisomerase II poison etoposide. Cancer Res 53: 2105–2111

    CAS  PubMed  Google Scholar 

  11. Hennequin C and Favaudon V (2002) Biological basis for chemo-radiotherapy interactions. Eur J Cancer 38: 223–230

    Article  CAS  PubMed  Google Scholar 

  12. Chou TC and Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22: 27–55

    Article  CAS  PubMed  Google Scholar 

  13. Reynolds CP and Maurer BJ (2005) Evaluating response to antineoplastic drug combinations in tissue culture models. Methods Mol Med 110: 173–183

    CAS  PubMed  Google Scholar 

  14. Teicher BA (2003) Assays for in vitro and in vivo synergy. Methods Mol Med 85: 297–321

    CAS  PubMed  Google Scholar 

  15. White DB et al. (2003) A new nonlinear mixture response surface paradigm for the study of synergism: a three drug example. Curr Drug Metab 4: 399–409

    Article  CAS  PubMed  Google Scholar 

  16. Coleman CN (1988) Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity. J Natl Cancer Inst 80: 310–317

    Article  CAS  PubMed  Google Scholar 

  17. Gray LH et al. (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26: 638–648

    Article  CAS  PubMed  Google Scholar 

  18. Kumar P (2000) Tumor hypoxia and anemia: impact on the efficacy of radiation therapy. Semin Hematol 37: 4–8

    Article  CAS  PubMed  Google Scholar 

  19. Overgaard J et al. (1989) Misonidazole combined with split-course radiotherapy in the treatment of invasive carcinoma of larynx and pharynx: report from the DAHANCA 2 study. Int J Radiat Oncol Biol Phys 16: 1065–1068

    Article  CAS  PubMed  Google Scholar 

  20. Moulder JE and Rockwell S (1984) Hypoxic fractions of solid tumors: experimental techniques, methods of analysis, and a survey of existing data. Int J Radiat Oncol Biol Phys 10: 695–712

    Article  CAS  PubMed  Google Scholar 

  21. Terasima T and Tolmach LJ (1963) X-ray sensitivity and DNA synthesis in synchronous populations of HeLa cells. Science 140: 490–492

    Article  CAS  PubMed  Google Scholar 

  22. Fowler JF and Lindstrom MJ (1992) Loss of local control with prolongation in radiotherapy. Int J Radiat Oncol Biol Phys 23: 457–467

    Article  CAS  PubMed  Google Scholar 

  23. Trott KR and Kummermehr J (1985) What is known about tumour proliferation rates to choose between accelerated fractionation or hyperfractionation? Radiother Oncol 3: 1–9

    Article  CAS  PubMed  Google Scholar 

  24. Krause M et al. (2005) Decreased repopulation as well as increased reoxygenation contribute to the improvement in local control after targeting of the EGFR by C225 during fractionated irradiation. Radiother Oncol 76: 162–167

    Article  CAS  PubMed  Google Scholar 

  25. Grillo-Ruggieri F and Mantello G (2004) Is one Gy equal to one Gy after treatment interruptions? Rays 29: 275–278

    PubMed  Google Scholar 

  26. Schmidt-Ullrich RK et al. (1999) Molecular mechanisms of radiation-induced accelerated repopulation. Radiat Oncol Investig 7: 321–330

    Article  CAS  PubMed  Google Scholar 

  27. West CM et al. (1997) The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. Br J Cancer 76: 1184–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deacon J et al. (1984) The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol 2: 317–323

    Article  CAS  PubMed  Google Scholar 

  29. Dey S et al. (2003) Low-dose fractionated radiation potentiates the effects of paclitaxel in wild-type and mutant p53 head and neck tumor cell lines. Clin Cancer Res 9: 1557–1565

    CAS  PubMed  Google Scholar 

  30. Nix PA et al. (2004) Radioresistant laryngeal cancer: beyond the TNM stage. Clin Otolaryngol Allied Sci 29: 105–114

    Article  CAS  PubMed  Google Scholar 

  31. Smith BD and Haffty BG (1999) Molecular markers as prognostic factors for local recurrence and radioresistance in head and neck squamous cell carcinoma. Radiat Oncol Investig 7: 125–144

    Article  CAS  PubMed  Google Scholar 

  32. Aebersold DM et al. (2001) Involvement of the hepatocyte growth factor/scatter factor receptor c-met and of Bcl-xL in the resistance of oropharyngeal cancer to ionizing radiation. Int J Cancer 96: 41–54

    Article  CAS  PubMed  Google Scholar 

  33. Uchida D et al. (2001) Role of HGF/c-met system in invasion and metastasis of oral squamous cell carcinoma cells in vitro and its clinical significance. Int J Cancer 93: 489–496

    Article  CAS  PubMed  Google Scholar 

  34. Khodarev NN et al. (2004) STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proc Natl Acad Sci USA 101: 1714–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bennett CB et al. (1993) Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc Natl Acad Sci USA 15: 13–17

    Google Scholar 

  36. Ward JF (1998) Nature of lesions formed by ionising radiation. In DNA damage and repair: DNA repair in higher eukaryotes, 65–84 (Eds Nickoloff JA and Hoekstra MF). Totowa, NJ: Humana Press

    Google Scholar 

  37. Begg AC (1990) Cisplatin and radiation: interaction probabilities and therapeutic possibilities. Int J Radiat Oncol Biol Phys 19: 1183–1189

    Article  CAS  PubMed  Google Scholar 

  38. Yang LX et al. (1995) Production of DNA double-strand breaks by interactions between carboplatin and radiation: a potential mechanism for radiopotentiation. Radiat Res 143: 309–315

    Article  CAS  PubMed  Google Scholar 

  39. Sinclair WK and Morton RA (1966) X-ray sensitivity during the cell generation cycle of cultured Chinese hamster cells. Radiat Res 29: 450–474

    Article  CAS  PubMed  Google Scholar 

  40. Terasima T and Tolmach LJ (1961) Changes in x-ray sensitivity of HeLa cells during the division cycle. Nature 190: 1210–1211

    Article  CAS  PubMed  Google Scholar 

  41. Wilson GD et al. (2006) Biologic basis for combining drugs with radiation. Semin Radiat Oncol 16: 2–9

    Article  PubMed  Google Scholar 

  42. Hei TK et al. (1994) Taxol and ionizing radiation: interaction and mechanisms. Int J Radiat Oncol Biol Phys 29: 267–271

    Article  CAS  PubMed  Google Scholar 

  43. Stromberg JS et al. (1995) Lack of radiosensitization after paclitaxel treatment of three human carcinoma cell lines. Cancer 75: 2262–2268

    Article  CAS  PubMed  Google Scholar 

  44. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14: 198–206

    Article  PubMed  Google Scholar 

  45. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732

    Article  CAS  PubMed  Google Scholar 

  46. Milas L et al. (1995) Tumor reoxygenation as a mechanism of taxol-induced enhancement of tumor radioresponse. Acta Oncol 34: 409–412

    Article  CAS  PubMed  Google Scholar 

  47. Kim JJ and Tannock IF (2005) Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer 5: 516–525

    Article  CAS  PubMed  Google Scholar 

  48. Liang K et al. (2003) The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol Biol Phys 57: 246–254

    Article  CAS  PubMed  Google Scholar 

  49. Bonner JA et al. (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354: 567–578

    Article  CAS  PubMed  Google Scholar 

  50. Spring PM et al. (2004) Low dose fractionated radiation potentiates the effects of taxotere in nude mice xenografts of squamous cell carcinoma of head and neck. Cell Cycle 3: 479–485

    Article  CAS  PubMed  Google Scholar 

  51. Vokes EE and Weichselbaum RR (1990) Concomitant chemoradiotherapy: rationale and clinical experience in patients with solid tumors. J Clin Oncol 8: 911–934

    Article  CAS  PubMed  Google Scholar 

  52. Richmond RC (1984) Toxic variability and radiation sensitization by dichlorodiammineplatinum(II) complexes in Salmonella typhimurium cells. Radiat Res 99: 596–608

    Article  CAS  PubMed  Google Scholar 

  53. Yang LX et al. (1995) Irradiation enhances cellular uptake of carboplatin. Int J Radiat Oncol Biol Phys 33: 641–646

    Article  CAS  PubMed  Google Scholar 

  54. Amorino GP et al. (1999) Radiopotentiation by the oral platinum agent, JM216: role of repair inhibition. Int J Radiat Oncol Biol Phys 44: 399–405

    Article  CAS  PubMed  Google Scholar 

  55. Moreland NJ et al. (1999) Modulation of drug resistance mediated by loss of mismatch repair by the DNA polymerase inhibitor aphidicolin. Cancer Res 59: 2102–2106

    CAS  PubMed  Google Scholar 

  56. Dolling JA et al. (1999) Cisplatin-modification of DNA repair and ionizing radiation lethality in yeast, Saccharomyces cerevisiae. Mutat Res 433: 127–136

    Article  CAS  PubMed  Google Scholar 

  57. Lawrence TS et al. (1997) Fluoropyrimidine-radiation interactions in cells and tumors. Semin Radiat Oncol 7: 260–266

    Article  CAS  PubMed  Google Scholar 

  58. McGinn CJ and Lawrence TS (2001) Recent advances in the use of radiosensitizing nucleosides. Semin Radiat Oncol 11: 270–280

    Article  CAS  PubMed  Google Scholar 

  59. Pinedo HM and Peters GF (1988) Fluorouracil: biochemistry and pharmacology. J Clin Oncol 6: 1653–1664

    Article  CAS  PubMed  Google Scholar 

  60. Sawada N et al. (1999) X-ray irradiation induces thymidine phosphorylase and enhances the efficacy of capecitabine (Xeloda) in human cancer xenografts. Clin Cancer Res 5: 2948–2953

    CAS  PubMed  Google Scholar 

  61. Hui YF and Reitz J (1997) Gemcitabine: a cytidine analogue active against solid tumors. Am J Health Syst Pharm 54: 162–170

    Article  CAS  PubMed  Google Scholar 

  62. Crane CH et al. (2002) Is the therapeutic index better with gemcitabine-based chemoradiation than with 5-fluorouracil-based chemoradiation in locally advanced pancreatic cancer? Int J Radiat Oncol Biol Phys 52: 1293–1302

    Article  CAS  PubMed  Google Scholar 

  63. Blackstock AW et al. (2005) Initial pulmonary toxicity evaluation of chemoradiotherapy (CRT) utilizing 74 Gy 3-dimensional (3-D) thoracic radiation in stage III non-small cell lung cancer (NSCLC): a Cancer and Leukemia Group B (CALGB) randomized phase II trial [abstract #7060]. Presented at the 2005 ASCO annual meeting, Orlando, FL

  64. Talamonti MS et al. (2006) A multi-institutional phase II trial of preoperative full-dose gemcitabine and concurrent radiation for patients with potentially resectable pancreatic carcinoma. Ann Surg Oncol 13: 150–158

    Article  PubMed  Google Scholar 

  65. Lawrence TS et al. (2003) The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin Radiat Oncol 13: 13–21

    Article  PubMed  Google Scholar 

  66. Lawrence TS et al. (1997) Delayed radiosensitization of human colon carcinoma cells after a brief exposure to 2′,2′-difluoro-2′-deoxycytidine (Gemcitabine). Clin Cancer Res 3: 777–782

    CAS  PubMed  Google Scholar 

  67. Shewach DS and Lawrence TS (1996) Gemcitabine and radiosensitization in human tumor cells. Invest New Drugs 14: 257–263

    Article  CAS  PubMed  Google Scholar 

  68. Bischof M et al. (2002) Interaction of pemetrexed disodium (ALIMTA, multitargeted antifolate) and irradiation in vitro. Int J Radiat Oncol Biol Phys 52: 1381–1388

    Article  CAS  PubMed  Google Scholar 

  69. Bischof M et al. (2003) Radiosensitization by pemetrexed of human colon carcinoma cells in different cell cycle phases. Int J Radiat Oncol Biol Phys 57: 289–292

    Article  CAS  PubMed  Google Scholar 

  70. Seiwert TY et al. (2005) A phase I dose-escalating study of combination pemetrexed-based chemotherapy and concomitant radiotherapy for locally advanced or metastatic non-small cell lung or esophageal cancer [abstract #7062]. Presented at the 2005 ASCO annual meeting, Orlando, FL

  71. Vokes EE et al. (1992) Hydroxyurea with concomitant radiotherapy for locally advanced head and neck cancer. Semin Oncol 19: 53–58

    CAS  PubMed  Google Scholar 

  72. Kuo ML et al. (1997) The interaction of hydroxyurea and ionizing radiation in human cervical carcinoma cells. Cancer J Sci Am 3: 163–173

    CAS  PubMed  Google Scholar 

  73. Prados MD et al. (1998) Radiation therapy and hydroxyurea followed by the combination of 6-thioguanine and BCNU for the treatment of primary malignant brain tumors. Int J Radiat Oncol Biol Phys 40: 57–63

    Article  CAS  PubMed  Google Scholar 

  74. Leyden D et al. (2000) Hydroxyurea and trimidox enhance the radiation effect in human pancreatic adenocarcinoma cells. Anticancer Res 20: 133–138

    CAS  PubMed  Google Scholar 

  75. Schiff PB and Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77: 1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hennequin C et al. (1995) S-phase specificity of cell killing by docetaxel (Taxotere) in synchronised HeLa cells. Br J Cancer 71: 1194–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Steel GG (1994) Cell synchronization unfortunately may not benefit cancer therapy. Radiother Oncol 32: 95–97

    Article  CAS  PubMed  Google Scholar 

  78. Ingram ML and Redpath JL (1997) Subadditive interaction of radiation and Taxol in vitro. Int J Radiat Oncol Biol Phys 37: 1139–1144

    Article  CAS  PubMed  Google Scholar 

  79. Heinrich MC et al. (1998) DNA cross-linker-induced G2/M arrest in group C Fanconi anemia lymphoblasts reflects normal checkpoint function. Blood 91: 275–287

    CAS  PubMed  Google Scholar 

  80. Sugiyama K et al. (2000) UCN-01 selectively enhances mitomycin C cytotoxicity in p53 defective cells which is mediated through S and/or G(2) checkpoint abrogation. Int J Cancer 85: 703–709

    Article  CAS  PubMed  Google Scholar 

  81. Budach W et al. (2002) Mitomycin C in combination with radiotherapy as a potent inhibitor of tumour cell repopulation in a human squamous cell carcinoma. Br J Cancer 86: 470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wouters BG et al. (1999) Tirapazamine: a new drug producing tumor specific enhancement of platinum-based chemotherapy in non-small-cell lung cancer. Ann Oncol 10 (Suppl 5): S29–S33

    Article  PubMed  Google Scholar 

  83. Brown JM and Lemmon MJ (1990) Potentiation by the hypoxic cytotoxin SR 4233 of cell killing produced by fractionated irradiation of mouse tumors. Cancer Res 50: 7745–7749

    CAS  PubMed  Google Scholar 

  84. Lartigau E and Guichard M (1995) Does tirapazamine (SR-4233) have any cytotoxic or sensitizing effect on three human tumour cell lines at clinically relevant partial oxygen pressure? Int J Radiat Biol 67: 211–216

    Article  CAS  PubMed  Google Scholar 

  85. Lambin P et al. (1992) The effect of the hypoxic cell drug SR-4233 alone or combined with the ionizing radiations on two human tumor cell lines having different radiosensitivity. Radiother Oncol 24: 201–204

    Article  CAS  PubMed  Google Scholar 

  86. Brown JM and Koong A (1991) Therapeutic advantage of hypoxic cells in tumors: a theoretical study. J Natl Cancer Inst 83: 178–185

    Article  CAS  PubMed  Google Scholar 

  87. Brown JM (1993) SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br J Cancer 67: 1163–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brown JM (1999) The hypoxic cell: a target for selective cancer therapy—eighteenth Bruce F Cain Memorial Award lecture. Cancer Res 59: 5863–5870

    CAS  PubMed  Google Scholar 

  89. Wouters BG et al. (2001) Mitochondrial dysfunction after aerobic exposure to the hypoxic cytotoxin tirapazamine. Cancer Res 61: 145–152

    CAS  PubMed  Google Scholar 

  90. Patel M et al. (2003) Plasma and cerebrospinal fluid pharmacokinetics of intravenous temozolomide in non-human primates. J Neurooncol 61: 203–207

    Article  PubMed  Google Scholar 

  91. Hickman MJ and Samson LD (1999) Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proc Natl Acad Sci USA 96: 10764–10769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Roos W et al. (2004) Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1. Oncogene 23: 359–367

    Article  CAS  PubMed  Google Scholar 

  93. Hermisson M et al. (2006) O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. J Neurochem 96: 766–776

    Article  CAS  PubMed  Google Scholar 

  94. Wick W et al. (2002) Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res 62: 1915–1919

    CAS  PubMed  Google Scholar 

  95. Beauchesne P (2002) Promising survival and concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20: 3180–3181

    Article  PubMed  Google Scholar 

  96. Wedge SR et al. (1997) In vitro evaluation of temozolomide combined with X-irradiation. Anticancer Drugs 8: 92–97

    Article  CAS  PubMed  Google Scholar 

  97. van Rijn J et al. (2000) Survival of human glioma cells treated with various combination of temozolomide and X-rays. Int J Radiat Oncol Biol Phys 47: 779–784

    Article  CAS  PubMed  Google Scholar 

  98. Salama JK (2004) Intensity-modulated radiation therapy in gynecologic malignancies. Curr Treat Options Oncol 5: 97–108

    Article  PubMed  Google Scholar 

  99. Ma BB et al. (2003) Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents. J Clin Oncol 21: 2760–2776

    Article  CAS  PubMed  Google Scholar 

  100. Ang KK et al. (2004) Epidermal growth factor receptor and response of head-and-neck carcinoma to therapy. Int J Radiat Oncol Biol Phys 58: 959–965

    Article  CAS  PubMed  Google Scholar 

  101. Pal SK and Pegram M (2005) Epidermal growth factor receptor and signal transduction: potential targets for anti-cancer therapy. Anticancer Drugs 16: 483–494

    Article  CAS  PubMed  Google Scholar 

  102. Dent P et al. (1999) Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol Biol Cell 10: 2493–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chinnaiyan P et al. (2005) Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res 65: 3328–3335

    Article  CAS  PubMed  Google Scholar 

  104. Bandyopadhyay D (1998) Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J Biol Chem 273: 1568–1573

    Article  CAS  PubMed  Google Scholar 

  105. Dittmann KH et al. (2001) Characterization of the amino acids essential for the photo- and radioprotective effects of a Bowman-Birk protease inhibitor-derived nonapeptide. Protein Eng 14: 157–160

    Article  CAS  PubMed  Google Scholar 

  106. Milas L et al. (2000) In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res 6: 701–708

    CAS  PubMed  Google Scholar 

  107. Bonner JA et al. (2000) Enhanced apoptosis with combination C225/radiation treatment serves as the impetus for clinical investigation in head and neck cancers. J Clin Oncol 18 (Suppl): 47S–53S

    CAS  PubMed  Google Scholar 

  108. Folkman J (2006) Angiogenesis. Annu Rev Med 57: 1–18

    Article  CAS  PubMed  Google Scholar 

  109. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58–62

    Article  CAS  PubMed  Google Scholar 

  110. Wachsberger P et al. (2003) Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin Cancer Res 9: 1957–1971

    CAS  PubMed  Google Scholar 

  111. Murata R et al. (1997) An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int J Radiat Oncol Biol Phys 37: 1107–1113

    Article  CAS  PubMed  Google Scholar 

  112. Mauceri HJ et al. (1998) Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 394: 287–291

    Article  CAS  PubMed  Google Scholar 

  113. Ning S et al. (2002) The antiangiogenic agents SU5416 and SU6668 increase the antitumor effects of fractionated irradiation. Radiat Res 157: 45–51

    Article  CAS  PubMed  Google Scholar 

  114. Hanna NN et al. (2000) Antitumor interaction of short-course endostatin and ionizing radiation. Cancer J 6: 287–293

    CAS  PubMed  Google Scholar 

  115. Birchmeier C et al. (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4: 915–925

    Article  CAS  PubMed  Google Scholar 

  116. Lal B et al. (2005) Targeting the c-Met pathway potentiates glioblastoma responses to gamma-radiation. Clin Cancer Res 11: 4479–4486

    Article  CAS  PubMed  Google Scholar 

  117. Senzer N et al. (2005) Updated response and survival data for TNFerade combined with chemoradiation in the treatment of locally advanced pancreatic cancer (LAPC) [abstract #4097]. Presented at the 2005 ASCO annual meeting, Orlando, FL

  118. Russo SM et al. (2001) Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 50: 183–193

    Article  CAS  PubMed  Google Scholar 

  119. Shinohara ET et al. (2005) Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene 24: 5414–5422

    Article  CAS  PubMed  Google Scholar 

  120. Nishimura Y (2004) Rationale for chemoradiotherapy. Int J Clin Oncol 9: 414–420

    Article  PubMed  Google Scholar 

  121. Pigott K et al. (1995) Where exactly does failure occur after radiation in head and neck cancer? Radiother Oncol 37: 17–19

    Article  CAS  PubMed  Google Scholar 

  122. Shukovsky LJ (1970) Dose, time, volume relationships in squamous cell carcinoma of the supraglottic larynx. Am J Roentgenol Radium Ther Nucl Med 108: 27–29

    Article  CAS  PubMed  Google Scholar 

  123. Cook JA et al. (2004) Oxidative stress, redox, and the tumor microenvironment. Semin Radiat Oncol 14: 259–266

    Article  PubMed  Google Scholar 

  124. Milosevic M et al. (2004) The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin Radiat Oncol 14: 249–258

    Article  PubMed  Google Scholar 

  125. Roh HD et al. (1991) Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation response. Cancer Res 51: 6695–6698

    CAS  PubMed  Google Scholar 

  126. Taghian AG et al. (2005) Paclitaxel decreases the interstitial fluid pressure and improves oxygenation in breast cancers in patients treated with neoadjuvant chemotherapy: clinical implications. J Clin Oncol 23: 1951–1961

    Article  CAS  PubMed  Google Scholar 

  127. Koukourakis MI et al. (2002) Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 53: 1192–1202

    Article  CAS  PubMed  Google Scholar 

  128. Suwinski R and Withers HR (2003) Time factor and treatment strategies in subclinical disease. Int J Radiat Biol 79: 495–502

    Article  CAS  PubMed  Google Scholar 

  129. Holsinger FC et al. (2003) Epidermal growth factor receptor blockade potentiates apoptosis mediated by Paclitaxel and leads to prolonged survival in a murine model of oral cancer. Clin Cancer Res 9: 3183–3189

    CAS  PubMed  Google Scholar 

  130. Knecht R et al. (2003) EGFR antibody-supplemented TPE-chemotherapy: preclinical investigations to a novel approach for head and neck cancer induction treatment. Anticancer Res 23: 4789–4795

    CAS  PubMed  Google Scholar 

  131. Niwa H et al. (2003) Antitumor effects of epidermal growth factor receptor antisense oligonucleotides in combination with docetaxel in squamous cell carcinoma of the head and neck. Clin Cancer Res 9: 5028–5035

    CAS  PubMed  Google Scholar 

  132. Cohen EE (2005) Integration of Gefitinib (G), into a Concurrent Chemoradiation (CRT) Regimen Followed by G Adjuvant Therapy in Patients with Locally Advanced Head and Neck Cancer (HNC)—a Phase II Trial [abstract #5506]. J Clin Oncol 23 (Suppl): 16S

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the generous help of Dr Blase Polite and Dr Samir Undevia in reviewing organ-specific data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanguy Y Seiwert.

Ethics declarations

Competing interests

EE Vokes has been a consultant for AstraZeneca, Bristol-Myers Squibb, Eli Lilly, Genentech, ImClone, OSI and sanofi-aventis. The other authors declared they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiwert, T., Salama, J. & Vokes, E. The concurrent chemoradiation paradigm—general principles. Nat Rev Clin Oncol 4, 86–100 (2007). https://doi.org/10.1038/ncponc0714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing